Show simple item record

LIMITED EFFECT OF REACTIVE OXYGEN SPECIES ON THE COMPOSITION OF SUSCEPTIBLE ESSENTIAL AMINO ACIDS IN THE MIDGUTS OF L ymantria Dispar CATERPILLARS

dc.contributor.authorBarbehenn, Raymond V.en_US
dc.contributor.authorNiewiadomski, Julieen_US
dc.contributor.authorKochmanski, Josephen_US
dc.contributor.authorConstabel, C. Peteren_US
dc.date.accessioned2012-11-07T17:04:23Z
dc.date.available2014-01-07T14:51:07Zen_US
dc.date.issued2012-11en_US
dc.identifier.citationBarbehenn, Raymond V.; Niewiadomski, Julie; Kochmanski, Joseph; Constabel, C. Peter (2012). "LIMITED EFFECT OF REACTIVE OXYGEN SPECIES ON THE COMPOSITION OF SUSCEPTIBLE ESSENTIAL AMINO ACIDS IN THE MIDGUTS OF L ymantria Dispar CATERPILLARS." Archives of Insect Biochemistry and Physiology 81(3): 160-177. <http://hdl.handle.net/2027.42/94223>en_US
dc.identifier.issn0739-4462en_US
dc.identifier.issn1520-6327en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94223
dc.publisherAvi Publishing Coen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherOxidationen_US
dc.subject.otherHerbivoreen_US
dc.subject.otherNutritionen_US
dc.subject.otherTanninen_US
dc.subject.otherReactive Oxygen Speciesen_US
dc.subject.otherProteinen_US
dc.subject.otherAmino Acidsen_US
dc.titleLIMITED EFFECT OF REACTIVE OXYGEN SPECIES ON THE COMPOSITION OF SUSCEPTIBLE ESSENTIAL AMINO ACIDS IN THE MIDGUTS OF L ymantria Dispar CATERPILLARSen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22961657en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94223/1/arch21065.pdf
dc.identifier.doi10.1002/arch.21065en_US
dc.identifier.sourceArchives of Insect Biochemistry and Physiologyen_US
dc.identifier.citedreferenceMoskovitz J, Bar‐Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER. 2001. Methionine sulfoxide reductase ( M sr A ) is a regulator of antioxidant defense and lifespan in mammals. Proc Nat Acad Sci 98: 12920 – 12925.en_US
dc.identifier.citedreferenceHurrell RF, Finot PA. 1984. Nutritional consequences of the reactions between proteins and oxidised polyphenolic acids. Adv Exper Med Biol 177: 423 – 435.en_US
dc.identifier.citedreferenceHurrell RF, Finot PA, Cuq JL. 1982. Protein‐polyphenol reactions. British J Nutr 47: 191 – 211.en_US
dc.identifier.citedreferenceIgarashi K, Yasui T. 1985. Oxidation of free methionine and methionine residues in protein involved in the browning reaction of phenolic compounds. Agr Biol Chem 49: 2309 – 2315.en_US
dc.identifier.citedreferenceJohnson KS, Barbehenn RV. 2000. Oxygen levels in the gut lumens of herbivorous insects. J Insect Physiol 46: 897 – 903.en_US
dc.identifier.citedreferenceKarowe DN, Martin MM. 1989. The effects of quantity and quality of diet nitrogen on the growth, efficiency of food utilization, nitrogen budget, and metabolic rate of fifth‐instar S podoptera eridania larvae ( L epidoptera: N octuidae). J Insect Physiol 35: 699 – 708.en_US
dc.identifier.citedreferenceKrishnan N, Kodrick D, Turanli F, Sehnal F. 2007. Stage‐specific distribution of oxidative radicals and antioxidant enzymes in the midgut of L eptinotarsa decemlineata. J Insect Physiol 53: 67 – 74.en_US
dc.identifier.citedreferenceLiebhold AM, Gottschalk KW, Muzika R‐M, Montgomery ME, Young R, O'Day K, Kelley B. 1995. Suitability of N orth A merican tree species to the gypsy moth: a summary of field and laboratory tests. United States Department of Agriculture Forest Service, Northeastern Forest Experimental Station, General Technical Report NE‐211.en_US
dc.identifier.citedreferenceLovett GM, Hart JE, Christenson LM, Jones CG. 1998. Caterpillar guts and ammonia volatilization: retention of nitrogen by gypsy moth larvae consuming oak foliage. Oecologia 117: 513 – 516.en_US
dc.identifier.citedreferenceMatheis G, Whitaker JR. 1984. Modification of proteins by polyphenol oxidase and peroxidase and their products. J Food Biochem 8: 137 – 162.en_US
dc.identifier.citedreferenceMattson WA. 1980. Herbivory in relation to plant nitrogen content. Ann Rev Ecol Syst 11: 19 – 38.en_US
dc.identifier.citedreferenceMoilanen J, Salminen J‐P. 2008. Ecologically neglected tannins and their biologically relevant activity: chemical structures of plant ellagitannins reveal their in vitro oxidative activity at high pH. Chemoecology 12: 203 – 211.en_US
dc.identifier.citedreferencePierpoint WS. 1983. Reactions of phenolic compounds with proteins, and their relevance to the production of leaf protein. In: Telek L, Graham HD, editors. Leaf protein concentrates. Westport, CT: Avi Publishing Co. p 235 – 267.en_US
dc.identifier.citedreferenceQuideau S, Feldman KS, Appel HM. 1995. Chemistry of galloyl‐derived o‐quinones: reactivity toward nucleophiles. J Org Chem 60: 4982 – 4983.en_US
dc.identifier.citedreferenceRock GC. 1972. Optimal proportions of dietary amino acids. In: Rodriguez JG, editor. Insect and mite nutrition. Amsterdam: North‐Holland Publishing Co. p 183 – 197.en_US
dc.identifier.citedreferenceSAS Institute. 2003. The SAS system for Windows. Version 9.1. Cary, NC: SAS Institute.en_US
dc.identifier.citedreferenceSchilling S, Sigolotto C‐S, Carle R, Schieber A. 2008. Characterization of covalent addition products of chlorogenic acid quinone with amino acid derivatives in model systems and apple juice high‐performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Comm Mass Spec 22: 441 – 448.en_US
dc.identifier.citedreferenceSheen SJ. 1991. Comparison of chemical and functional properties of soluble leaf proteins from four plant species. J Agr Food Chem 39: 681 – 685.en_US
dc.identifier.citedreferenceShinbo H, Konno K, Hirayama C, Watanabe K. 1996. Digestive sites of dietary proteins and absorptive sites of amino acids along the midgut of the silkworm, B ombyx mori. J Insect Physiol 42: 1129 – 1138.en_US
dc.identifier.citedreferenceShingfield KJ, Offer NW. 1999. Simultaneous determination of purine metabolites, creatine and pseudouridine in ruminant urine by reversed‐phase high performance liquid chromatography. J Chrom Sci 723: 81 – 94.en_US
dc.identifier.citedreferenceStrydom DJ, Cohen SA. 1993. Sensitive analysis of cystine/cysteine using 6‐aminoquinolyl‐N‐hydroxysuccinimidyl carbamate ( AQC ) derivatives. In: Angeletti RH, editor. Techniques in protein chemistry IV. San Diego: Academic Press. p 299 – 306.en_US
dc.identifier.citedreferenceWolfersberger MG. 2000. Amino acid transport in insects. Annu Rev Entomol 45: 111 – 120.en_US
dc.identifier.citedreferenceYeoh H‐H, Wee Y‐C, Watson L. 1992. Leaf protein contents and amino acid patterns of dicotoledonous plants. Biochem Syst Ecol 20: 657 – 663.en_US
dc.identifier.citedreferencevan Zyl L, Ferreira AV. 2003. Amino acid requirements of springbok ( A ntidorcas marsupialis ), blesbok ( D amaliscus dorcas phillipsi ) and impala ( A epyceros melampus ) estimated by the whole empty body essential amino acid profile. Small Ruminant Res 47: 145 – 153.en_US
dc.identifier.citedreferenceAwad HM, Boersma MG, Vervoort J, Rietjens IMCM. 2000. Peroxidase‐catalyzed formation of quercetin quinone methide‐glutathione adducts. Arch Biochem Biophys 378: 224 – 233.en_US
dc.identifier.citedreferenceBarbehenn RV, Stannard J. 2004. Antioxidant defense of the midgut epithelium by the peritrophic envelope in caterpillars. J Insect Physiol 50: 783 – 790.en_US
dc.identifier.citedreferenceBarbehenn RV, Bumgarner SL, Roosen E, Martin MM. 2001. Antioxidant defenses in caterpillars: role of the ascorbate recycling system in the midgut lumen. J Insect Physiol 47: 349 – 357.en_US
dc.identifier.citedreferenceBarbehenn RV, Cheek S, Gasperut A, Lister E, Maben R. 2005a. Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midguts of M alacosoma disstria and O rgyia leucostigma caterpillars. J Chem Ecol 31: 969 – 988.en_US
dc.identifier.citedreferenceBarbehenn R, Dodick T, Poopat U, Spencer B. 2005b. Fenton‐type reactions and iron concentrations in the midgut fluids of tree‐feeding caterpillars. Arch Insect Biochem Physiol 60: 32 – 43.en_US
dc.identifier.citedreferenceBarbehenn RV, Weir Q, Salminen J‐P. 2008. Oxidation of ingested phenolics in the tree‐feeding caterpillar O rgyia leucostigma depends on foliar chemical composition. J Chem Ecol 34:7 48 – 756.en_US
dc.identifier.citedreferenceBarbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen, J‐P. 2009a. Tree resistance to L ymantria dispar caterpillars: importance and limitations of foliar tannin composition. Oecologia 159: 777 – 788.en_US
dc.identifier.citedreferenceBarbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen J‐P. 2009b. Hydrolyzable tannins as “quantitative defenses”: limited impact against L ymantria dispar caterpillars on hybrid poplar. J Insect Physiol 55: 297 – 304.en_US
dc.identifier.citedreferenceBarbehenn R, Dukatz C, Holt C, Reese A, Martiskainen O, Salminen J‐P, Yip L, Tran L, Constabel CP. 2010. Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance. Oecologia 164: 993 – 1004.en_US
dc.identifier.citedreferenceBroadway RM, Duffey SS. 1988. The effect of plant protein quality on insect digestive physiology and the toxicity of plant proteinase inhibitors. J Insect Physiol 34: 1111 – 1117.en_US
dc.identifier.citedreferenceByers M. 1971. Amino acid composition and in vitro digestibility of some protein fractions from three species of leaves of various ages. J Sci Food Agr 22: 242 – 251.en_US
dc.identifier.citedreferenceCohen SA, Michaud DP. 1983. Synthesis of a fluorescent derivatizing reagent, 6‐aminoquinolyl‐N‐hyroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high‐performance liquid chromatography. Anal Biochem 211: 279 – 287.en_US
dc.identifier.citedreferenceFelton GW. 1996. Nutritive quality of plant protein: sources of variation and insect herbivore responses. Arch Insect Biochem Physiol 32: 107 – 130.en_US
dc.identifier.citedreferenceFelton GW, Duffey SS. 1990. Inactivation of baculovirus by quinones formed in insect‐damaged plant tissues. J Chem Ecol 16: 1221 – 1236.en_US
dc.identifier.citedreferenceFelton GW, Summers CB. 1995. Antioxidant systems in insects. Arch Insect Biochem Physiol 29: 187 – 197.en_US
dc.identifier.citedreferenceFelton GW, Broadway RM, Duffey SS. 1989a. Inactivation of protease inhibitor activity by plant‐derived quinones: complications for host‐plant resistance against noctuid herbivores. J Insect Physiol 35: 981 – 990.en_US
dc.identifier.citedreferenceFelton GW, Donato K, Delvecchio RJ, Duffey SS. 1989b. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J Chem Ecol 15: 2667 – 2694.en_US
dc.identifier.citedreferenceFelton GW, Donato KK, Broadway RM, Duffey SS. 1992. Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore, S podoptera exigua. J Insect Physiol 38: 277 – 285.en_US
dc.identifier.citedreferenceHorie Y, Watanabe K. 1982. Evidence of stepwise digestion of protein in the digestive system of the silkworm, B ombyx mori ( L epidoptera: B ombycidae). Appl Ent Zool 17: 358 – 363.en_US
dc.identifier.citedreferenceHorie Y, Watanabe K. 1983. Effect of various kinds of dietary protein and supplementation with limiting amino acids on growth, haemolymph components and uric acid excretion in the silkworm, B ombyx mori. J Insect Physiol 29: 187 – 199.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.