Show simple item record

Tim‐3/galectin‐9 signaling pathway mediates T‐cell dysfunction and predicts poor prognosis in patients with hepatitis B virus‐associated hepatocellular carcinoma

dc.contributor.authorLi, Hangen_US
dc.contributor.authorWu, Keen_US
dc.contributor.authorTao, Kaixiongen_US
dc.contributor.authorChen, Liboen_US
dc.contributor.authorZheng, Qichangen_US
dc.contributor.authorLu, Xiaomingen_US
dc.contributor.authorLiu, Junen_US
dc.contributor.authorShi, Liangen_US
dc.contributor.authorLiu, Chuanqiaoen_US
dc.contributor.authorWang, Guobinen_US
dc.contributor.authorZou, Weipingen_US
dc.date.accessioned2012-11-07T17:04:38Z
dc.date.available2013-11-15T16:44:23Zen_US
dc.date.issued2012-10en_US
dc.identifier.citationLi, Hang; Wu, Ke; Tao, Kaixiong; Chen, Libo; Zheng, Qichang; Lu, Xiaoming; Liu, Jun; Shi, Liang; Liu, Chuanqiao; Wang, Guobin; Zou, Weiping (2012). "Tim‐3/galectin‐9 signaling pathway mediates T‐cell dysfunction and predicts poor prognosis in patients with hepatitis B virus‐associated hepatocellular carcinoma ." Hepatology 56(4): 1342-1351. <http://hdl.handle.net/2027.42/94269>en_US
dc.identifier.issn0270-9139en_US
dc.identifier.issn1527-3350en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94269
dc.description.abstractThe interaction between T cell immunoglobulin‐ and mucin‐domain‐containing molecule (Tim‐3) expressed on T helper 1 (Th1) cells, and its ligand, galectin‐9, negatively regulates Th1‐mediated immune responses. However, it is poorly understood if and how the Tim‐3/galectin‐9 signaling pathway is involved in immune escape in patients with hepatocellular carcinoma (HCC). Here we studied the expression, function, and regulation of the Tim‐3/galectin‐9 pathway in patients with hepatitis B virus (HBV)‐associated HCC. We detected different levels of galectin‐9 expression on antigen‐presenting cell (APC) subsets including Kupffer cells (KCs), myeloid dendritic cells (DCs), and plasmacytoid DCs in HCC. The highest galectin‐9 expression was on KCs in HCC islets, not in the adjacent tissues. Furthermore, Tim‐3 expression was increased on CD4 + and CD8 + T cells in HCC as compared to the adjacent tissues, and Tim‐3 + T cells were replicative senescent and expressed surface and genetic markers for senescence. Interestingly, tumor‐infiltrating T‐cell‐derived interferon (IFN)‐γ stimulated the expression of galectin‐9 on APCs in the HCC microenvironment. Immunofluorescence staining revealed a colocalization of Tim‐3 + T cells and galectin‐9 + KCs in HCC. Functional studies demonstrated that blockade of the Tim‐3/galectin‐9 signaling pathway importantly increased the functionality of tumor‐infiltrating Tim‐3 + T cells as shown by increased T‐cell proliferation and effector cytokine production. Finally, we show that the numbers of Tim‐3 + tumor‐infiltrating cells were negatively associated with patient survival. Conclusion : Our work demonstrates that the Tim‐3/galectin‐9 signaling pathway mediates T‐cell senescence in HBV‐associated HCC. The data suggest that this pathway could be an immunotherapeutic target in patients with HBV‐associated HCC. (H EPATOLOGY 2012)en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.titleTim‐3/galectin‐9 signaling pathway mediates T‐cell dysfunction and predicts poor prognosis in patients with hepatitis B virus‐associated hepatocellular carcinomaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109en_US
dc.contributor.affiliationumDepartment of Surgery, Graduate Programs in Immunology and Tumor Biology, Comprehensive Cancer Center, University of Michigan School of Medicine, Ann Arbor, MIen_US
dc.contributor.affiliationotherWuhan Blood Center, Wuhan, Chinaen_US
dc.contributor.affiliationotherDepartment of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Chinaen_US
dc.contributor.affiliationotherDepartment of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Chinaen_US
dc.contributor.affiliationotherDepartment of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Chinaen_US
dc.identifier.pmid22505239en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94269/1/25777_ftp.pdf
dc.identifier.doi10.1002/hep.25777en_US
dc.identifier.sourceHepatologyen_US
dc.identifier.citedreferenceDi Mitri D, Azevedo RI, Henson SM, Libri V, Riddell NE, Macaulay R, et al. Reversible senescence in human CD4+CD45RA+CD27‐ memory T cells. J Immunol 2011; 187: 2093 ‐ 2100.en_US
dc.identifier.citedreferenceKageshita T, Kashio Y, Yamauchi A, Seki M, Abedin MJ, Nishi N, et al. Possible role of galectin‐9 in cell aggregation and apoptosis of human melanoma cell lines and its clinical significance. Int J Cancer 2002; 99: 809 ‐ 816.en_US
dc.identifier.citedreferenceZhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, et al. The Tim‐3 ligand galectin‐9 negatively regulates T helper type 1 immunity. Nat Immunol 2005; 6: 1245 ‐ 1252.en_US
dc.identifier.citedreferenceSabatos CA, Chakravarti S, Cha E, Schubart A, Sanchez‐Fueyo A, Zheng XX, et al. Interaction of Tim‐3 and Tim‐3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol 2003; 4: 1102 ‐ 1110.en_US
dc.identifier.citedreferenceSanchez‐Fueyo A, Tian J, Picarella D, Domenig C, Zheng XX, Sabatos CA, et al. Tim‐3 inhibits T helper type 1‐mediated auto‐ and alloimmune responses and promotes immunological tolerance. Nat Immunol 2003; 4: 1093 ‐ 1101.en_US
dc.identifier.citedreferenceJones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR, Long BR, et al. Tim‐3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV‐1 infection. J Exp Med 2008; 205: 2763 ‐ 2779.en_US
dc.identifier.citedreferenceMcMahan RH, Golden‐Mason L, Nishimura MI, McMahon BJ, Kemper M, Allen TM, et al. Tim‐3 expression on PD‐1+ HCV‐specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte‐directed in vitro cytotoxicity. J Clin Invest 2010; 120: 4546 ‐ 4557.en_US
dc.identifier.citedreferenceGolden‐Mason L, Palmer BE, Kassam N, Townshend‐Bulson L, Livingston S, McMahon BJ, et al. Negative immune regulator Tim‐3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4+ and CD8+ T cells. J Virol 2009; 83: 9122 ‐ 9130.en_US
dc.identifier.citedreferenceZhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, et al. Coexpression of Tim‐3 and PD‐1 identifies a CD8+ T‐cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 2011; 117: 4501 ‐ 4510.en_US
dc.identifier.citedreferenceSakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim‐3 and PD‐1 pathways to reverse T cell exhaustion and restore anti‐tumor immunity. J Exp Med 2010; 207: 2187 ‐ 2194.en_US
dc.identifier.citedreferenceFourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, et al. Upregulation of Tim‐3 and PD‐1 expression is associated with tumor antigen‐specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 2010; 207: 2175 ‐ 2186.en_US
dc.identifier.citedreferenceHuang X, Bai X, Cao Y, Wu J, Huang M, Tang D, et al. Lymphoma endothelium preferentially expresses Tim‐3 and facilitates the progression of lymphoma by mediating immune evasion. J Exp Med 2010; 207: 505 ‐ 520.en_US
dc.identifier.citedreferenceBrenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, et al. Expression of CD57 defines replicative senescence and antigen‐induced apoptotic death of CD8+ T cells. Blood 2003; 101: 2711 ‐ 2720.en_US
dc.identifier.citedreferenceJin HT, Anderson AC, Tan WG, West EE, Ha SJ, Araki K, et al. Cooperation of Tim‐3 and PD‐1 in CD8 T‐cell exhaustion during chronic viral infection. Proc Natl Acad Sci U S A 2010; 107: 14733 ‐ 14738.en_US
dc.identifier.citedreferenceWilke CM, Wei S, Wang L, Kryczek I, Kao J, Zou W. Dual biological effects of the cytokines interleukin‐10 and interferon‐gamma. Cancer Immunol Immunother 2011; 60: 1529 ‐ 1541.en_US
dc.identifier.citedreferenceKuang DM, Peng C, Zhao Q, Wu Y, Zhu LY, Wang J, et al. Tumor‐activated monocytes promote expansion of IL‐17‐producing CD8+ T cells in hepatocellular carcinoma patients. J Immunol 2010; 185: 1544 ‐ 1549.en_US
dc.identifier.citedreferenceKnight B, Lim R, Yeoh GC, Olynyk JK. Interferon‐gamma exacerbates liver damage, the hepatic progenitor cell response and fibrosis in a mouse model of chronic liver injury. J Hepatol 2007; 47: 826 ‐ 833.en_US
dc.identifier.citedreferenceDong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor‐associated B7‐H1 promotes T‐cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8: 793 ‐ 800.en_US
dc.identifier.citedreferenceKryczek I, Wei S, Gong W, Shu X, Szeliga W, Vatan L, et al. Cutting edge: IFN‐gamma enables APC to promote memory Th17 and abate Th1 cell development. J Immunol 2008; 181: 5842 ‐ 5846.en_US
dc.identifier.citedreferenceCho HI, Lee YR, Celis E. Interferon gamma limits the effectiveness of melanoma peptide vaccines. Blood 2011; 117: 135 ‐ 144.en_US
dc.identifier.citedreferenceMunn DH, Mellor AL. IDO and tolerance to tumors. Trends Mol Med 2004; 10: 15 ‐ 18.en_US
dc.identifier.citedreferenceRodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, et al. Arginase I in myeloid suppressor cells is induced by COX‐2 in lung carcinoma. J Exp Med 2005; 202: 931 ‐ 939.en_US
dc.identifier.citedreferenceBronte V, Zanovello P. Regulation of immune responses by L‐arginine metabolism. Nat Rev Immunol 2005; 5: 641 ‐ 654.en_US
dc.identifier.citedreferenceZaidi MR, Davis S, Noonan FP, Graff‐Cherry C, Hawley TS, Walker RL, et al. Interferon‐gamma links ultraviolet radiation to melanomagenesis in mice. Nature 2011; 469: 548 ‐ 553.en_US
dc.identifier.citedreferenceCreagan ET, Ahmann DL, Long HJ, Frytak S, Sherwin SA, Chang MN. Phase II study of recombinant interferon‐gamma in patients with disseminated malignant melanoma. Cancer Treat Rep 1987; 71: 843 ‐ 844.en_US
dc.identifier.citedreferenceErnstoff MS, Trautman T, Davis CA, Reich SD, Witman P, Balser J, et al. A randomized phase I/II study of continuous versus intermittent intravenous interferon gamma in patients with metastatic melanoma. J Clin Oncol 1987; 5: 1804 ‐ 1810.en_US
dc.identifier.citedreferenceKopp WC, Smith JW, 2nd, Ewel CH, Alvord WG, Main C, Guyre PM, et al. Immunomodulatory effects of interferon‐gamma in patients with metastatic malignant melanoma. J Immunother Emphasis Tumor Immunol 1993; 13: 181 ‐ 190.en_US
dc.identifier.citedreferenceKowalzick L, Weyer U, Lange P, Breitbart EW. Systemic therapy of advanced metastatic malignant melanoma with a combination of fibroblast interferon‐beta and recombinant interferon‐gamma. Dermatologica 1990; 181: 298 ‐ 303.en_US
dc.identifier.citedreferenceMeyskens FL Jr, Kopecky K, Samson M, Hersh E, Macdonald J, Jaffe H, et al. Recombinant human interferon gamma: adverse effects in high‐risk stage I and II cutaneous malignant melanoma. J Natl Cancer Inst 1990; 82: 1071.en_US
dc.identifier.citedreferenceMeyskens FL Jr, Kopecky KJ, Taylor CW, Noyes RD, Tuthill RJ, Hersh EM, et al. Randomized trial of adjuvant human interferon gamma versus observation in high‐risk cutaneous melanoma: a Southwest Oncology Group study. J Natl Cancer Inst 1995; 87: 1710 ‐ 1713.en_US
dc.identifier.citedreferenceLlovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003; 362: 1907 ‐ 1917.en_US
dc.identifier.citedreferenceParmiani G, Anichini A. T cell infiltration and prognosis in HCC patients. J Hepatol 2006; 45: 178 ‐ 181.en_US
dc.identifier.citedreferenceFu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, et al. Increased regulatory T cells correlate with CD8 T‐cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 2007; 132: 2328 ‐ 2339.en_US
dc.identifier.citedreferenceGao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 2007; 25: 2586 ‐ 2593.en_US
dc.identifier.citedreferenceShirabe K, Motomura T, Muto J, Toshima T, Matono R, Mano Y, et al. Tumor‐infiltrating lymphocytes and hepatocellular carcinoma: pathology and clinical management. Int J Clin Oncol 2010; 15: 552 ‐ 558.en_US
dc.identifier.citedreferenceKryczek I, Zhao E, Liu Y, Wang Y, Vatan L, Szeliga W, et al. Human TH17 cells are long‐lived effector memory cells. Sci Transl Med 2011; 3: 104ra100.en_US
dc.identifier.citedreferenceKryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S, et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 2009; 114: 1141 ‐ 1149.en_US
dc.identifier.citedreferenceKobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, et al. FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 2007; 13: 902 ‐ 911.en_US
dc.identifier.citedreferencePang YL, Zhang HG, Peng JR, Pang XW, Yu S, Xing Q, et al. The immunosuppressive tumor microenvironment in hepatocellular carcinoma. Cancer Immunol Immunother 2009; 58: 877 ‐ 886.en_US
dc.identifier.citedreferenceKryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P, et al. B7‐H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 2006; 203: 871 ‐ 881.en_US
dc.identifier.citedreferenceZou W, Machelon V, Coulomb‐L'Hermin A, Borvak J, Nome F, Isaeva T, et al. Stromal‐derived factor‐1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 2001; 7: 1339 ‐ 1346.en_US
dc.identifier.citedreferenceWei S, Kryczek I, Zou L, Daniel B, Cheng P, Mottram P, et al. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res 2005; 65: 5020 ‐ 5026.en_US
dc.identifier.citedreferenceCuriel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, et al. Blockade of B7‐H1 improves myeloid dendritic cell‐mediated antitumor immunity. Nat Med 2003; 9: 562 ‐ 567.en_US
dc.identifier.citedreferenceCuriel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942 ‐ 949.en_US
dc.identifier.citedreferenceZou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005; 5: 263 ‐ 274.en_US
dc.identifier.citedreferenceZou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6: 295 ‐ 307.en_US
dc.identifier.citedreferenceZou W, Chen L. Inhibitory B7‐family molecules in the tumour microenvironment. Nat Rev Immunol 2008; 8: 467 ‐ 477.en_US
dc.identifier.citedreferenceKuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD‐L1. J Exp Med 2009; 206: 1327 ‐ 1337.en_US
dc.identifier.citedreferenceWu K, Kryczek I, Chen L, Zou W, Welling TH. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7‐H1/programmed death‐1 interactions. Cancer Res 2009; 69: 8067 ‐ 8075.en_US
dc.identifier.citedreferenceZhou L, Fu JL, Lu YY, Fu BY, Wang CP, An LJ, et al. Regulatory T cells are associated with post‐cryoablation prognosis in patients with hepatitis B virus‐related hepatocellular carcinoma. J Gastroenterol 2010; 45: 968 ‐ 978.en_US
dc.identifier.citedreferenceAyaru L, Pereira SP, Alisa A, Pathan AA, Williams R, Davidson B, et al. Unmasking of alpha‐fetoprotein‐specific CD4(+) T cell responses in hepatocellular carcinoma patients undergoing embolization. J Immunol 2007; 178: 1914 ‐ 1922.en_US
dc.identifier.citedreferenceMuranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A, et al. Tumor‐specific Th17‐polarized cells eradicate large established melanoma. Blood 2008; 112: 362 ‐ 373.en_US
dc.identifier.citedreferenceMartin‐Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S, et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 2009; 31: 787 ‐ 798.en_US
dc.identifier.citedreferenceMonney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, et al. Th1‐specific cell surface protein Tim‐3 regulates macrophage activation and severity of an autoimmune disease. Nature 2002; 415: 536 ‐ 541.en_US
dc.identifier.citedreferenceTureci O, Schmitt H, Fadle N, Pfreundschuh M, Sahin U. Molecular definition of a novel human galectin which is immunogenic in patients with Hodgkin's disease. J Biol Chem 1997; 272: 6416 ‐ 6422.en_US
dc.identifier.citedreferenceWada J, Ota K, Kumar A, Wallner EI, Kanwar YS. Developmental regulation, expression, and apoptotic potential of galectin‐9, a beta‐galactoside binding lectin. J Clin Invest 1997; 99: 2452 ‐ 2461.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.