Benzoylation and sinapoylation of glucosinolate R‐groups in Arabidopsis
dc.contributor.author | Lee, Shinyoung | en_US |
dc.contributor.author | Kaminaga, Yasuhisa | en_US |
dc.contributor.author | Cooper, Bruce | en_US |
dc.contributor.author | Pichersky, Eran | en_US |
dc.contributor.author | Dudareva, Natalia | en_US |
dc.contributor.author | Chapple, Clint | en_US |
dc.date.accessioned | 2012-11-07T17:04:24Z | |
dc.date.available | 2014-01-07T14:51:07Z | en_US |
dc.date.issued | 2012-11 | en_US |
dc.identifier.citation | Lee, Shinyoung; Kaminaga, Yasuhisa; Cooper, Bruce; Pichersky, Eran; Dudareva, Natalia; Chapple, Clint (2012). "Benzoylation and sinapoylation of glucosinolate R‐groups in Arabidopsis." The Plant Journal 72(3). <http://hdl.handle.net/2027.42/94226> | en_US |
dc.identifier.issn | 0960-7412 | en_US |
dc.identifier.issn | 1365-313X | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/94226 | |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Benzoate | en_US |
dc.subject.other | Benzoylation | en_US |
dc.subject.other | Sinapoylation | en_US |
dc.subject.other | Arabidopsis | en_US |
dc.subject.other | Glucosinolate | en_US |
dc.subject.other | Serine Carboxypeptidase‐Like Acyltransferases | en_US |
dc.title | Benzoylation and sinapoylation of glucosinolate R‐groups in Arabidopsis | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Natural Resources and Environment | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA | en_US |
dc.contributor.affiliationother | Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA | en_US |
dc.contributor.affiliationother | Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA | en_US |
dc.contributor.affiliationother | Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/94226/1/tpj5096.pdf | |
dc.identifier.doi | 10.1111/j.1365-313X.2012.05096.x | en_US |
dc.identifier.source | The Plant Journal | en_US |
dc.identifier.citedreference | Obayashi, T. and Kinoshita, K. ( 2010 ) Coexpression landscape in ATTED‐II: usage of gene list and gene network for various types of pathways. J. Plant. Res. 123, 311 – 319. | en_US |
dc.identifier.citedreference | Kliebenstein, D., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenzon, J. and Mitchell‐Olds, T. ( 2001a ) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126, 811 – 825. | en_US |
dc.identifier.citedreference | Kliebenstein, D., Lambrix, V., Reichelt, M., Gershenzon, J. and Mitchell‐Olds, T. ( 2001b ) Gene duplication in the diversification of secondary metabolism: tandem 2‐oxoglutarate‐dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell, 13, 681 – 693. | en_US |
dc.identifier.citedreference | Kliebenstein, D., D’Auria, J., Behere, A., Kim, J., Gunderson, K., Breen, J., Lee, G., Gershenzon, J., Last, R. and Jander, G. ( 2007 ) Characterization of seed‐specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana. Plant J. 51, 1062 – 1076. | en_US |
dc.identifier.citedreference | Lehfeldt, C., Shirley, A., Meyer, K., Ruegger, M., Cusumano, J., Viitanen, P., Strack, D. and Chapple, C. ( 2000 ) Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase‐like protein as an acyltransferase in secondary metabolism. Plant Cell, 12, 1295 – 1306. | en_US |
dc.identifier.citedreference | Li, A. and Steffens, J. ( 2000 ) An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase‐like protein. Proc. Natl Acad. Sci. USA, 97, 6902 – 6907. | en_US |
dc.identifier.citedreference | Li, J., Hansen, B., Ober, J., Kliebenstein, D. and Halkier, B. ( 2008 ) Subclade of flavin‐monooxygenases involved in aliphatic glucosinolate biosynthesis. Plant Physiol. 148, 1721 – 1733. | en_US |
dc.identifier.citedreference | Lim, E.K., Doucet, C.J., Li, Y., Elias, L., Worrall, D., Spencer, S.P., Ross, J. and Bowles, D.J. ( 2002 ) The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4‐hydroxybenzoic acid, and other benzoates. J. Biol. Chem. 277, 586 – 592. | en_US |
dc.identifier.citedreference | Meyer, K., Cusumano, J., Somerville, C. and Chapple, C. ( 1996 ) Ferulate‐5‐hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450‐dependent monooxygenases. Proc. Natl Acad. Sci. USA, 93, 6869 – 6874. | en_US |
dc.identifier.citedreference | Mock, H. and Strack, D. ( 1993 ) Energetics of the uridine 5′‐diphosphoglucose‐hydroxy‐cinnamic acid acyl‐glucosyltransferase reaction. Phytochemistry, 32, 575 – 579. | en_US |
dc.identifier.citedreference | Mugford, S., Qi, X., Bakht, S. et al. ( 2009 ) A serine carboxypeptidase‐like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell, 21, 2473 – 2484. | en_US |
dc.identifier.citedreference | Nair, R., Bastress, K., Ruegger, M., Denault, J. and Chapple, C. ( 2004 ) The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell, 16, 544 – 554. | en_US |
dc.identifier.citedreference | Nour‐Eldin, H. and Halkier, B. ( 2009 ) Piecing together the transport pathway of aliphatic glucosinolates. Phytochem. Rev. 8, 53 – 67. | en_US |
dc.identifier.citedreference | Obayashi, T., Kinoshita, K., Nakai, K., Shibaoka, M., Hayashi, S., Saeki, M., Shibata, D., Saito, K. and Ohta, H. ( 2007 ) ATTED‐II: a database of co‐expressed genes and cis elements for identifying co‐regulated gene groups in Arabidopsis. Nucleic Acids Res. 35, D863 – D869. | en_US |
dc.identifier.citedreference | Obayashi, T., Hayashi, S., Saeki, M., Ohta, H. and Kinoshita, K. ( 2009 ) ATTED‐II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res. 37, D987 – D991. | en_US |
dc.identifier.citedreference | Orlova, I., Marshall‐Colon, A., Schnepp, J. et al. ( 2006 ) Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Plant Cell, 18, 3458 – 3475. | en_US |
dc.identifier.citedreference | Reichelt, M., Brown, P., Schneider, B., Oldham, N., Stauber, E., Tokuhisa, J., Kliebenstein, D., Mitchell‐Olds, T. and Gershenzon, J. ( 2002 ) Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry, 59, 663 – 671. | en_US |
dc.identifier.citedreference | Ribnicky, D., Shulaev, V. and Raskin, I. ( 1998 ) Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol. 118, 565 – 572. | en_US |
dc.identifier.citedreference | Schnitzler, J., Madlung, J., Rose, A. and Seitz, H. ( 1992 ) Biosynthesis of p ‐hydroxybenzoic acid in elicitor‐treated carrot cell‐cultures. Planta, 188, 594 – 600. | en_US |
dc.identifier.citedreference | Shirley, A. and Chapple, C. ( 2003 ) Biochemical characterization of sinapoylglucose:choline sinapoyltransferase, a serine carboxypeptidase‐like protein that functions as an acyltransferase in plant secondary metabolism. J. Biol. Chem. 278, 19870 – 19877. | en_US |
dc.identifier.citedreference | Shirley, A., McMichael, C. and Chapple, C. ( 2001 ) The sng2 mutant of Arabidopsis is defective in the gene encoding the serine carboxypeptidase‐like protein sinapoylglucose:choline sinapoyltransferase. Plant J. 28, 83 – 94. | en_US |
dc.identifier.citedreference | Sinlapadech, T., Stout, J., Ruegger, M., Deak, M. and Chapple, C. ( 2007 ) The hyper‐fluorescent trichome phenotype of the brt1 mutant of Arabidopsis is the result of a defect in a sinapic acid:UDPG glucosyltransferase. Plant J. 49, 655 – 668. | en_US |
dc.identifier.citedreference | Sønderby, I., Geu‐Flores, F. and Halkier, B. ( 2010 ) Biosynthesis of glucosinolates – gene discovery and beyond. Trends Plant Sci. 15, 283 – 290. | en_US |
dc.identifier.citedreference | St‐Pierre, B. and De Luca, V. ( 2000 ) Evolution of acyltransferase genes: origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. Recent Adv. Phytochem. 34, 285 – 315. | en_US |
dc.identifier.citedreference | Toufighi, K., Brady, S.M., Austin, R., Ly, E. and Provart, N.J. ( 2005 ) The Botany Array Resource: e‐Northerns, Expression Angling, and promoter analyses. Plant J. 43, 153 – 163. | en_US |
dc.identifier.citedreference | Traka, M. and Mithen, R. ( 2009 ) Glucosinolates, isothiocyanates and human health. Phytochem. Rev. 8, 269 – 282. | en_US |
dc.identifier.citedreference | Van Moerkercke, A., Schauvinhold, I., Pichersky, E., Haring, M. and Schuurink, R. ( 2009 ) A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Plant J. 60, 292 – 302. | en_US |
dc.identifier.citedreference | Walker, K., Long, R. and Croteau, R. ( 2002 ) The final acylation step in taxol biosynthesis: cloning of the taxoid C13‐side‐chain N ‐benzoyltransferase from Taxus. Proc. Natl Acad. Sci. USA, 99, 9166 – 9171. | en_US |
dc.identifier.citedreference | Weng, J.K., Akiyama, T., Ralph, J. and Chapple, C. ( 2011 ) Independent Recruitment of an O‐Methyltransferase for Syringyl Lignin Biosynthesis in Selaginella moellendorffii. Plant Cell. 23, 2708 – 2724. | en_US |
dc.identifier.citedreference | Abd El‐Mawla, A. and Beerhues, L. ( 2002 ) Benzoic acid biosynthesis in cell cultures of Hypericum androsaemum. Planta, 214, 727 – 733. | en_US |
dc.identifier.citedreference | Agerbirk, N., De Vos, M., Kim, J. and Jander, G. ( 2009 ) Indole glucosinolate breakdown and its biological effects. Phytochem. Rev. 8, 101 – 120. | en_US |
dc.identifier.citedreference | Albinsky, D., Sawada, Y., Kuwahara, A., Nagano, M., Hirai, A., Saito, K. and Hirai, M. ( 2010 ) Widely targeted metabolomics and coexpression analysis as tools to identify genes involved in the side‐chain elongation steps of aliphatic glucosinolate biosynthesis. Amino Acids, 39, 1067 – 1075. | en_US |
dc.identifier.citedreference | Bender, J. and Celenza, J. ( 2009 ) Indolic glucosinolates at the crossroads of tryptophan metabolism. Phytochem. Rev. 8, 25 – 37. | en_US |
dc.identifier.citedreference | Beuerle, T. and Pichersky, E. ( 2002 ) Enzymatic synthesis and purification of aromatic coenzyme A esters. Anal. Biochem. 302, 305 – 312. | en_US |
dc.identifier.citedreference | Boatright, J., Negre, F., Chen, X., Kish, C., Wood, B., Peel, G., Orlova, I., Gang, D., Rhodes, D. and Dudareva, N. ( 2004 ) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol. 135, 1993 – 2011. | en_US |
dc.identifier.citedreference | Bonawitz, ND, Soltau, WL, Blatchley, MR, Powers, BL, Hurlock, AK, Seals, LA, Weng, JK, Stout, J and Chapple, C. ( 2012 ) REF4 and RFR1, subunits of the transcriptional coregulatory complex mediator, are required for phenylpropanoid homeostasis in Arabidopsis. J Biol Chem. 287, 5434 – 5445. | en_US |
dc.identifier.citedreference | Brown, P., Tokuhisa, J., Reichelt, M. and Gershenzon, J. ( 2003 ) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry, 62, 471 – 481. | en_US |
dc.identifier.citedreference | Clough, S. and Bent, A. ( 1998 ) Floral dip: a simplified method for Agrobacterium ‐mediated transformation of Arabidopsis thaliana. Plant J. 16, 735 – 743. | en_US |
dc.identifier.citedreference | D’Auria, J., Chen, F. and Pichersky, E. ( 2002 ) Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol. 130, 466 – 476. | en_US |
dc.identifier.citedreference | Fraser, C., Rider, L. and Chapple, C. ( 2005 ) An expression and bioinformatics analysis of the Arabidopsis serine carboxypeptidase‐like gene family. Plant Physiol. 138, 1136 – 1148. | en_US |
dc.identifier.citedreference | Fraser, C., Thompson, M., Shirley, A., Ralph, J., Schoenherr, J., Sinlapadech, T., Hall, M. and Chapple, C. ( 2007 ) Related Arabidopsis serine carboxypeptidase‐like sinapoylglucose acyltransferases display distinct but overlapping substrate specificities. Plant Physiol. 144, 1986 – 1999. | en_US |
dc.identifier.citedreference | Gigolashvili, T., Berger, B. and Flugge, U.I. ( 2009 ) Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3‐MYB transcription factors in Arabidopsis thaliana. Phytochem. Rev. 8, 3 – 13. | en_US |
dc.identifier.citedreference | Glover, J., Chapple, C., Rothwell, S., Tober, I. and Ellis, B. ( 1988 ) Allyglucosinolate biosynthesis in Brassica carinata. Phytochemistry, 27, 1345 – 1348. | en_US |
dc.identifier.citedreference | Graser, G., Schneider, B., Oldham, N. and Gershenzon, J. ( 2000 ) The methionine chain elongation pathway in the biosynthesis of glucosinolates in Eruca sativa (Brassicaceae). Arch. Biochem. Biophys. 378, 411 – 419. | en_US |
dc.identifier.citedreference | Graser, G., Oldham, N., Brown, P., Temp, U. and Gershenzon, J. ( 2001 ) The biosynthesis of benzoic acid glucosinolate esters in Arabidopsis thaliana. Phytochemistry, 57, 23 – 32. | en_US |
dc.identifier.citedreference | Hansen, B., Kliebenstein, D. and Halkier, B. ( 2007 ) Identification of a flavin‐monooxygenase as the S‐oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J. 50, 902 – 910. | en_US |
dc.identifier.citedreference | Haughn, G., Davin, L., Giblin, M. and Underhill, E. ( 1991 ) Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana – the glucosinolates. Plant Physiol. 97, 217 – 226. | en_US |
dc.identifier.citedreference | Hemm, M.R., Ruegger, M.O. and Chapple, C. ( 2003 ) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell. 15, 179 – 194. | en_US |
dc.identifier.citedreference | Hertweck, C., Jarvis, A., Xiang, L., Moore, B. and Oldham, N. ( 2001 ) A mechanism of benzoic acid biosynthesis in plants and bacteria that mirrors fatty acid β‐oxidation. ChemBioChem, 2, 784 – 786. | en_US |
dc.identifier.citedreference | Hirai, M.Y. ( 2009 ) A robust omics‐based approach for the identification of glucosinolate biosynthetic genes. Phytochem. Rev. 8, 15 – 23. | en_US |
dc.identifier.citedreference | Hogge, L.R., Reed, D.W., Underhill, E.W. and Haughn, G.W. ( 1988 ) HPLC separation of glucosinolates from leaves and seeds of Arabidopsis thaliana and their identification using thermospray liquid chramatography/mass spectrometry. J. Chromatogr. Sci. 26, 551 – 556. | en_US |
dc.identifier.citedreference | Hopkins, R., van Dam, N. and van Loon, J. ( 2009 ) Role of glucosinolates in insect–plant relationships and multitrophic interactions. Annu. Rev. Entomol. 54, 57 – 83. | en_US |
dc.identifier.citedreference | Ibdah, M. and Pichersky, E. ( 2009 ) Arabidopsis Chy1 null mutants are deficient in benzoic acid‐containing glucosinolates in the seeds. Plant Biol. 11, 574 – 581. | en_US |
dc.identifier.citedreference | Ibdah, M., Chen, Y., Wilkerson, C. and Pichersky, E. ( 2009 ) An aldehyde oxidase in developing seeds of Arabidopsis converts benzaldehyde to benzoic acid. Plant Physiol. 150, 416 – 423. | en_US |
dc.identifier.citedreference | Klempien, A., Kaminaga, Y., Qualley, A. et al. ( 2012 ) Contribution of CoA ligases to benzenoid biosynthesis in Petunia flowers. Plant Cell, 24, 2015 – 2030. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.