Show simple item record

Nasal cytokine responses to natural colds in asthmatic children

dc.contributor.authorLewis, T. C.en_US
dc.contributor.authorHenderson, T. A.en_US
dc.contributor.authorCarpenter, A. R.en_US
dc.contributor.authorRamirez, I. A.en_US
dc.contributor.authorMcHenry, C. L.en_US
dc.contributor.authorGoldsmith, A. M.en_US
dc.contributor.authorRen, X.en_US
dc.contributor.authorMentz, G. B.en_US
dc.contributor.authorMukherjee, B.en_US
dc.contributor.authorRobins, T. G.en_US
dc.contributor.authorJoiner, T. A.en_US
dc.contributor.authorMohammad, L. S.en_US
dc.contributor.authorNguyen, E. R.en_US
dc.contributor.authorBurns, M. A.en_US
dc.contributor.authorBurke, D. T.en_US
dc.contributor.authorHershenson, M. B.en_US
dc.date.accessioned2012-12-11T17:37:16Z
dc.date.available2014-02-03T16:21:44Zen_US
dc.date.issued2012-12en_US
dc.identifier.citationLewis, T. C.; Henderson, T. A.; Carpenter, A. R.; Ramirez, I. A.; McHenry, C. L.; Goldsmith, A. M.; Ren, X.; Mentz, G. B.; Mukherjee, B.; Robins, T. G.; Joiner, T. A.; Mohammad, L. S.; Nguyen, E. R.; Burns, M. A.; Burke, D. T.; Hershenson, M. B. (2012). "Nasal cytokine responses to natural colds in asthmatic children." Clinical & Experimental Allergy (12): 1734-1744. <http://hdl.handle.net/2027.42/94448>en_US
dc.identifier.issn0954-7894en_US
dc.identifier.issn1365-2222en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94448
dc.publisherNational Heart, Lung and Blood Instituteen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherChildrenen_US
dc.subject.otherCytokinesen_US
dc.subject.otherIRF 7en_US
dc.subject.otherRespiratory Infectionen_US
dc.subject.otherRhinovirusen_US
dc.subject.otherVirusen_US
dc.subject.otherAsthmaen_US
dc.titleNasal cytokine responses to natural colds in asthmatic childrenen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23181789en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94448/1/cea12005.pdf
dc.identifier.doi10.1111/cea.12005en_US
dc.identifier.sourceClinical & Experimental Allergyen_US
dc.identifier.citedreferenceGern JE, Vrtis R, Grindle KA, Swenson C, Busse WW. Relationship of upper and lower airway cytokines to outcome of experimental rhinovirus infection. Am J Respir Crit Care Med 2000; 162: 2226 – 31.en_US
dc.identifier.citedreferencePizzichini MM, Pizzichini E, Efthimiadis A et al. Asthma and natural colds. Inflammatory indices in induced sputum: a feasibility study. Am J Respir Crit Care Med 1998; 158: 1178 – 84.en_US
dc.identifier.citedreferenceTeran LM, Seminario MC, Shute JK et al. RANTES, macrophage inhibitory protein 1‐α and the eosinophil product major basic protein are released into upper respiratory secretions during virus‐induced asthma exacerbations in children. J Infect Dis 1999; 179: 677 – 81.en_US
dc.identifier.citedreferenceGrissell TV, Powell H, Shafren DR et al. IL‐10 gene expression in acute virus‐induced asthma. Am J Respir Crit Care Med 2005; 172: 433 – 9.en_US
dc.identifier.citedreferenceSantiago J, Hernandez‐Cruz JL, Manjarrez‐Zavala ME et al. Role of monocyte chemotactic protein‐3 and ‐4 in children with virus exacerbation of asthma. Eur Respir J 2008; 32: 1243 – 942.en_US
dc.identifier.citedreferenceNational Heart, Lung and Blood Institute. National Asthma Education and Prevention Program Expert Panel Report 3: Guidelines for the diagnosis and management of asthma. Bethesda, MD: National Heart, Lung and Blood Institute, 2007.en_US
dc.identifier.citedreferenceLewis T, Robins T, Joseph C et al. Identification of gaps in the diagnosis and treatment of childhood asthma using a community‐based participatory research approach. J Urban Health 2004; 81: 472 – 88.en_US
dc.identifier.citedreferenceLemanske RF, Jackson DJ, Gangnon RE et al. Rhinovirus illnesses during infancy predict subsequent childhood wheezing. J Allergy Clin Immunol 2005; 116: 571 – 7.en_US
dc.identifier.citedreferencePowell KR, Shorr R, Cherry JD, Hendley JO. Improved method for collection of nasal mucus. J Infect Dis 1977; 136: 109 – 11.en_US
dc.identifier.citedreferencePal R, Yang M, Lin R et al. An integrated microfluidic device for influenza and other genetic analyses. Lab Chip 2005; 5: 1024 – 32.en_US
dc.identifier.citedreferenceVerbeke G, Molenberghs G. Linear mixed models for longitudinal data. Berlin: Springer‐Verlag, 2000.en_US
dc.identifier.citedreferenceGern JE, Dick EC, Lee WM et al. Rhinovirus enters but does not replicate inside monocytes and airway macrophages. J Immunol 1996; 156: 621 – 7.en_US
dc.identifier.citedreferenceLaza‐Stanca V, Stanciu LA, Message SD, Edwards MR, Gern JE, Johnston SL. Rhinovirus replication in human macrophages induces NF‐κB‐dependent tumor necrosis factor alpha production. J Virol 2006; 80: 8248 – 58.en_US
dc.identifier.citedreferenceHall DJ, Bates ME, Guar L, Cronan M, Korpi N, Bertics PJ. The role of p38 MAPK in Rhinovirus‐induced monocyte chemoattractant protein‐1 production by monocytic‐lineage cells. J Immunol 2005; 174: 8056 – 63.en_US
dc.identifier.citedreferenceKorpi‐Steiner NL, Bates ME, Lee W‐M, Hall DJ, Bertics PJ. Human rhinovirus induces robust IP‐10 release by monocytic cells, which is independent of viral replication but linked to type I interferon receptor ligation and STAT1 activation. J Leukoc Biol 2006; 80: 1364 – 74.en_US
dc.identifier.citedreferenceJohnston SL, Papi A, Monick MM, Hunninghake GW. Rhinoviruses induce interleukin‐8 mRNA and protein production in human monocytes. J Infect Dis 1997; 175: 323 – 9.en_US
dc.identifier.citedreferenceKhaitov MR, Laza‐Stanca V, Edwards MR et al. Respiratory virus induction of alpha‐, beta‐ and lambda‐interferons in bronchial epithelial cells and peripheral blood mononuclear cells. Allergy 2009; 64: 375 – 86.en_US
dc.identifier.citedreferenceWark PAB, Johnston SL, Bucchieri F et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med 2005; 201: 937 – 47.en_US
dc.identifier.citedreferenceContoli M, Message SD, Laza‐Stanca V et al. Role of deficient type III interferon‐lambda production in asthma exacerbations. Nat Med 2006; 12: 1023 – 6.en_US
dc.identifier.citedreferenceLopez‐Souza N, Favoreto S, Wong H et al. In vitro susceptibility to rhinovirus infection is greater for bronchial than for nasal airway epithelial cells in human subjects. J Allergy Clin Immunol 2009; 123: 1384 – 90.en_US
dc.identifier.citedreferenceBochkov YA, Hanson KM, Keles S, Brockman‐Schneider RA, Jarjour NN, Gern JE. Rhinovirus‐induced modulation of gene expression in bronchial epithelial cells from subjects with asthma. Mucosal Immunol 2009; 3: 69 – 80.en_US
dc.identifier.citedreferenceIolascon A, Volinia S, Borriello A et al. Genes transcriptionally modulated by interferon alpha2a correlate with the cytokine activity. Haematologica 2004; 89: 1046 – 53.en_US
dc.identifier.citedreferenceSu Z‐Z, Sarkar D, Emdad L, Barral PM, Fisher PB. Central role of interferon regulatory factor‐1 (IRF‐1) in controlling retinoic acid inducible gene‐I (RIG‐I) expression. J Cell Physiol 2007; 213: 502 – 10.en_US
dc.identifier.citedreferenceBosco A, Ehteshami S, Panyala S, Martinez FD. Interferon regulatory factor 7 is a major hub connecting interferon‐mediated responses in virus‐induced asthma exacerbations in vivo. J Allergy Clin Immunol 2012; 129: 88 – 94.en_US
dc.identifier.citedreferenceWang Q, Nagarkar DR, Bowman ER et al. Role of double‐stranded RNA pattern recognition receptors in rhinovirus‐induced airway epithelial cell responses. J Immunol 2009; 183: 6989 – 97.en_US
dc.identifier.citedreferenceKharitonov S, Yates D, Chung K, Barnes P. Changes in the dose of inhaled steroid affect exhaled nitric oxide levels in asthmatic patients. Eur Respir J 1996; 9: 196 – 201.en_US
dc.identifier.citedreferenceJatakanon A, Lim S, Kharitonov SA, Chung KF, Barnes PJ. Correlation between exhaled nitric oxide, sputum eosinophils, and methacholine responsiveness in patients with mild asthma. Thorax 1998; 53: 91 – 5.en_US
dc.identifier.citedreferenceDupont LJ, Rochette F, Demedts MG, Verleden GM. Exhaled nitric oxide correlates with airway hyperresponsiveness in steroid‐naive patients with mild asthma. Am J Respir Crit Care Med 1998; 157: 894 – 8.en_US
dc.identifier.citedreferenceGibson P, Henry R, Thomas P. Noninvasive assessment of airway inflammation in children: induced sputum, exhaled nitric oxide, and breath condensate. Eur Respir J 2000; 16: 1008 – 15.en_US
dc.identifier.citedreferenceMassaro AF, Gaston B, Kita D, Fanta C, Stamler JS, Drazen JM. Expired nitric oxide levels during treatment of acute asthma. Am J Respir Crit Care Med 1995; 152: 800 – 3.en_US
dc.identifier.citedreferenceBaraldi E, Azzolin NM, Zanconato S, Dario C, Zaccbello F. Corticosteroids decrease exhaled nitric oxide in children with acute asthma. J Pediatr 1997; 131: 381 – 5.en_US
dc.identifier.citedreferenceWang Z, Larsson K, Palmberg L, Malmberg P, Larsson P, Larsson L. Inhalation of swine dust induces cytokine release in the upper and lower airways. Eur Respir J 1997; 10: 381 – 7.en_US
dc.identifier.citedreferenceTeran LM, Johnston SL, Schroder JM, Church MK, Holgate ST. Role of nasal interleukin‐8 in neutrophil recruitment and activation in children with virus‐induced asthma. Am J Respir Crit Care Med 1997; 155: 1362 – 6.en_US
dc.identifier.citedreferenceGrunberg K, Smits HH, Timmers MC et al. Experimental rhinovirus 16 infection. Effects on cell differentials and soluble markers in sputum in asthmatic subjects. Am J Respir Crit Care Med 1997; 156: 609 – 16.en_US
dc.identifier.citedreferenceJarjour NN, Gern JE, Kelly EAB, Swenson CA, Dick CR, Busse WW. The effect of an experimental rhinovirus 16 infection on bronchial lavage neutrophils. J Allergy Clin Immunol 2000; 105: 1169 – 77.en_US
dc.identifier.citedreferenceGrunberg K, Sharon RF, Sont JK et al. Rhinovirus‐induced airway inflammation in asthma. Effect of treatment with inhaled corticosteroids before and during experimental infection. Am J Respir Crit Care Med 2001; 164: 1816 – 22.en_US
dc.identifier.citedreferenceFrischer T, Baraldi E. Upper airway sampling. Am J Respir Crit Care Med 2000; 162: S28 – 30.en_US
dc.identifier.citedreferenceNicholson KG, Kent J, Ireland DC. Respiratory viruses and exacerbations of asthma in adults. Br Med J 1993; 307: 982 – 6.en_US
dc.identifier.citedreferenceJohnston SL, Pattemore PK, Sanderson G et al. Community study of role of viral infections in exacerbations of asthma in 9‐11 year old children. Br Med J 1995; 310: 1225 – 9.en_US
dc.identifier.citedreferenceKling S, Donninger H, Williams Z et al. Persistence of rhinovirus RNA after asthma exacerbation in children. Clin Exp Allergy 2005; 35: 672 – 8.en_US
dc.identifier.citedreferenceDomurat F, Roberts NJ, Walsh EE, Dagan R. Respiratory syncytial virus infection of human mononuclear leukocytes in vitro and in vivo. J Infect Dis 1985; 152: 895 – 902.en_US
dc.identifier.citedreferenceBender A, Amann U, Jager R, Nain M, Gemsa D. Effect of granulocyte/macrophage colony‐stimulating factor on human monocytes infected with influenza A virus. Enhancement of virus replication, cytokine release, and cytotoxicity. J Immunol 1993; 151: 5416 – 24.en_US
dc.identifier.citedreferenceTan MC, Battini L, Tuyama AC et al. Characterization of human metapneumovirus infection of myeloid dendritic cells. Virology 2007; 357: 1 – 9.en_US
dc.identifier.citedreferenceNagarkar DR, Bowman ER, Schneider D et al. Rhinovirus infection of allergen‐sensitized and ‐challenged mice induces eotaxin release rom functionally polarized macrophages. J Immunol 2010; 185: 2525 – 35.en_US
dc.identifier.citedreferenceWang Q, Miller DJ, Bowman ER et al. MDA5 and TLR3 initiate pro‐inflammatory signaling pathways leading to rhinovirus‐induced airways inflammation and hyperresponsiveness. PLoS Pathog 2011; 7: e1002070.en_US
dc.identifier.citedreferenceFraenkel DJ, Bardin PG, Sanderson G, Lampe F, Johnston SL, Holgate ST. Lower airways inflammation during rhinovirus colds in normal and in asthmatic subjects. Am J Respir Crit Care Med 1995; 151: 879 – 86.en_US
dc.identifier.citedreferencede Kluijver J, Grunberg K, Pons D et al. Interleukin‐1beta and interleukin‐1ra levels in nasal lavages during experimental rhinovirus infection in asthmatic and non‐asthmatic subjects. Clin Exp Allergy 2003; 33: 1415 – 8.en_US
dc.identifier.citedreferenceMosser AG, Vrtis R, Burchell L et al. Quantitative and qualitative analysis of rhinovirus infection in bronchial tissues. Am J Respir Crit Care Med 2005; 171: 645 – 51.en_US
dc.identifier.citedreferenceMessage SD, Laza‐Stanca V, Mallia P et al. Rhinovirus‐induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cytokine and IL‐10 production. Proc Natl Acad Sci USA 2008; 105: 13562 – 7.en_US
dc.identifier.citedreferenceProud D, Turner RB, Winther B et al. Gene expression profiles during in vivo human rhinovirus infection: insights into the host response. Am J Respir Crit Care Med 2008; 178: 962 – 8.en_US
dc.identifier.citedreferenceDeMore JP, Weisshaar EH, Vrtis RF et al. Similar colds in subjects with allergic asthma and nonatopic subjects after inoculation with rhinovirus‐16. J Allergy Clin Immunol 2009; 124: 245 – 52.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.