Show simple item record

A zinc finger protein gene ZFP5 integrates phytohormone signaling to control root hair development in Arabidopsis

dc.contributor.authorAn, Lijunen_US
dc.contributor.authorZhou, Zhongjingen_US
dc.contributor.authorSun, Lilien_US
dc.contributor.authorYan, Anen_US
dc.contributor.authorXi, Wanyanen_US
dc.contributor.authorYu, Nanen_US
dc.contributor.authorCai, Wenjuanen_US
dc.contributor.authorChen, Xiaoyaen_US
dc.contributor.authorYu, Haoen_US
dc.contributor.authorSchiefelbein, Johnen_US
dc.contributor.authorGan, Yinboen_US
dc.date.accessioned2012-11-07T17:04:39Z
dc.date.available2014-01-07T14:51:08Zen_US
dc.date.issued2012-11en_US
dc.identifier.citationAn, Lijun; Zhou, Zhongjing; Sun, Lili; Yan, An; Xi, Wanyan; Yu, Nan; Cai, Wenjuan; Chen, Xiaoya; Yu, Hao; Schiefelbein, John; Gan, Yinbo (2012). "A zinc finger protein gene ZFP5 integrates phytohormone signaling to control root hair development in Arabidopsis." The Plant Journal 72(3). <http://hdl.handle.net/2027.42/94275>en_US
dc.identifier.issn0960-7412en_US
dc.identifier.issn1365-313Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94275
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherEpidermal Cellen_US
dc.subject.otherEthyleneen_US
dc.subject.otherC2H2 Zinc Finger Proteinen_US
dc.subject.otherCytokininen_US
dc.subject.otherZFP5en_US
dc.subject.otherRoot Hair Developmenten_US
dc.titleA zinc finger protein gene ZFP5 integrates phytohormone signaling to control root hair development in Arabidopsisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, Chinaen_US
dc.contributor.affiliationotherNational Key Laboratory of Plant Mol Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, Chinaen_US
dc.contributor.affiliationotherDepartment of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singaporeen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94275/1/tpj5094.pdf
dc.identifier.doi10.1111/j.1365-313X.2012.05094.xen_US
dc.identifier.sourceThe Plant Journalen_US
dc.identifier.citedreferenceSchiefelbein, J.W. and Somerville, C. ( 1990 ) Genetic control or root hair development in Arabidopsis thaliana. Plant Cell, 2, 235 – 243.en_US
dc.identifier.citedreferenceKushwah, S., Jones, A.M. and Laxmi, A. ( 2011 ) Cytokinin interplay with ethylene, auxin and glucose signalling controls Arabidopsis seedling root directional growth. Plant Physiol. 156, 1851 – 1866.en_US
dc.identifier.citedreferenceLaity, J.H., Lee, B.M. and Wright, P.E. ( 2001 ) Zinc finger proteins: new insights into structural and functional diversity. Curr. Opin. Struct. Biol. 11, 39 – 46.en_US
dc.identifier.citedreferenceLee, M.M. and Schiefelbein, J. ( 1999 ) WEREWOLF, a MYB‐related protein in Arabidopsis, is a position‐dependent regulator of epidermal cell patterning. Cell, 99, 473 – 483.en_US
dc.identifier.citedreferenceLong, J.A. and Barton, M.K. ( 1998 ) The development of apical embryonic pattern in Arabidopsis. Development, 125, 3027 – 3035.en_US
dc.identifier.citedreferenceLópez‐Bucio, J., Hernández‐Abreu, E., Sánchez‐Calderón, L., Nieto‐Jacobo, M.F., Simpson, J. and Herrera‐Estrella, L. ( 2002 ) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol. 129, 244 – 256.en_US
dc.identifier.citedreferenceMasucci, J.D., Rerie, W.G., Foreman, D.R., Zhang, M., Galway, M.E., Marks, M.D. and Schifelbein, J.W. ( 1996 ) The homeobox gene GLABRA2 is required for position‐dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development, 122, 1253 – 1260.en_US
dc.identifier.citedreferenceMüller, M. and Schmidt, W. ( 2004 ) Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiol. 134, 409 – 419.en_US
dc.identifier.citedreferenceMuraro, D., Byrne, H., King, J., Voβ, U., Kieber, J. and Bennett, M. ( 2011 ) The influence of cytokinin–auxin cross‐regulation on cell fate determination in Arabidopsis thaliana root development. J. Theor. Biol. 283, 152 – 167.en_US
dc.identifier.citedreferencePesch, M. and Hülskamp, M. ( 2004 ) Creating a two‐dimensional pattern de novo during Arabidopsis trichome and root hair initiation. Curr. Opin. Genet. Dev. 14, 422 – 427.en_US
dc.identifier.citedreferenceRahman, A., Hosokawa, S., Oono, Y., Amakawa, T., Goto, N. and Tsurumi, S. ( 2002 ) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol. 130, 1908 – 1917.en_US
dc.identifier.citedreferenceRigas, S., Debrosses, G., Haralampidis, K., Vicente‐Agullo, F., Feldmann, K.A., Grabov, A., Dolan, L. and Hatzopoulos, P. ( 2001 ) TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell, 13, 139 – 151.en_US
dc.identifier.citedreferenceSakai, H., Medrano, L.J. and Meyerowitz, E.M. ( 1995 ) Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature, 378, 199 – 203.en_US
dc.identifier.citedreferenceSamalova, M., Brzobohaty, B. and Moore, I. ( 2005 ) pOp6/LhGR: a stringently regulated and highly responsive dexamethasone‐inducible gene expression system for tobacco. Plant J. 41, 919 – 935.en_US
dc.identifier.citedreferenceSchellmann, S., Schnittger, A., Kirik, V., Wada, T., Okada, K., Beermann, A., Thumfahrt, J., Jurgens, G. and Hülskamp, M. ( 2002 ) TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J. 21, 5036 – 5046.en_US
dc.identifier.citedreferenceSchiefelbein, J. and Lee, M.M. ( 2006 ) A novel regulatory circuit specifies cell fate in the Arabidopsis root epidermis. Physiol. Plant. 126, 503 – 510.en_US
dc.identifier.citedreferenceSchiefelbein, J., Kwak, S., Wieckowski, Y., Barron, C. and Bruex, A. ( 2009 ) The gene regulatory network for root epidermal cell‐type pattern formation in Arabidopsis. J. Exp. Bot. 60, 1515 – 1521.en_US
dc.identifier.citedreferenceSchmidt, W. and Schikora, A. ( 2001 ) Different pathways are involved in phosphate and iron stress‐induced alterations of root epidermal cell development. Plant Physiol. 125, 2078 – 2084.en_US
dc.identifier.citedreferenceSeifert, G.J., Barber, C., Wells, B., Dolan, L. and Roberts, K. ( 2002 ) Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP‐d‐galactose into cell wall polymers. Curr. Biol. 12, 1840 – 1845.en_US
dc.identifier.citedreferenceSimon, M., Lee, M.M., Lin, Y., Gish, L. and Schiefelbein, J. ( 2007 ) Distinct and overlapping roles of single‐repeat MYB genes in root epidermal patterning. Dev. Biol. 311, 4566 – 4578.en_US
dc.identifier.citedreferenceStrader, L.C., Chen, G.L. and Bartel, B. ( 2010 ) Ethylene directs auxin to control root cell expansion. Plant J. 64, 874 – 884.en_US
dc.identifier.citedreferenceSzumlanski, A.L. and Nielsen, E. ( 2009 ) The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell, 21, 526 – 544.en_US
dc.identifier.citedreferenceTakeda, S., Gapper, C., Kaya, H., Bell, E., Kuchitsu, K. and Dolan, L. ( 2008 ) Local positive feedback regulation determines cell shape in root hair cells. Science, 319, 1241 – 1244.en_US
dc.identifier.citedreferenceTanimoto, M., Roberts, K. and Dolan, L. ( 1995 ) Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J. 8, 943 – 948.en_US
dc.identifier.citedreferenceTominaga, R., Iwata, M., Sano, R., Inoue, K., Okada, K. and Wada, T. ( 2008 ) Arabidopsis CAPRICE‐LIKE MYB 3 (CPL3) controls endoreduplication and flowering development in addition to trichome and root hair formation. Development, 135, 1335 – 1345.en_US
dc.identifier.citedreferenceTominaga‐Wada, R., Ishida, T. and Wada, T. ( 2011 ) New insights into the mechanism of development of Arabidopsis root hairs and trichomes. Int. Rev. Cell. Mol. Biol. 286, 67 – 106.en_US
dc.identifier.citedreferenceWada, T., Tachibana, T., Shimura, Y. and Okada, K. ( 1997 ) Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science, 277, 1113 – 1116.en_US
dc.identifier.citedreferenceWada, T., Kurata, T., Tominaga, R., Koshino‐Kimura, Y., Tachibana, T., Goto, K., Marks, M.D., Shimura, Y. and Okada, K. ( 2002 ) Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development, 129, 5409 – 5419.en_US
dc.identifier.citedreferenceWerner, T. and Schmülling, T. ( 2009 ) Cytokinin action in plant development. Curr. Opin. Plant Biol. 12, 527 – 538.en_US
dc.identifier.citedreferenceWymer, C.L., Bibikova, T.N. and Gilroy, S. ( 1997 ) Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant J. 12, 427 – 439.en_US
dc.identifier.citedreferenceYi, K., Menand, B., Bell, E. and Dolan, L. ( 2010 ) A basic helix‐loop‐helix transcription factor controls cell growth and size in root hairs. Nat. Genet. 42, 264 – 267.en_US
dc.identifier.citedreferenceYu, N., Cai, W.J., Wang, S.C., Shan, C.M., Wang, L.J. and Chen, X.Y. ( 2010 ) Temporal control of trichome distribution by microRNA156‐targeted SPL genes in Arabidopsis thaliana. Plant Cell, 22, 2322 – 2335.en_US
dc.identifier.citedreferenceZhang, W.J., To, J.P.C., Cheng, C.Y., Schaller, G.E. and Kieber, J. ( 2011 ) Type‐A response regulators are required for proper root apical meristem function through the post‐transcriptional regulation of PIN auxin efflux carriers. Plant J. 68, 1 – 10.en_US
dc.identifier.citedreferenceZhou, Z.J., An, L.J., Sun, L.L., Zhu, S.J., Xi, W.Y., Broun, P., Yu, H. and Gan, Y.B. ( 2011 ) Zinc Finger Protein 5 ( ZFP5 ) is required for the control of trichome initiation by acting upstream of ZFP8 in Arabidopsis thaliana. Plant Physiol. 157, 673 – 682.en_US
dc.identifier.citedreferenceBernhardt, C., Lee, M.M., Gonzalez, A., Zhang, F., Lloyd, A. and Schiefelbein, J. ( 2003 ) The bHLH genes GLABRA3 ( GL3 ) and ENHANCER OF GLABRA3 ( EGL3 ) specify epidermal cell fate in the Arabidopsis root. Development, 130, 6431 – 6439.en_US
dc.identifier.citedreferenceBernhardt, C., Zhao, M., Gonzalez, A., Lloyd, A. and Schiefelbein, J. ( 2005 ) The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development, 132, 291 – 298.en_US
dc.identifier.citedreferenceBishopp, A., Help, H., Ei‐Showk, S., Weijers, D., Scheres, B., Friml, J., Benkova, E., Mähönen, A.P. and Helariutta, Y. ( 2011 ) A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr. Biol. 21, 917 – 926.en_US
dc.identifier.citedreferenceBucio, J., Ramírez, A. and Estrella, L. ( 2003 ) The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280 – 287.en_US
dc.identifier.citedreferenceCiftci‐Yilmaz, S. and Mittler, R. ( 2008 ) The zinc finger network of plants. Cell. Mol. Life Sci. 65, 1150 – 1160.en_US
dc.identifier.citedreferenceClough, S.J. and Bent, A.F. ( 1998 ) Floral dip: a simplified method for Agrobacterium ‐ mediated transformation of Arabidopsis thaliana. Plant J. 16, 735 – 743.en_US
dc.identifier.citedreferenceCosta, S. and Shaw, P. ( 2006 ) Chromatin organization and cell fate switch respond to positional information in Arabidopsis. Nature, 439, 493 – 496.en_US
dc.identifier.citedreferenceDeng, Z., Zhang, X., Tang, W. et al. ( 2007 ) A proteomics study of brassinosteroid response in Arabidopsis. Mol. Cell. Proteomics 6, 2058 – 2071.en_US
dc.identifier.citedreferenceDesbrosses, G., Josefsson, C., Rigas, S., Hatzopoulos, P. and Dolan, L. ( 2003 ) AKT1 and TRH1 are required during root hair elongation in Arabidopsis. J. Exp. Bot. 54, 781 – 788.en_US
dc.identifier.citedreferenceEnglbrecht, C.C., Schoof, H. and Bohm, S. ( 2004 ) Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics, 5, 39.en_US
dc.identifier.citedreferenceEsch, J.J., Chen, M.A., Hillestad, M. and Marks, M.D. ( 2004 ) Comparison of TRY and the closely related At1g01380 gene in controlling Arabidopsis trichome patterning. Plant J. 40, 860 – 869.en_US
dc.identifier.citedreferenceGalway, M.E., Masucci, J.D., Lloyd, A.M., Walbot, V., Davis, R.W. and Schiefelbein, J.W. ( 1994 ) The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Dev. Biol. 166, 740 – 754.en_US
dc.identifier.citedreferenceGan, Y., Kumimoto, R., Liu, C., Ratcliffe, O., Yu, H. and Broun, P. ( 2006 ) GLABROUS INFLORESCENCE STEMS modulates the regulation by gibberellins of epidermal differentiation and shoot maturation in Arabidopsis. Plant Cell, 18, 1383 – 1395.en_US
dc.identifier.citedreferenceGan, Y., Liu, C., Yu, H. and Broun, P. ( 2007 ) Integration of cytokinin and gibberellin signaling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development, 134, 2073 – 2081.en_US
dc.identifier.citedreferenceGilroy, S. and Jones, D.L. ( 2000 ) Through forms to function: root hair development and nutrient uptake. Trends Plant Sci. 5, 56 – 60.en_US
dc.identifier.citedreferenceGuimil, S. and Dunand, C. ( 2006 ) Patterning of Arabidopsis epidermal cells: epigenetic factors regulate the complex epidermal cell fate pathway. Trends Plant Sci. 11, 601 – 609.en_US
dc.identifier.citedreferenceIshida, T., Kurata, T., Okada, K. and Wada, T. ( 2008 ) A genetic regulatory network in the development of trichomes and root hairs. Annu. Rev. Plant Biol. 59, 365 – 386.en_US
dc.identifier.citedreferenceJones, R., Kramer, M., Knox, K., Swarup, R., Bennett, M., Lazarus, C., Leyser, H. and Grierson, C. ( 2009 ) Auxin transport through non‐hair cells sustains root‐hair development. Nat. Cell Biol. 11, 78 – 84.en_US
dc.identifier.citedreferenceJun, J.H., Ha, C.M. and Fletcher, J.C. ( 2010 ) BLADE‐ON‐PETIOLE1 coordinates organ determinacy and axial polarity in Arabidopsis by directly activating ASYMMETRIC LEAVES2. Plant Cell, 22, 62 – 76.en_US
dc.identifier.citedreferenceJung, J.Y., Shin, R. and Schachtman, D.P. ( 2009 ) Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell, 21, 607 – 621.en_US
dc.identifier.citedreferenceKim, E.J., Kwak, J.M., Uozumi, N. and Schroeder, J.I. ( 1998 ) AtKUP1: an Arabidopsis gene encoding high‐affinity potassium transport activity. Plant Cell, 10, 51 – 62.en_US
dc.identifier.citedreferenceKirik, V., Simon, M., Hülskamp, M. and Schiefelbein, J. ( 2004a ) The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Dev. Biol. 268, 506 – 513.en_US
dc.identifier.citedreferenceKirik, V., Simon, M., Wester, K., Schiefelbein, J. and Hülskamp, M. ( 2004b ) ENHANCER of TRY and CPC2 (ETC2) reveals redundancy in the region‐specific control of trichome development of Arabidopsis. Plant Mol. Biol. 55, 389 – 398.en_US
dc.identifier.citedreferenceKubo, K., Sakamoto, A., Kobayashi, A., Rybka, Z., Kanno, Y., Nakagawa, H. and Takatsuji, H. ( 1998 ) Cys2/His2 zincfinger protein family of petunia: evolution and general mechanism of target‐sequence recognition. Nucleic Acids Res. 26, 608 – 615.en_US
dc.identifier.citedreferenceKurata, T., Ishida, T., Kawabata‐Awai, C. et al. ( 2005 ) Cell‐to‐cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development, 132, 5387 – 5398.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.