Show simple item record

Benzoylation and sinapoylation of glucosinolate R‐groups in Arabidopsis

dc.contributor.authorLee, Shinyoungen_US
dc.contributor.authorKaminaga, Yasuhisaen_US
dc.contributor.authorCooper, Bruceen_US
dc.contributor.authorPichersky, Eranen_US
dc.contributor.authorDudareva, Nataliaen_US
dc.contributor.authorChapple, Clinten_US
dc.date.accessioned2012-11-07T17:04:24Z
dc.date.available2014-01-07T14:51:07Zen_US
dc.date.issued2012-11en_US
dc.identifier.citationLee, Shinyoung; Kaminaga, Yasuhisa; Cooper, Bruce; Pichersky, Eran; Dudareva, Natalia; Chapple, Clint (2012). "Benzoylation and sinapoylation of glucosinolate R‐groups in Arabidopsis." The Plant Journal 72(3). <http://hdl.handle.net/2027.42/94226>en_US
dc.identifier.issn0960-7412en_US
dc.identifier.issn1365-313Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94226
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherBenzoateen_US
dc.subject.otherBenzoylationen_US
dc.subject.otherSinapoylationen_US
dc.subject.otherArabidopsisen_US
dc.subject.otherGlucosinolateen_US
dc.subject.otherSerine Carboxypeptidase‐Like Acyltransferasesen_US
dc.titleBenzoylation and sinapoylation of glucosinolate R‐groups in Arabidopsisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Biochemistry, Purdue University, West Lafayette, IN 47907, USAen_US
dc.contributor.affiliationotherDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USAen_US
dc.contributor.affiliationotherBindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94226/1/tpj5096.pdf
dc.identifier.doi10.1111/j.1365-313X.2012.05096.xen_US
dc.identifier.sourceThe Plant Journalen_US
dc.identifier.citedreferenceObayashi, T. and Kinoshita, K. ( 2010 ) Coexpression landscape in ATTED‐II: usage of gene list and gene network for various types of pathways. J. Plant. Res. 123, 311 – 319.en_US
dc.identifier.citedreferenceKliebenstein, D., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenzon, J. and Mitchell‐Olds, T. ( 2001a ) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126, 811 – 825.en_US
dc.identifier.citedreferenceKliebenstein, D., Lambrix, V., Reichelt, M., Gershenzon, J. and Mitchell‐Olds, T. ( 2001b ) Gene duplication in the diversification of secondary metabolism: tandem 2‐oxoglutarate‐dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell, 13, 681 – 693.en_US
dc.identifier.citedreferenceKliebenstein, D., D’Auria, J., Behere, A., Kim, J., Gunderson, K., Breen, J., Lee, G., Gershenzon, J., Last, R. and Jander, G. ( 2007 ) Characterization of seed‐specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana. Plant J. 51, 1062 – 1076.en_US
dc.identifier.citedreferenceLehfeldt, C., Shirley, A., Meyer, K., Ruegger, M., Cusumano, J., Viitanen, P., Strack, D. and Chapple, C. ( 2000 ) Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase‐like protein as an acyltransferase in secondary metabolism. Plant Cell, 12, 1295 – 1306.en_US
dc.identifier.citedreferenceLi, A. and Steffens, J. ( 2000 ) An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase‐like protein. Proc. Natl Acad. Sci. USA, 97, 6902 – 6907.en_US
dc.identifier.citedreferenceLi, J., Hansen, B., Ober, J., Kliebenstein, D. and Halkier, B. ( 2008 ) Subclade of flavin‐monooxygenases involved in aliphatic glucosinolate biosynthesis. Plant Physiol. 148, 1721 – 1733.en_US
dc.identifier.citedreferenceLim, E.K., Doucet, C.J., Li, Y., Elias, L., Worrall, D., Spencer, S.P., Ross, J. and Bowles, D.J. ( 2002 ) The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4‐hydroxybenzoic acid, and other benzoates. J. Biol. Chem. 277, 586 – 592.en_US
dc.identifier.citedreferenceMeyer, K., Cusumano, J., Somerville, C. and Chapple, C. ( 1996 ) Ferulate‐5‐hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450‐dependent monooxygenases. Proc. Natl Acad. Sci. USA, 93, 6869 – 6874.en_US
dc.identifier.citedreferenceMock, H. and Strack, D. ( 1993 ) Energetics of the uridine 5′‐diphosphoglucose‐hydroxy‐cinnamic acid acyl‐glucosyltransferase reaction. Phytochemistry, 32, 575 – 579.en_US
dc.identifier.citedreferenceMugford, S., Qi, X., Bakht, S. et al. ( 2009 ) A serine carboxypeptidase‐like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell, 21, 2473 – 2484.en_US
dc.identifier.citedreferenceNair, R., Bastress, K., Ruegger, M., Denault, J. and Chapple, C. ( 2004 ) The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell, 16, 544 – 554.en_US
dc.identifier.citedreferenceNour‐Eldin, H. and Halkier, B. ( 2009 ) Piecing together the transport pathway of aliphatic glucosinolates. Phytochem. Rev. 8, 53 – 67.en_US
dc.identifier.citedreferenceObayashi, T., Kinoshita, K., Nakai, K., Shibaoka, M., Hayashi, S., Saeki, M., Shibata, D., Saito, K. and Ohta, H. ( 2007 ) ATTED‐II: a database of co‐expressed genes and cis elements for identifying co‐regulated gene groups in Arabidopsis. Nucleic Acids Res. 35, D863 – D869.en_US
dc.identifier.citedreferenceObayashi, T., Hayashi, S., Saeki, M., Ohta, H. and Kinoshita, K. ( 2009 ) ATTED‐II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res. 37, D987 – D991.en_US
dc.identifier.citedreferenceOrlova, I., Marshall‐Colon, A., Schnepp, J. et al. ( 2006 ) Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Plant Cell, 18, 3458 – 3475.en_US
dc.identifier.citedreferenceReichelt, M., Brown, P., Schneider, B., Oldham, N., Stauber, E., Tokuhisa, J., Kliebenstein, D., Mitchell‐Olds, T. and Gershenzon, J. ( 2002 ) Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry, 59, 663 – 671.en_US
dc.identifier.citedreferenceRibnicky, D., Shulaev, V. and Raskin, I. ( 1998 ) Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol. 118, 565 – 572.en_US
dc.identifier.citedreferenceSchnitzler, J., Madlung, J., Rose, A. and Seitz, H. ( 1992 ) Biosynthesis of p ‐hydroxybenzoic acid in elicitor‐treated carrot cell‐cultures. Planta, 188, 594 – 600.en_US
dc.identifier.citedreferenceShirley, A. and Chapple, C. ( 2003 ) Biochemical characterization of sinapoylglucose:choline sinapoyltransferase, a serine carboxypeptidase‐like protein that functions as an acyltransferase in plant secondary metabolism. J. Biol. Chem. 278, 19870 – 19877.en_US
dc.identifier.citedreferenceShirley, A., McMichael, C. and Chapple, C. ( 2001 ) The sng2 mutant of Arabidopsis is defective in the gene encoding the serine carboxypeptidase‐like protein sinapoylglucose:choline sinapoyltransferase. Plant J. 28, 83 – 94.en_US
dc.identifier.citedreferenceSinlapadech, T., Stout, J., Ruegger, M., Deak, M. and Chapple, C. ( 2007 ) The hyper‐fluorescent trichome phenotype of the brt1 mutant of Arabidopsis is the result of a defect in a sinapic acid:UDPG glucosyltransferase. Plant J. 49, 655 – 668.en_US
dc.identifier.citedreferenceSønderby, I., Geu‐Flores, F. and Halkier, B. ( 2010 ) Biosynthesis of glucosinolates – gene discovery and beyond. Trends Plant Sci. 15, 283 – 290.en_US
dc.identifier.citedreferenceSt‐Pierre, B. and De Luca, V. ( 2000 ) Evolution of acyltransferase genes: origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. Recent Adv. Phytochem. 34, 285 – 315.en_US
dc.identifier.citedreferenceToufighi, K., Brady, S.M., Austin, R., Ly, E. and Provart, N.J. ( 2005 ) The Botany Array Resource: e‐Northerns, Expression Angling, and promoter analyses. Plant J. 43, 153 – 163.en_US
dc.identifier.citedreferenceTraka, M. and Mithen, R. ( 2009 ) Glucosinolates, isothiocyanates and human health. Phytochem. Rev. 8, 269 – 282.en_US
dc.identifier.citedreferenceVan Moerkercke, A., Schauvinhold, I., Pichersky, E., Haring, M. and Schuurink, R. ( 2009 ) A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Plant J. 60, 292 – 302.en_US
dc.identifier.citedreferenceWalker, K., Long, R. and Croteau, R. ( 2002 ) The final acylation step in taxol biosynthesis: cloning of the taxoid C13‐side‐chain N ‐benzoyltransferase from Taxus. Proc. Natl Acad. Sci. USA, 99, 9166 – 9171.en_US
dc.identifier.citedreferenceWeng, J.K., Akiyama, T., Ralph, J. and Chapple, C. ( 2011 ) Independent Recruitment of an O‐Methyltransferase for Syringyl Lignin Biosynthesis in Selaginella moellendorffii. Plant Cell. 23, 2708 – 2724.en_US
dc.identifier.citedreferenceAbd El‐Mawla, A. and Beerhues, L. ( 2002 ) Benzoic acid biosynthesis in cell cultures of Hypericum androsaemum. Planta, 214, 727 – 733.en_US
dc.identifier.citedreferenceAgerbirk, N., De Vos, M., Kim, J. and Jander, G. ( 2009 ) Indole glucosinolate breakdown and its biological effects. Phytochem. Rev. 8, 101 – 120.en_US
dc.identifier.citedreferenceAlbinsky, D., Sawada, Y., Kuwahara, A., Nagano, M., Hirai, A., Saito, K. and Hirai, M. ( 2010 ) Widely targeted metabolomics and coexpression analysis as tools to identify genes involved in the side‐chain elongation steps of aliphatic glucosinolate biosynthesis. Amino Acids, 39, 1067 – 1075.en_US
dc.identifier.citedreferenceBender, J. and Celenza, J. ( 2009 ) Indolic glucosinolates at the crossroads of tryptophan metabolism. Phytochem. Rev. 8, 25 – 37.en_US
dc.identifier.citedreferenceBeuerle, T. and Pichersky, E. ( 2002 ) Enzymatic synthesis and purification of aromatic coenzyme A esters. Anal. Biochem. 302, 305 – 312.en_US
dc.identifier.citedreferenceBoatright, J., Negre, F., Chen, X., Kish, C., Wood, B., Peel, G., Orlova, I., Gang, D., Rhodes, D. and Dudareva, N. ( 2004 ) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol. 135, 1993 – 2011.en_US
dc.identifier.citedreferenceBonawitz, ND, Soltau, WL, Blatchley, MR, Powers, BL, Hurlock, AK, Seals, LA, Weng, JK, Stout, J and Chapple, C. ( 2012 ) REF4 and RFR1, subunits of the transcriptional coregulatory complex mediator, are required for phenylpropanoid homeostasis in Arabidopsis. J Biol Chem. 287, 5434 – 5445.en_US
dc.identifier.citedreferenceBrown, P., Tokuhisa, J., Reichelt, M. and Gershenzon, J. ( 2003 ) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry, 62, 471 – 481.en_US
dc.identifier.citedreferenceClough, S. and Bent, A. ( 1998 ) Floral dip: a simplified method for Agrobacterium ‐mediated transformation of Arabidopsis thaliana. Plant J. 16, 735 – 743.en_US
dc.identifier.citedreferenceD’Auria, J., Chen, F. and Pichersky, E. ( 2002 ) Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol. 130, 466 – 476.en_US
dc.identifier.citedreferenceFraser, C., Rider, L. and Chapple, C. ( 2005 ) An expression and bioinformatics analysis of the Arabidopsis serine carboxypeptidase‐like gene family. Plant Physiol. 138, 1136 – 1148.en_US
dc.identifier.citedreferenceFraser, C., Thompson, M., Shirley, A., Ralph, J., Schoenherr, J., Sinlapadech, T., Hall, M. and Chapple, C. ( 2007 ) Related Arabidopsis serine carboxypeptidase‐like sinapoylglucose acyltransferases display distinct but overlapping substrate specificities. Plant Physiol. 144, 1986 – 1999.en_US
dc.identifier.citedreferenceGigolashvili, T., Berger, B. and Flugge, U.I. ( 2009 ) Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3‐MYB transcription factors in Arabidopsis thaliana. Phytochem. Rev. 8, 3 – 13.en_US
dc.identifier.citedreferenceGlover, J., Chapple, C., Rothwell, S., Tober, I. and Ellis, B. ( 1988 ) Allyglucosinolate biosynthesis in Brassica carinata. Phytochemistry, 27, 1345 – 1348.en_US
dc.identifier.citedreferenceGraser, G., Schneider, B., Oldham, N. and Gershenzon, J. ( 2000 ) The methionine chain elongation pathway in the biosynthesis of glucosinolates in Eruca sativa (Brassicaceae). Arch. Biochem. Biophys. 378, 411 – 419.en_US
dc.identifier.citedreferenceGraser, G., Oldham, N., Brown, P., Temp, U. and Gershenzon, J. ( 2001 ) The biosynthesis of benzoic acid glucosinolate esters in Arabidopsis thaliana. Phytochemistry, 57, 23 – 32.en_US
dc.identifier.citedreferenceHansen, B., Kliebenstein, D. and Halkier, B. ( 2007 ) Identification of a flavin‐monooxygenase as the S‐oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J. 50, 902 – 910.en_US
dc.identifier.citedreferenceHaughn, G., Davin, L., Giblin, M. and Underhill, E. ( 1991 ) Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana – the glucosinolates. Plant Physiol. 97, 217 – 226.en_US
dc.identifier.citedreferenceHemm, M.R., Ruegger, M.O. and Chapple, C. ( 2003 ) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell. 15, 179 – 194.en_US
dc.identifier.citedreferenceHertweck, C., Jarvis, A., Xiang, L., Moore, B. and Oldham, N. ( 2001 ) A mechanism of benzoic acid biosynthesis in plants and bacteria that mirrors fatty acid β‐oxidation. ChemBioChem, 2, 784 – 786.en_US
dc.identifier.citedreferenceHirai, M.Y. ( 2009 ) A robust omics‐based approach for the identification of glucosinolate biosynthetic genes. Phytochem. Rev. 8, 15 – 23.en_US
dc.identifier.citedreferenceHogge, L.R., Reed, D.W., Underhill, E.W. and Haughn, G.W. ( 1988 ) HPLC separation of glucosinolates from leaves and seeds of Arabidopsis thaliana and their identification using thermospray liquid chramatography/mass spectrometry. J. Chromatogr. Sci. 26, 551 – 556.en_US
dc.identifier.citedreferenceHopkins, R., van Dam, N. and van Loon, J. ( 2009 ) Role of glucosinolates in insect–plant relationships and multitrophic interactions. Annu. Rev. Entomol. 54, 57 – 83.en_US
dc.identifier.citedreferenceIbdah, M. and Pichersky, E. ( 2009 ) Arabidopsis Chy1 null mutants are deficient in benzoic acid‐containing glucosinolates in the seeds. Plant Biol. 11, 574 – 581.en_US
dc.identifier.citedreferenceIbdah, M., Chen, Y., Wilkerson, C. and Pichersky, E. ( 2009 ) An aldehyde oxidase in developing seeds of Arabidopsis converts benzaldehyde to benzoic acid. Plant Physiol. 150, 416 – 423.en_US
dc.identifier.citedreferenceKlempien, A., Kaminaga, Y., Qualley, A. et al. ( 2012 ) Contribution of CoA ligases to benzenoid biosynthesis in Petunia flowers. Plant Cell, 24, 2015 – 2030.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.