Show simple item record

Hydrothermal Reactions of Algae Model Compounds.

dc.contributor.authorChangi, Shujauddin M.en_US
dc.date.accessioned2012-10-12T15:24:25Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2012-10-12T15:24:25Z
dc.date.issued2012en_US
dc.date.submitted2012en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93849
dc.description.abstractHydrothermal liquefaction (HTL) refers to the process of converting biomass to bio-oil by contacting the biomass with water at high temperatures (> 200 °C) and sufficient pressures to maintain water in the liquid state. HTL of algae producing bio-oil has the advantage of energy efficiency and capability of dealing with wet biomass. Very little is known about the mechanism and chemistry of biomacromolecules reactions in high temperature water (HTW). In this project, we overcome the existing gap by studying ethyl oleate, phenylalanine, phytol, and DOPC as representative model compounds for triglycerides, proteins, chlorophyll and phospholipid, respectively, in HTW. We examined the behavior of model compounds from 175 – 350 °C. Hydrolysis of ethyl oleate (to oleic acid) was autocatalytic. A phenomenological and mechanistic kinetics model was developed that was consistent with the experimental data. We suggest that hydrolysis of ester is catalyzed by both H+ and fatty acid. Phenylalanine primarily formed phenylethylamine, while minor products included styrene and phenylethanol isomers. Major products from phytol included neophytadiene, isophytol, and phytone, while pristene, phytene, phytane, and dihydrophytol were the minor products. Phenylalanine and phytol disappearance followed first order kinetics. DOPC hydrolyzed to form 1-acyl and 2-acyl lyso-phosphatidylcholine (LPC) along with oleic acid as primary products. LPC subsequently formed other phosphorus-containing intermediates, which finally led to phosphoric acid as the ultimate P-containing product. Hydrolysis of DOPC was catalyzed by oleic and phosphoric acids. A kinetics model based on proposed pathways was consistent with experimental data for the model compound. Lastly, we studied the effects of inorganic (salts and boric acid) and organic (ethyl oleate) additives on phenylalanine conversion and product distribution at 250 °C and 350 °C, respectively. Inorganic additives increased phenylalanine conversion favoring formation of high molecular weight compounds. Higher concentration of ethyl oleate lead to an increase in the rates of deamination of phenylethylamine and hydration of styrene. Amides are also formed due to the interaction of fatty acid/ethyl oleate and amines/ammonia. Taken collectively, the results from this study provide new insights into the reactions of algae during its HTL to produce crude bio-oil.en_US
dc.language.isoen_USen_US
dc.subjectAlgaeen_US
dc.subjectModel Compoundsen_US
dc.subjectHigh-Temperature Wateren_US
dc.subjectKineticsen_US
dc.subjectAutocatalysisen_US
dc.subjectBinary Mixturesen_US
dc.titleHydrothermal Reactions of Algae Model Compounds.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineChemical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberSavage, Phillip E.en_US
dc.contributor.committeememberMatzger, Adam J.en_US
dc.contributor.committeememberHunter, Shawn E.en_US
dc.contributor.committeememberMonroe, Charles W.en_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93849/1/changism_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.