Show simple item record

Food Plant Derived Disease Tolerance And Resistance In A Natural Butterfly‐Plant‐Parasite Interactions

dc.contributor.authorSternberg, Eleanore D.en_US
dc.contributor.authorLefèvre, Thierryen_US
dc.contributor.authorLi, Jamesen_US
dc.contributor.authorde Castillejo, Carlos Lopez Fernandezen_US
dc.contributor.authorLi, Huien_US
dc.contributor.authorHunter, Mark D.en_US
dc.contributor.authorde Roode, Jacobus C.en_US
dc.date.accessioned2012-11-07T17:04:32Z
dc.date.available2014-01-07T14:51:07Zen_US
dc.date.issued2012-11en_US
dc.identifier.citationSternberg, Eleanore D.; Lefèvre, Thierry ; Li, James; de Castillejo, Carlos Lopez Fernandez; Li, Hui; Hunter, Mark D.; de Roode, Jacobus C. (2012). "Food Plant Derived Disease Tolerance And Resistance In A Natural Butterfly‐Plant‐Parasite Interactions." Evolution 66(11). <http://hdl.handle.net/2027.42/94251>en_US
dc.identifier.issn0014-3820en_US
dc.identifier.issn1558-5646en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94251
dc.publisherBlackwell Publishing Incen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherHost–Parasite Interactionsen_US
dc.subject.otherMonarch Butterflyen_US
dc.subject.otherOphryocystis Elektroscirrhaen_US
dc.subject.otherResistanceen_US
dc.subject.otherToleranceen_US
dc.subject.otherMilkweeden_US
dc.titleFood Plant Derived Disease Tolerance And Resistance In A Natural Butterfly‐Plant‐Parasite Interactionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, 1141 Natural Sciences Building, 830 North University, Ann Arbor, Michigan 48109‐1048en_US
dc.contributor.affiliationotherDepartment of Biology, Emory University, 1510 Clifton Rd, Atlanta, Georgia 30322en_US
dc.contributor.affiliationotherE‐mail: esternb@emory.eduen_US
dc.identifier.pmid23106703en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94251/1/j.1558-5646.2012.01693.x.pdf
dc.identifier.doi10.1111/j.1558-5646.2012.01693.xen_US
dc.identifier.sourceEvolutionen_US
dc.identifier.citedreferenceRåberg, L., D. Sim, and A. F. Read. 2007. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 318: 812 – 814.en_US
dc.identifier.citedreferenceCory, J. S., and K. Hoover. 2006. Plant‐mediated effects in insect‐pathogen interactions. Trends Ecol. Evol. 21: 278 – 286.en_US
dc.identifier.citedreferenceMalcolm, S. B., and M. P. Zalucki. 1996. Milkweed latex and cardenolide induction may resolve the lethal plant defence paradox. Entomol. Exp. Appl. 80: 193 – 196.en_US
dc.identifier.citedreferenceMauricio, R., M. D. Rausher, and D. S. Burdick. 1997. Variation in the defense strategies of plants: are resistance and tolerance mutually exclusive? Ecology 78: 1301 – 1311.en_US
dc.identifier.citedreferenceMcCune, B., and J. B. Grace. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon.en_US
dc.identifier.citedreferenceMcLaughlin, R. E., and J. Myers. 1970. Ophryocystis elektroscirrha sp. n., a neogregarine pathogen of monarch butterfly Danaus plexippus (L.) and the Florida queen butterfly D. gilippus berenice Cramer. J. Protozool. 17: 300 – 305.en_US
dc.identifier.citedreferenceMiller, M. R., A. White, and M. Boots. 2005. The evolution of host resistance: tolerance and control as distinct strategies. J. Theor. Biol. 236: 198 – 207.en_US
dc.identifier.citedreferenceMiller, M. R., A. White, and M. Boots. 2006. The evolution of parasites in response to tolerance in their hosts: the good, the bad, and apparent commensalism. Evolution 60: 945 – 956.en_US
dc.identifier.citedreferenceParker, B. J., S. M. Barribeau, A. M. Laughton, J. C. De Roode, and N. M. Gerardo. 2011. Non‐immunological defence in an evolutionary framework. Trends Ecol. Evol. 26: 242 – 248.en_US
dc.identifier.citedreferencePonton, F., K. Wilson, S. C. Cotter, D. Raubenheimer, and S. J. Simpson. 2011. Nutritional immunology: a multi‐dimensional approach. PLoS Pathog. 7: e1002223.en_US
dc.identifier.citedreferenceCrawley, M. J. 2007. The R book. John Wiley & Sons, Chichester, UK.en_US
dc.identifier.citedreferenceRåberg, L., A. L. Graham, and A. F. Read. 2009. Decomposing health: tolerance and resistance to parasites in animals. Philos. Trans. R. Soc. Lond. B 364: 37 – 49.en_US
dc.identifier.citedreferenceRasmann, S., and A. A. Agrawal. 2011. Latitudinal patterns in plant defense: evolution of cardenolides, their toxicity and induction following herbivory. Ecol. Lett. 14: 476 – 483.en_US
dc.identifier.citedreferenceRausher, M. D. 2001. Co‐evolution and plant resistance to natural enemies. Nature 411: 857 – 864.en_US
dc.identifier.citedreferenceRestif, O., and J. C. Koella. 2004. Concurrent evolution of resistance and tolerance to pathogens. Am. Nat. 164: E90 – E102.en_US
dc.identifier.citedreferenceRohr, J. R., T. R. Raffel, and C. A. Hall. 2010. Developmental variation in resistance and tolerance in a multi‐host‐parasite system. Funct. Ecol. 24: 1110 – 1121.en_US
dc.identifier.citedreferenceRoy, B. A., and J. W. Kirchner. 2000. Evolutionary dynamics of pathogen resistance and tolerance. Evolution 54: 51 – 63.en_US
dc.identifier.citedreferenceSchneider, D. S., and J. S. Ayres. 2008. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat. Rev. Immunol. 25: 18 – 28.en_US
dc.identifier.citedreferenceSimms, E. L. 2000. Defining tolerance as a norm of reaction. Evol. Ecol. 14: 563 – 570.en_US
dc.identifier.citedreferenceSimms, E. L., and J. Triplett. 1994. Costs and benefits of plant responses to disease: resistance and tolerance. Evolution 48: 1973 – 1985.en_US
dc.identifier.citedreferenceSinger, M. S., D. Rodrigues, J. O. Stireman III, and Y. Carrriere. 2004. Roles of food quality and enemy‐free space in host use by a generalist insect herbivore. Ecology 85: 2727 – 2753.en_US
dc.identifier.citedreferenceSoler, J. J., D. Martín‐Gálvez, J. G. Martínez, M. Soler, D. Canestrari, J. M. Abad‐Gómez, and A. P. Møller. 2011. Evolution of tolerance by magpies to brood parasitism by great spotted cuckoos. Proc. R. Soc. Lond. B 278: 2047 – 2052.en_US
dc.identifier.citedreferenceSternberg, E. D., T. Lefèvre, A. H. Rawstern, and J. C. de Roode. 2011. A virulent parasite can provide protection against a lethal parasitoid. Infect. Genet. Evol. 11: 399 – 406.en_US
dc.identifier.citedreferenceSvensson, E. I., and L. Råberg. 2010. Resistance and tolerance in animal enemy‐victim coevolution. Trends Ecol. Evol. 25: 267 – 274.en_US
dc.identifier.citedreferenceTiffin, P. 2000. Mechanisms of tolerance to herbivore damage: what do we know? Evol. Ecol. 14: 523 – 536.en_US
dc.identifier.citedreferenceTiffin, P., and M. D. Rausher. 1999. Genetic constraints and selection acting on tolerance to herbivory in the common morning glory Ipomoea purpurea. Am. Nat. 154: 700 – 716.en_US
dc.identifier.citedreferenceVannette, R. L., and M. D. Hunter. 2011. Genetic variation in expression of defense phenotype may mediate evolutionary adaptation of Asclepias syriaca to elevated CO2. Global Change Biol. 17: 1277 – 1288.en_US
dc.identifier.citedreferenceWintergerst, E. S., S. Maggini, and D. H. Hornig. 2007. Contribution of selected vitamins and trace elements to immune function. Ann. Nutr. Metab. 51: 301 – 323.en_US
dc.identifier.citedreferenceWolinska, J., and K. C. King. 2009. Environment can alter selection in host‐parasite interactions. Trends Parasitol. 25: 236 – 244.en_US
dc.identifier.citedreferenceWoodson, R. E. 1954. The North American species of Asclepias L. Ann. MO Bot. Gard. 41: 1 – 211.en_US
dc.identifier.citedreferenceZehnder, C. B., and M. D. Hunter. 2007. Interspecific variation within the genus Asclepias in response to herbivory by a phloem‐feeding insect herbivore. J. Chem. Ecol. 33: 2044 – 2053.en_US
dc.identifier.citedreferenceAckery, P. R., and R. I. Vane‐Wright. 1984. Milkweed butterflies: their cladistics and biology. Cornell Univ. Press, Ithaca, NY.en_US
dc.identifier.citedreferenceAltizer, S. M., K. S. Oberhauser, and K. A. Geurts. 2004. Transmission of the protozoan parasite Ophryocystis elektroscirrha in monarch butterfly populations: implications for prevalence and population‐level impacts. Pp. 203 – 218 in K. S. Oberhauser and M. Solensky, eds. The monarch butterfly: biology and conservation. Cornell Univ. Press, Ithaca, NY.en_US
dc.identifier.citedreferenceAnderson, M. 2001. A new method for non‐parametric multivariate analysis of variance. Austral Ecol. 26: 32 – 46.en_US
dc.identifier.citedreferenceAyres, J., and D. Schneider. 2009. The role of anorexia in resistance and tolerance to infections in Drosophila. PLoS Biol. 7: e1000150.en_US
dc.identifier.citedreferenceBaucom, R., and J. de Roode. 2011. Ecological immunology and tolerance in plants and animals. Funct. Ecol. 25: 18 – 28.en_US
dc.identifier.citedreferenceBest, A., A. White, and M. Boots. 2008. Maintenance of host variation in tolerance to pathogens and parasites. Proc. Natl. Acad. Sci. USA 105: 20786 – 20791.en_US
dc.identifier.citedreferenceBhaskaram, P. 2002. Micronutrient malnutrition, infection, and immunity: an overview. Nutr. Rev. 60: S40 – S45.en_US
dc.identifier.citedreferenceBlanchet, S., O. Rey, and G. Loot. 2010. Evidence for host variation in parasite tolerance in a wild fish population. Evol. Ecol. 24: 1129 – 1139.en_US
dc.identifier.citedreferenceBoots, M. 2008. Fight or learn to live with the consequences? Trends Ecol. Evol. 23: 248 – 250.en_US
dc.identifier.citedreferenceBoots, M., and R. G. Bowers. 1999. Three mechanisms of host resistance to microparasites—avoidance, recovery and tolerance—show different evolutionary dynamics. J. Theor. Biol. 201: 13 – 23.en_US
dc.identifier.citedreferenceCarr, D. E., J. F. Murphy, and M. D. Eubanks. 2006. Genetic variation and covariation for resistance and tolerance to Cucumber mosaic virus in Mumulus guttatus (Phrymaceae): a test for costs and constraints. Heredity 96: 29 – 38.en_US
dc.identifier.citedreferenceCombes, C. 2001. Parasitism: the ecology and evolution of intimate interactions. University of Chicago Press, Chicago, IL.en_US
dc.identifier.citedreferenceCorby‐Harris, V., K. E. Habel, F. G. Ali, and D. E. L. Promislow. 2007. Alternative measures of response to Pseudomonas aeruginosa infection in Drosophila melanogaster. J. Evol. Biol. 20: 526 – 533.en_US
dc.identifier.citedreferenceDe Roode, J. C., L. R. Gold, and S. Altizer. 2007. Virulence determinants in a natural butterfly‐parasite system. Parasitology 134: 657 – 669.en_US
dc.identifier.citedreferenceDe Roode, J. C., A. B. Pedersen, M. D. Hunter, and S. Altizer. 2008a. Host plant species affects virulence in monarch butterfly parasites. J. Anim. Ecol. 77: 120 – 126.en_US
dc.identifier.citedreferenceDe Roode, J. C., A. J. Yates, and S. Altizer. 2008b. Virulence‐transmission trade‐offs and population divergence in virulence in a naturally occurring butterfly parasite. Proc. Natl. Acad. Sci. USA 105: 7489 – 7494.en_US
dc.identifier.citedreferenceDe Roode, J. C., J. Chi, R. M. Rarick, and S. Altizer. 2009. Strength in numbers: high parasite burdens increase transmission of a protozoan parasite of monarch butterflies ( Danaus plexippus ). Oecologia 161: 67 – 75.en_US
dc.identifier.citedreferenceDe Roode, J. C., C. Lopez Fernandez de Castillejo, T. Faits, and S. Alizon. 2011a. Virulence evolution in response to anti‐infection resistance: toxic food plants can select for virulent parasites of monarch butterflies. J. Evol. Biol. 24: 712 – 722.en_US
dc.identifier.citedreferenceDe Roode, J. C., R. M. Rarick, A. J. Mongue, N. M. Gerardo, and M. D. Hunter. 2011b. Aphids indirectly increase virulence and transmission potential of a monarch butterfly parasite by reducing defensive chemistry of a shared plant. Ecol. Lett. 14: 453 – 461.en_US
dc.identifier.citedreferenceFalconer, D. S. 1952. The problem of environment and selection. Am. Nat. 86: 293 – 298.en_US
dc.identifier.citedreferenceFelton, G. W., and S. S. Duffy. 1990. Inactivation of a baculovirus by quinones formed in insect‐damaged plant tissue. J. Chem. Ecol. 16: 1211 – 1236.en_US
dc.identifier.citedreferenceFineblum, W. L., and M. D. Rausher. 1995. Tradeoff between resistance and tolerance to herbivore damage in a morning gloy. Nature 377: 517 – 520.en_US
dc.identifier.citedreferenceForbey, J. S., and W. J. Foley. 2009. PharmEcology: a pharmacological approach to understanding plant‐herbivore interactions: an introduction to the symposium. Integr. Comp. Biol. 49: 267 – 273.en_US
dc.identifier.citedreferenceFordyce, J. A., and S. B. Malcolm. 2000. Specialist weevil, Rhyssomatus lineaticollis, does not spatially avoid cardenolide defense of common milkweed by ovipositing into pith tissue. J. Chem. Ecol. 26: 2857 – 2874.en_US
dc.identifier.citedreferenceHaldane, J. B. S. 1946. The interaction of nature and nurture. Ann. Eugen. 13: 197 – 205.en_US
dc.identifier.citedreferenceHaviola, S., L. Kapari, V. Ossipov, M. J. Rantala, T. Ruuhola, and E. Haukioja. 2007. Foliar phenolics are differently associated with Epirrita autumnata growth and immunocompetence. J. Chem. Ecol. 33: 1013 – 1023.en_US
dc.identifier.citedreferenceHickman, J. C. e. 1993. The Jepson manual: higher plants of California. University of California Press, Berkeley.en_US
dc.identifier.citedreferenceKaiser, J. 2003. Sipping from a poisoned chalice. Science 302: 376 – 379.en_US
dc.identifier.citedreferenceKeating, S. T., M. D. Hunter, and J. C. Schultz. 1990. Leaf phenolic inhibition of gypsy moth nuclear polyhedrosis virus role of polyhedral inclusion body aggregation. J. Chem. Ecol. 16: 1445 – 1457.en_US
dc.identifier.citedreferenceKoskela, T., S. Puustinen, V. Salonen, and P. Mutikainen. 2002. Resistance and tolerance in a host plant‐holoparasitic plant interaction: genetic variation and costs. Evolution 56: 899 – 908.en_US
dc.identifier.citedreferenceKover, P. X., and B. A. Schaal. 2002. Genetic variation for disease resistance and tolerance among Arabidopsis thaliana accessions. Proc. Natl. Acad. Sci. USA 99: 11270 – 11274.en_US
dc.identifier.citedreferenceLafferty, K. D., A. P. Dobson, and A. M. Kuris. 2006. Parasites dominate food web links. Proc. Natl. Acad. Sci. USA 103: 11211 – 11216.en_US
dc.identifier.citedreferenceLazzaro, B. P., and T. J. Little. 2009. Immunity in a variable world. Philos. Trans. R. Soc. Lond. B 364: 15 – 26.en_US
dc.identifier.citedreferenceLee, K. P., J. S. Cory, K. Wilson, D. Raubenheimer, and S. J. Simpson. 2006. Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proc. R. Soc. Lond. B 273: 823 – 829.en_US
dc.identifier.citedreferenceLefèvre, T., L. Oliver, M. D. Hunter, and J. C. de Roode. 2010. Evidence for trans‐generational medication in nature. Ecol. Lett. 13: 1485 – 1493.en_US
dc.identifier.citedreferenceLefèvre, T., A. J. Williams, and J. C. de Roode. 2011. Genetic variation in resistance, but not tolerance, to a protozoan parasite in the monarch butterfly. Proc. R. Soc. Lond. B 278: 751 – 759.en_US
dc.identifier.citedreferenceLefèvre, T., A. Chiang, M. Kelavkar, H. Li, J. Li, C. Lopez Fernandez de Castillejo, L. Oliver, Y. Potini, M. D. Hunter, and J. C. De Roode. 2012. Behavioural resistance against a protozoan parasite in the monarch butterfly. J. Anim. Ecol. 81: 70 – 79.en_US
dc.identifier.citedreferenceLittle, T. J., D. M. Shuker, N. Colegrave, T. Day, and A. L. Graham. 2010. The coevoution of virulence: tolerance in perspective. PLoS Pathog. 6: e1001006.en_US
dc.identifier.citedreferenceLyons, J. I., A. M. Pierce, S. M. Barribeau, E. D. Sternberg, A. J. Mongue, and J. C. de Roode 2012. Lack of genetic differentiation between monarch butterflies with divergent migration destinations. Mol. Ecol. doi: 10.1111/j.1365‐294X.2012.05613.x.en_US
dc.identifier.citedreferenceMalcolm, S. B., and L. P. Brower. 1989. Evolutionary and ecological implications of cardenolide sequestration in the monarch butterfly. Experientia 45: 284 – 295.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.