Show simple item record

GSTM1 and GSTP1 gene variants and the effect of air pollutants on lung function measures in South African children

dc.contributor.authorClaudio, Luzen_US
dc.contributor.authorRobins, Thomasen_US
dc.date.accessioned2012-12-11T17:37:21Z
dc.date.available2014-02-03T16:21:44Zen_US
dc.date.issued2012-12en_US
dc.identifier.citationClaudio, Luz; Robins, Thomas (2012). " GSTM1 and GSTP1 gene variants and the effect of air pollutants on lung function measures in South African children ." American Journal of Industrial Medicine 55(12): 1078-1086. <http://hdl.handle.net/2027.42/94468>en_US
dc.identifier.issn0271-3586en_US
dc.identifier.issn1097-0274en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94468
dc.description.abstractBackground Several genes are associated with an increased susceptibility to asthma, which may be exacerbated by ambient air pollution. These genes include GSTM1 (glutathione‐ S ‐transferase M1 gene) and GSTP1 (glutathione‐ S ‐transferase P1 gene), which may modulate the response to epithelial oxidative changes caused by air pollutant exposure. This study evaluated fluctuations in the forced expiratory volume in one second (FEV 1 ) in relation to lagged daily averages of ambient air pollutants (SO 2 , NO 2 , NO, and PM 10 ) while considering genotype as an effect modifier. Methods A longitudinal cohort of 129 schoolchildren of African descent from Durban, South Africa was assessed. GSTM1 (null vs. present genotype) and GSTP1 (Ile105Val; AA → AG/GG) genotypes were determined using standard techniques. SO 2 , NO 2 , NO, and PM 10 were measured continuously over a year using validated methods. The outcome was intraday variability in FEV 1 . Data were collected daily over a 3‐week period in each of four seasons (2004–2005). Results Among the children tested, 27% had the GSTM1 null genotype and 81% carried the GSTP1 G allele. Approximately 26 out 104 children (25%) showed evidence of bronchial hyperreactivity, 13% reported having symptoms in keeping with persistent asthma, and a further 25% reported symptoms of mild intermittent asthma. PM 10 and SO 2 levels were moderately high relative to international guidelines. Neither GSTM1 nor GSTP1 genotypes alone were significantly associated with FEV 1 intraday variability. In models not including genotype, FEV 1 variability was statistically significantly associated only with NO 2 for 5‐day lags (% change in intraday variability in FEV1 per interquartile range = 1.59, CI 0.58, 2.61). The GSTP1 genotype modified the effect of 3 days prior 24‐hr average PM 10 and increased FEV 1 variability. A similar pattern was observed for lagged 3 day SO 2 exposure ( P interaction < 0.05). Adverse effects of these pollutants were limited to individuals carrying the G allele for this polymorphism. Conclusion Among this indigenous South African children cohort, the GSTP1 genotype modified the effects of ambient exposures to PM 10 and SO 2 and lung function. A plausible mechanism for these observed effects is decreased capacity to mount an effective response to oxidative stress associated with the GSTP1 AG + GG genotype. Am. J. Ind. Med. 55:1078–1086, 2012. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherGene–Environment Interactionen_US
dc.subject.otherAir Pollutantsen_US
dc.subject.otherAsthmaen_US
dc.subject.otherChild Respiratory Healthen_US
dc.titleGSTM1 and GSTP1 gene variants and the effect of air pollutants on lung function measures in South African childrenen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Environmental Health Sciences, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDepartment of Occupational and Environmental Health, University of KwaZulu‐Natal, Durban, South Africaen_US
dc.contributor.affiliationotherDepartment of Community Health Studies, Durban University of Technology, Durban, South Africaen_US
dc.contributor.affiliationotherEpidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolinaen_US
dc.contributor.affiliationotherDepartment of Community Health Studies, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94468/1/22012_ftp.pdf
dc.identifier.doi10.1002/ajim.22012en_US
dc.identifier.sourceAmerican Journal of Industrial Medicineen_US
dc.identifier.citedreferencePeden DB. 2003. Air Pollution: Indoor and outdoor. In: Adkinson NF Jr, Yunginger JW, Busse WW, Bochner BS, Holgate SK, Simons FE, editors. Middleton's allergy: Principles and practice. Philadelphia: Mosby. p 515 – 528.en_US
dc.identifier.citedreferenceHayes JD, Strange RC. 1995. Potential contribution of the glutathione‐S‐transferase supergene family to resistance to oxidative stress. Free Radic Res 22 ( 3 ): 195 – 207.en_US
dc.identifier.citedreferenceHong YC, Hwang JHK, Kim JK, Lee K, Lee H, Lee K, Yu S, Kim D. 2007. Metals in particulate pollutants affect peak expiratory flow of schoolchildren. Environ Health Perspect 115 ( 3 ): 430 – 434.en_US
dc.identifier.citedreferenceKelly FJ. 2003. Oxidative stress: Its role in air pollution and adverse health effects. Occup Environ Med 60: 612 – 616.en_US
dc.identifier.citedreferenceKunzli N, Tager IB. 2005. Air pollution: From lung to heart. Swiss Med Week 135: 697 – 702.en_US
dc.identifier.citedreferenceLee YL, Lin YC, Lee YC, Wang JY, Hsiue TR, Guo YL. 2004. Glutathione S‐transferase P1 gene polymorphism and air pollution as interactive risk factors for childhood asthma. Clin Exp Allergy 34: 1707 – 1713.en_US
dc.identifier.citedreferenceLondon SJ. 2007. Gene‐air pollution interactions in asthma. Proc Am Thorac Soc 4: 217 – 220.en_US
dc.identifier.citedreferenceLondon SJ, Romieu I. 2009. Gene by environment interactions in asthma. Ann Rev Public Health 30: 55 – 80.en_US
dc.identifier.citedreferenceMcConnell R, Berhane K, Yao L, Jerrett M, Lurmann F, Gilliland F, Künzli N, Gauderman J, Avol E, Thomas D, Peters J. 2006. Traffic, susceptibility, and childhood asthma. Environ Health Perspect 14: 766 – 772.en_US
dc.identifier.citedreferenceMelen E, Nyberg F, Lindgren CM, Berglind N, Zucchelli M, Nordling E, Hallberg J, Svartengren M, Morgenstern R, Kere J, Bellander T, Wickman M, Pershagen G. 2008. Interaction between glutathione‐S‐transferase P1, tumor necrosis factor and traffic related air pollution for development of childhood allergic disease. Environ Health Perspect 116: 1077 – 1084.en_US
dc.identifier.citedreferenceNaidoo R, Gqaleni N, Robins TG, Batterman S. 2006. The South Durban Health Study. Multipoint Plan Project 4: Health Study and Health Risk Assessment. University of KwaZulu‐Natal, Durban. Accessible at: http://doeh.ukzn.ac.za/SDHealthStudy1299.aspx.en_US
dc.identifier.citedreferenceNational Treasury. 2007. A national poverty line for South Africa, Statistics South Africa, February 2007. http://www.treasury.gov.za/publications.en_US
dc.identifier.citedreferenceNriagu J, Robins T, Gray L, Liggans G, Davila R, Supuwood K, Harvey, C, Jinabhai CC, Naidoo R. 1999. Prevalence of asthma and respiratory symptoms in south central Durban. Eur J Epidemiol 15: 747 – 755.en_US
dc.identifier.citedreferenceOber C, Cox NJ, Abney M, Di Rienzo A, Lander ES, Changyaleket B, Gidley H, Kurtz B, Lee J, Nance M, Pettersson A, Prescott J, Richardson A, Schlenker E, Summerhill E, Willadsen S, Parry R. 1998. Genome‐wide search for asthma susceptibility loci in founder population. The collaborative study on the genetics of asthma. Hum Mol Genet 7: 1393 – 1398.en_US
dc.identifier.citedreferencePeden DB. 2005. The epidemiology and genetics of asthma risk associated with air pollution. J Allergy Clin Immunol 115: 213 – 219.en_US
dc.identifier.citedreferencePhelan PD, Robertson CF, Olinsky A. 2002. The Melbourne Asthma Study: 1964–1999. J Allergy Clin Immunol 109: 189 – 194.en_US
dc.identifier.citedreferenceRomieu I, Sienra‐Monge J, Ramirez M, Moreno‐Macias H, Reyes‐Ruiz N, del Río‐Navarro BE, Hernández‐Avila M, London SJ. 2005. Genetic polymorphisms of GSTM1 and antioxidant supplementation influence lung function in relation to ozone exposure among asthmatic children in Mexico City. Thorax 59: 8 – 10.en_US
dc.identifier.citedreferenceRomieu I, Ramirez‐Aguilar M, Sienra‐Monge JJ, Morena‐Macias H, del Rio‐Navarro BE, David G, Marzec J, Hernández‐Avila M, London SJ. 2006. GSTM1 and GSTP1 and respiratory health in asthmatic children exposed to ozone. Eur Respir J 28: 953 – 959.en_US
dc.identifier.citedreferenceSeaton A, MacNee W, Donaldson K, Godden K. 1995. Particulate air pollution and acute health effects. Lancet 345: 176 – 178.en_US
dc.identifier.citedreferenceStrange RC, Spiteri MA, Ramachandran S, Fryer AA. 2001. Glutathione‐S‐transferase family of enzymes. Mutat Res 482: 21 – 26.en_US
dc.identifier.citedreferenceVenn A, Yemaneberhan H, Lewis S, Parry E, Britton J. 2005. Proximity of the home to roads and the risk of wheeze in an Ethiopian population. Occup Environ Med 62: 376 – 380.en_US
dc.identifier.citedreferenceWHO. 2006. Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. World Health Organization. Geneva, Switzerland.en_US
dc.identifier.citedreferenceWjst M, Popescu M, Trepka MJ, Heinrich J, Wichmann HE. 1998. Pulmonary function in children with initial low birth weight. Pediatr Allergy Immunol 9: 80 – 90.en_US
dc.identifier.citedreferenceYan K, Salome C, Woolcock AJ. 1983. Rapid method for measurement of bronchial responsiveness. Thorax 38: 760 – 765.en_US
dc.identifier.citedreferenceAmerican Thoracic Society (ATS). 1995. Standardization of spirometry—1994 Update. Am J Respir Crit Care Med 152: 1107 – 1136.en_US
dc.identifier.citedreferenceBell DA, Taylor JA, Paulson DF, Robertson CN, Mohler JL, Lucier JW. 1993. Genetic risk and carcinogen exposure: A common inherited defect of the carcinogen‐metabolism gene glutathione‐S‐transferase M1 ( GSTM1 ) that increases susceptibility to bladder cancer. J Natl Cancer Inst 85: 1159 – 1164.en_US
dc.identifier.citedreferenceBernstein JA, Alexis N, Barnes C, Bernstein IL, Nel A, Peden D, Diaz‐Sanchez D, Tarlo SM, Williams PB. 2004. Health effects of air pollution. J Allergy Clin Immunol 114: 1116 – 1123.en_US
dc.identifier.citedreferenceCustovic A, Murray CS, Lowe L, Woodcock A. 2002. NAC Manchester Asthma and Allergy Study Group. The National Asthma Campaign Manchester Asthma and Allergy Study. Pediatr Allergy Immunol 13: 32 – 37.en_US
dc.identifier.citedreferenceFryer AA, Bianco A, Hepple M, Jones PW, Strange RC, Spiteri MA. 2000. Polymorphism at the glutathione S‐transferase GSTP1 locus: A new marker for bronchial hyperresponsiveness and asthma. Am J Respir Crit Care Med 161: 1437 – 1442.en_US
dc.identifier.citedreferenceGilliland FD, McConnell R, Peters J, Gong H. 1999. A theoretical basis for investigating ambient air pollution and childrens respiratory health. Environ Health Perspect 107: 403 – 407.en_US
dc.identifier.citedreferenceGilmour MI, Jaakkola MS, London SJ, Nel AE, Rogers CA. 2006. How exposure to environmental tobacco smoke, outdoor air pollutants, and increased pollen burdens influences the incidence of asthma. Environ Health Perspect 114: 627 – 633.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.