Show simple item record

Microfluidic Automation Using Elastomeric Valves and Droplets: Reducing Reliance on External Controllers

dc.contributor.authorKim, Sung‐jinen_US
dc.contributor.authorLai, Daviden_US
dc.contributor.authorPark, Joong Yullen_US
dc.contributor.authorYokokawa, Ryujien_US
dc.contributor.authorTakayama, Shuichien_US
dc.date.accessioned2012-11-07T17:04:38Z
dc.date.available2013-11-15T16:44:23Zen_US
dc.date.issued2012-10-08en_US
dc.identifier.citationKim, Sung‐jin ; Lai, David; Park, Joong Yull; Yokokawa, Ryuji; Takayama, Shuichi (2012). "Microfluidic Automation Using Elastomeric Valves and Droplets: Reducing Reliance on External Controllers." Small 8(19): 2925-2934. <http://hdl.handle.net/2027.42/94271>en_US
dc.identifier.issn1613-6810en_US
dc.identifier.issn1613-6829en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94271
dc.description.abstractThis paper gives an overview of elastomeric valve‐ and droplet‐based microfluidic systems designed to minimize the need of external pressure to control fluid flow. This Concept article introduces the working principle of representative components in these devices along with relevant biochemical applications. This is followed by providing a perspective on the roles of different microfluidic valves and systems through comparison of their similarities and differences with transistors (valves) and systems in microelectronics. Despite some physical limitation of drawing analogies from electronic circuits, automated microfluidic circuit design can gain insights from electronic circuits to minimize external control units, while implementing high‐complexity and high‐throughput analysis. In microfluidic devices , demands for the minimal use of external controllers while implementing high‐throughput analysis are increasing. To this end, an overview of elastomeric valve‐ and droplet‐based microfluidic systems is provided: the working principles and limitations of representative components in these devices along with relevant biochemical applications are discussed.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherMicrofluidic Circuitsen_US
dc.subject.otherHigh‐Throughput Analysesen_US
dc.subject.otherMicrodropletsen_US
dc.subject.otherMicrofluidicsen_US
dc.subject.otherMicrofluidic Valvesen_US
dc.titleMicrofluidic Automation Using Elastomeric Valves and Droplets: Reducing Reliance on External Controllersen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.en_US
dc.contributor.affiliationumDepartment of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA, Division of Nano‐Bio and Chemical Engineering WCU Project, UNIST, Ulsan, Republic of Koreaen_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USAen_US
dc.contributor.affiliationotherDepartment of Microengineering, Kyoto University, Yoshida‐honmachi, Sakyo, Kyoto, 606‐8501, Japanen_US
dc.contributor.affiliationotherSchool of Mechanical Engineering, Chung‐Ang University, Seoul, Republic of Koreaen_US
dc.identifier.pmid22761019en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94271/1/2925_ftp.pdf
dc.identifier.doi10.1002/smll.201200456en_US
dc.identifier.sourceSmallen_US
dc.identifier.citedreferenceY. C. Tan, Y. L. Ho, A. P. Lee, Microfluid. Nanofluid. 2008, 4, 343 – 348.en_US
dc.identifier.citedreferenceC. L. Hansen, M. O. A. Sommer, S. R. Quake, Proc. Natl. Acad. Sci. USA 2004, 101, 14431 – 14436.en_US
dc.identifier.citedreferenceS. R. Bates, S. R. Quake, Appl. Phys. Lett. 2009, 95, 073705 – 3.en_US
dc.identifier.citedreferenceS. J. Maerkl, S. R. Quake, Science 2007, 315, 233 – 237.en_US
dc.identifier.citedreferenceR. Gómez‐Sjöberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, S. R. Quake, Analytical Chemistry 2007, 79, 8557 – 8563.en_US
dc.identifier.citedreferenceR. J. Taylor, D. Falconnet, A. Niemistö, S. A. Ramsey, S. Prinz, I. Shmulevich, T. Galitski, C. L. Hansen, Proc. Natl. Acad. Sci. USA 2009, 106, 3758 – 3763.en_US
dc.identifier.citedreferenceJ. F. Zhong, Y. Chen, J. S. Marcus, A. Scherer, S. R. Quake, C. R. Taylor, L. P. Weiner, Lab Chip 2008, 8, 68 – 74.en_US
dc.identifier.citedreferenceS. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, M. W. Covert, Nature 2010, 466, 267 – 271.en_US
dc.identifier.citedreferenceL. M. Fidalgo, S. J. Maerkl, Lab on a Chip 2011, 11, 1612 – 1619.en_US
dc.identifier.citedreferenceG. A. Cooksey, C. G. Sip, A. Folch, Lab on a Chip 2009, 9, 417 – 426.en_US
dc.identifier.citedreferenceS.‐Y. Teh, R. Lin, L.‐H. Hung, A. P. Lee, Lab Chip 2008, 8, 198 – 220.en_US
dc.identifier.citedreferenceI. Ziemecka, V. van Steijn, G. J. M. Koper, M. Rosso, A. M. Brizard, J. H. van Esch, M. T. Kreutzer, Lab Chip 2011, 11, 620 – 624.en_US
dc.identifier.citedreferenceD. Lai, J. P. Frampton, H. Sriram, S. Takayama, Lab Chip 2011, 3551 – 3554.en_US
dc.identifier.citedreferenceD. Huh, J. H. Bahng, Y. Ling, H. H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg, S. Takayama, Anal. Chem. 2007, 79, 1369 – 1376.en_US
dc.identifier.citedreferenceJ. C. Baret, O. J. Miller, V. Taly, M. Ryckelynck, A. El‐Harrak, L. Frenz, C. Rick, M. L. Samuels, J. B. Hutchison, J. J. Agresti, D. R. Link, D. A. Weitz, A. D. Griffiths, Lab Chip. 2009, 9, 1850 – 1858.en_US
dc.identifier.citedreferenceL. Wang, L. A. Flanagan, N. L. Jeon, E. Monuki, A. P. Lee, Lab Chip. 2007, 7, 1114 – 1120.en_US
dc.identifier.citedreferenceY. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, A. P. Lee, Lab Chip. 2004, 4, 292 – 298.en_US
dc.identifier.citedreferenceL. Mazutis, J. C. Baret, A. D. Griffiths, Lab Chip. 2009, 9, 2665 – 2672.en_US
dc.identifier.citedreferenceL. H. Hung, K. M. Choi, W. Y. Tseng, Y. C. Tan, K. J. Shea, A. P. Lee, Lab Chip. 2006, 6, 174 – 178.en_US
dc.identifier.citedreferenceH. Song, J. D. Tice, R. F. Ismagilov, Angew. Chem. Int. Ed. 2003, 42, 768 – 772en_US
dc.identifier.citedreferenceD. R. Link, S. L. Anna, D. A. Weitz, H. A. Stone, Phys. Rev. Lett. 2004, 92, 054503.en_US
dc.identifier.citedreferenceA. R. Abate, D. A. Weitz, Lab Chip 2011, 11, 1911 – 1915.en_US
dc.identifier.citedreferenceS. K. Cho, H. Moon, C. J. Kim, J. Microelectromech. S. 2003, 12, 70 – 80.en_US
dc.identifier.citedreferenceP. Paik, V. K. Pamula, R. B. Fair, Lab Chip. 2003, 3, 253 – 259.en_US
dc.identifier.citedreferenceX. Niu, F. Gielen, J. B. Edel, A. J. deMello, Nature Chem. 2011, 3, 437 – 442.en_US
dc.identifier.citedreferenceM. Prakash, N. Gershenfeld, Science 2007, 315, 832 – 835.en_US
dc.identifier.citedreferenceB. Ahn, K. Lee, H. Lee, R. Panchapakesan, K. W. Oh, Lab Chip. 2011, 11, 3956 – 3962.en_US
dc.identifier.citedreferenceE. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, M. L. Samuels, P. Natl. Acad. Sci. USA. 2009, 106, 14195 – 14200.en_US
dc.identifier.citedreferenceL. Mazutis, J. C. Baret, P. Treacy, Y. Skhiri, A. F. Araghi, M. Ryckelynck, V. Taly, A. D. Griffiths, Lab Chip. 2009, 9, 2902 – 2908.en_US
dc.identifier.citedreferenceR. Tewhey, J. B. Warner, M. Nakano, B. Libby, M. Medkova, P. H. David, S. K. Kosopoulos, M. L. Samuels, J. B. Hutchison, J. W. Larson, E. J. Topol, M. P. Weiner, O. Harismendy, J. Olson, D. R. Link, K. A. Frazer, Nat. Biotechnol. 2009, 27, 1025 – 1031.en_US
dc.identifier.citedreferencewww.ni.com/white‐paper/8564/en, accessed on May 2012en_US
dc.identifier.citedreferenceP. S. Dittrich, A. Manz, Nat. Rev. Drug Discovery 2006, 5, 210 – 218.en_US
dc.identifier.citedreferenceS. Vyawahare, A. D. Griffiths, C. Merten, Chem. Biol. 2010, 17, 1052 – 1065.en_US
dc.identifier.citedreferenceG. M. Whitesides, Nature 2006, 442, 368 – 373.en_US
dc.identifier.citedreferenceP. Liu, R. A. Mathies, Trends Biotechnol. 2009, 27, 572 – 581.en_US
dc.identifier.citedreferencea) D. Mark, S. Haeberle, G. Roth, F. von Stetten, R. Zengerle, Chem. Soc. Rev. 2010, 39, 1153 – 1182; b) R. Gorkin, J. Park, J. Siegrist, M. Amasia, B. S. Lee, J.‐M. Park, J. Kim, H. Kim, M. Madou, Y.‐K. Cho, Lab Chip 2010, 10, 1758 – 1773.en_US
dc.identifier.citedreferencea) A. W. Martinez, S. T. Phillips, G. M. Whitesides, E. Carrilho, Anal. Chem. 2010, 82, 3 – 10; b) M. R. McNeely, M. K. Spute, N. A. Tusneem, A. R. Oliphant, Proc. SPIE 1999, 3877, 210 – 220; c) S.‐J. Kim, Y. T. Lim, H. Yang, Y. B. Shin, K. Kim, D.‐S. Lee, S. H. Park, Y. T. Kim, Anal. Chem. 2005, 77, 6494 – 6499; d) M. Zimmermann, H. Schmid, P. Hunziker, E. Delamarche, Lab Chip 2007, 7, 119 – 125.en_US
dc.identifier.citedreferencea) A. Groisman, M. Enzelberger, S. R. Quake, Science 2003, 300, 955 – 958; b) A. Groisman, S. R. Quake, Phys. Rev. Lett. 2004, 094501.en_US
dc.identifier.citedreferencea) R. Schoch, J. Han, P. Renaud, Rev. Mod. Phys. 2008, 80, 839 – 883; b) R. B. Fair, Microfluid. Nanofluid. 2007, 3, 245 – 281.en_US
dc.identifier.citedreferenceK. Horiuchi, P. Dutta, Lab Chip 2006, 6, 714 – 723.en_US
dc.identifier.citedreferenceH. Erfle, B. Neumann, U. Liebel, P. Rogers, M. Held, T. Walter, J. Ellenberg, R. Pepperkok, Nat. Protoc. 2007, 2, 392 – 399.en_US
dc.identifier.citedreferenceJ. G. Landels, in Engineering in the ancient world, University of California Press, Berkeley, California 2000.en_US
dc.identifier.citedreferenceG. A. Audsley,in The art of organ‐building: a comprehensive historical, theoretical, and practical treatise on the tonal appointment and mechanical construction of concert‐room, church, and chamber organs, Dover Publications, 1965.en_US
dc.identifier.citedreferenceH. L. Stewart, in Hydraulic and Pneumatic Power for Production, Industrial Press, New York 1977.en_US
dc.identifier.citedreferenceT. Gilles, in Automotive service: inspection, maintenance repair, Delmar Cengage Learning, 2011.en_US
dc.identifier.citedreferenceC. Alexander, M. Sadiku, Fundamentals of electric circuits, McGraw‐Hill, New York, 2008.en_US
dc.identifier.citedreferenceR. C. Jaeger, T. N. Blalock, Microelectronic Circuit Design, McGraw‐Hill, New York, 2003.en_US
dc.identifier.citedreferenceG. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D. E. Ingber, Annu. Rev. Biomed. Eng. 2001, 3, 335 – 373.en_US
dc.identifier.citedreferenceE. A. Ottesen, J. W. Hong, S. R. Quake, J. R. Leadbetter, Science 2006, 314, 1464 – 1467.en_US
dc.identifier.citedreferenceT. Thorsen, S. J. Maerkl, S. R. Quake, Science 2002, 298, 580 – 584.en_US
dc.identifier.citedreferenceD. Maier‐schneider, J. Maibach, E. Obermeier, O. F. Pan, E. T. Al, J. Microelectromech. Syst. 1995, 4, 238 – 241.en_US
dc.identifier.citedreferenceD. W. Lee, Y.‐H. Cho, Lab Chip 2009, 9, 1681 – 1686.en_US
dc.identifier.citedreferenceZ. Hua, Y. Xia, O. Srivannavit, J.‐M. Rouillard, X. Zhou, X. Gao, E. Gulari, J. Micromech. Microeng. 2006, 16, 1433 – 1443.en_US
dc.identifier.citedreferenceW. H. Grover, R. H. C. Ivester, E. C. Jensen, R. A. Mathies, Lab Chip 2006, 6, 623 – 631.en_US
dc.identifier.citedreferenceS. G. Shiva, in Introduction to logic design, 2nd ed, M. Dekker, New York 1998,Ch. 2 and Ch 4.en_US
dc.identifier.citedreferenceH. Takao, M. Ishida, K. Sawada, J. Microelectromech. Syst. 2002, 11, 421 – 426.en_US
dc.identifier.citedreferenceM. Rhee, M. A. Burns, Lab Chip 2009, 9, 3131 – 3143.en_US
dc.identifier.citedreferenceE. C. Jensen, W. H. Grover, R. a Mathies, J. Microelectromech. Syst. 2007, 16, 1378 – 1385.en_US
dc.identifier.citedreferenceJ. A. Weaver, J. Melin, D. Stark, S. R. Quake, M. A. Horowitz, Nature Phys. 2010, 6, 218 – 223.en_US
dc.identifier.citedreferenceB. Mosadegh, C.‐H. Kuo, Y.‐C. Tung, Y.‐suke Torisawa, T. Bersano‐Begey, H. Tavana, S. Takayama, Nature Phys. 2010, 6, 433 – 437.en_US
dc.identifier.citedreferenceS.‐J. Kim, R. Yokokawa, S. C. Lesher‐Perez, S. Takayama, Anal. Chem. 2012, 84, 1152 – 1156.en_US
dc.identifier.citedreferenceH. M. Xia, Z. P. Wang, W. Fan, A. Wijaya, W. Wang, Z. F. Wang, Lab Chip 2012, 12, 60 – 64.en_US
dc.identifier.citedreferenceP. N. Duncan, T. V. Nguyen, E. E. Hui, in Proceedings of the μTAS 2010 Conference, Groningen, Netherlands, Oct 3–7, 2010, pp. 1838 – 1840.en_US
dc.identifier.citedreferenceT. V. Nguyen, S. Ahrar, P. N. Duncan, E. E. Hui, in Proceedings of the μTAS 2011 Conference, Seattle, USA, Oct 2–6, 2011, 741 – 743.en_US
dc.identifier.citedreferenceD. C. Leslie, C. J. Easley, E. Seker, J. M. Karlinsey, M. Utz, M. R. Begley, J. P. Landers, Nature Phys. 2009, 5, 231 – 235.en_US
dc.identifier.citedreferenceH. Lai, A. Folch, Lab Chip 2011, 11, 336 – 42.en_US
dc.identifier.citedreferenceC. L. Hansen, E. Skordalakes, J. M. Berger, S. R. Quake, Proc. Natl. Acad. Sci. USA 2002, 99, 16531 – 16536.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.