Show simple item record

The effects of zoledronic acid in the bone and vasculature support of hematopoietic stem cell niches

dc.contributor.authorSoki, Fabiana N.en_US
dc.contributor.authorLi, Xinen_US
dc.contributor.authorBerry, Janiceen_US
dc.contributor.authorKoh, Amyen_US
dc.contributor.authorSinder, Benjamin P.en_US
dc.contributor.authorQian, Xuen_US
dc.contributor.authorKozloff, Kenneth M.en_US
dc.contributor.authorTaichman, Russell S.en_US
dc.contributor.authorMcCauley, Laurie K.en_US
dc.date.accessioned2012-12-11T17:37:25Z
dc.date.available2014-03-03T15:09:25Zen_US
dc.date.issued2013-01en_US
dc.identifier.citationSoki, Fabiana N.; Li, Xin; Berry, Janice; Koh, Amy; Sinder, Benjamin P.; Qian, Xu; Kozloff, Kenneth M.; Taichman, Russell S.; McCauley, Laurie K. (2013). "The effects of zoledronic acid in the bone and vasculature support of hematopoietic stem cell niches ." Journal of Cellular Biochemistry 114(1): 67-78. <http://hdl.handle.net/2027.42/94483>en_US
dc.identifier.issn0730-2312en_US
dc.identifier.issn1097-4644en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94483
dc.description.abstractHematopoietic stem cells (HSC) are maintained in a tightly regulated bone microenvironment constituted by a rich milieu of cells. Bone cells such as osteoblasts are associated with niche maintenance as regulators of the endosteal microenvironment. Bone remodeling also plays a role in HSC mobilization although it is poorly defined. The effects of zoledronic acid (ZA), a potent bisphosphonate that inhibits bone resorption, were investigated on bone marrow cell populations focusing on HSCs, and the endosteal and vascular niches in bone. ZA treatment significantly increased bone volume and HSCs in both young and adult mice (4 week and 4 month old, respectively). ZA increased vessel numbers with no overall change in vascular volume in bones of young and had no effect on vasculature in adult mice. Since both young and adult mice had increased HSCs and bone mass with differing vasculature responses, this suggests that ZA indirectly supports HSCs via the osteoblastic niche and not the vascular niche. Additionally, gene expression in Lin‐ cells demonstrated increased expression of self‐renewal‐related genes Bmi1 and Ink4a suggesting a role of ZA in the modulation of cell commitment and differentiation toward a long‐term self‐renewing cell. Genes that support the osteoblastic niche, BMP2 and BMP6 were also augmented in ZA treated mice. In conclusion, ZA‐induced HSC expansion occurs independent of the vascular niche via indirect modulation of the osteoblastic niche. J. Cell. Biochem. 114: 67–78, 2012. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherHEMATOPOIETIC STEM CELLSen_US
dc.subject.otherZOLEDRONIC ACIDen_US
dc.subject.otherBISPHOSPHONATEen_US
dc.subject.otherBLOOD VESSELSen_US
dc.subject.otherBONE VASCULATUREen_US
dc.subject.otherNICHEen_US
dc.titleThe effects of zoledronic acid in the bone and vasculature support of hematopoietic stem cell nichesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Periodontics and Oral Medicine, The University of Michigan School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109.en_US
dc.contributor.affiliationumDepartment of Pathology, University of Michigan Medical School, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherBasic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New Yorken_US
dc.identifier.pmid22833499en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94483/1/24301_ftp.pdf
dc.identifier.doi10.1002/jcb.24301en_US
dc.identifier.sourceJournal of Cellular Biochemistryen_US
dc.identifier.citedreferenceSantini D, Vincenzi B, Dicuonzo G, Avvisati G, Massacesi C, Battistoni F, Gavasci M, Rocci L, Tirindelli MC, Altomare V, Tocchini M, Bonsignori M, Tonini G. 2003. Zoledronic acid induces significant and long‐lasting modifications of circulating angiogenic factors in cancer patients. Clin Cancer Res 9: 2893 – 2897.en_US
dc.identifier.citedreferenceArai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T. 2004. Tie2/angiopoietin‐1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: 149 – 161.en_US
dc.identifier.citedreferenceBianco P. 2011. Bone and the hematopoietic niche: A tale of two stem cells. Blood 117: 5281 – 5288.en_US
dc.identifier.citedreferenceCalvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841 – 846.en_US
dc.identifier.citedreferenceChallen GA, Boles NC, Chambers SM, Goodell MA. 2010. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF‐beta1. Cell Stem Cell 6: 265 – 278.en_US
dc.identifier.citedreferenceCho KA, Joo SY, Han HS, Ryu KH, Woo SY. 2010. Osteoclast activation by receptor activator of NF‐kappaB ligand enhances the mobilization of hematopoietic progenitor cells from the bone marrow in acute injury. Int J Mol Med 26: 557 – 563.en_US
dc.identifier.citedreferenceEllis SL, Grassinger J, Jones A, Borg J, Camenisch T, Haylock D, Bertoncello I, Nilsson SK. 2011. The relationship between bone, hemopoietic stem cells, and vasculature. Blood 118: 1516 – 1524.en_US
dc.identifier.citedreferenceGrassinger J, Haylock DN, Williams B, Olsen GH, Nilsson SK. 2010. Phenotypically identical hemopoietic stem cells isolated from different regions of bone marrow have different biologic potential. Blood 116: 3185 – 3196.en_US
dc.identifier.citedreferenceGuldberg RE, Duvall CL, Peister A, Oest ME, Lin AS, Palmer AW, Levenston ME. 2008. 3D imaging of tissue integration with porous biomaterials. Biomaterials 29: 3757 – 3761.en_US
dc.identifier.citedreferenceJung Y, Song J, Shiozawa Y, Wang J, Wang Z, Williams B, Havens A, Schneider A, Ge C, Franceschi RT, McCauley LK, Krebsbach PH, Taichman RS. 2008. Hematopoietic stem cells regulate mesenchymal stromal cell induction into osteoblasts thereby participating in the formation of the stem cell niche. Stem Cells 26: 2042 – 2051.en_US
dc.identifier.citedreferenceKiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109 – 1121.en_US
dc.identifier.citedreferenceKollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, Tesio M, Samstein RM, Goichberg P, Spiegel A, Elson A, Lapidot T. 2006. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12: 657 – 664.en_US
dc.identifier.citedreferenceLee MY, Fukunaga R, Lee TJ, Lottsfeldt JL, Nagata S. 1991. Bone modulation in sustained hematopoietic stimulation in mice. Blood 77: 2135 – 2141.en_US
dc.identifier.citedreferenceLi X, Liao J, Park SI, Koh AJ, Sadler WD, Pienta KJ, Rosol TJ, McCauley LK. 2011. Drugs which inhibit osteoclast function suppress tumor growth through calcium reduction in bone. Bone 48: 1354 – 1361.en_US
dc.identifier.citedreferenceLymperi S, Ersek A, Ferraro F, Dazzi F, Horwood NJ. 2011. Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood 117: 1540 – 1549.en_US
dc.identifier.citedreferenceMetcalf S, Pandha HS, Morgan R. 2011. Antiangiogenic effects of zoledronate on cancer neovasculature. Future Oncol 7: 1325 – 1333.en_US
dc.identifier.citedreferenceMiyamoto K, Yoshida S, Kawasumi M, Hashimoto K, Kimura T, Sato Y, Kobayashi T, Miyauchi Y, Hoshi H, Iwasaki R, Miyamoto H, Hao W, Morioka H, Chiba K, Kobayashi T, Yasuda H, Penninger JM, Toyama Y, Suda T, Miyamoto T. 2011. Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization. J Exp Med 208: 2175 – 2181.en_US
dc.identifier.citedreferenceParfitt AM. 2000. The mechanism of coupling: A role for the vasculature. Bone 26: 319 – 323.en_US
dc.identifier.citedreferencePark IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF. 2003. Bmi‐1 is required for maintenance of adult self‐renewing haematopoietic stem cells. Nature 423: 302 – 305.en_US
dc.identifier.citedreferencePark SI, Liao J, Berry JE, Li X, Koh AJ, Michalski ME, Eber MR, Soki FN, Sadler D, Sud S, Tisdelle S, Daignault SD, Nemeth JA, Snyder LA, Wronski TJ, Pienta KJ, McCauley LK. 2012. Cyclophosphamide creates a receptive microenvironment for prostate cancer skeletal metastasis. Cancer Res 72: 2522 – 2532.en_US
dc.identifier.citedreferencePrisby R, Guignandon A, Vanden Bossche A, Mac‐Way F, Linossier MT, Thomas M, Laroche N, Malaval L, Langer M, Peter ZA, Peyrin F, Vico L, Lafage‐Proust MH. 2011. Intermittent PTH(1‐84) is osteoanabolic but not osteoangiogenic and relocates bone marrow blood vessels closer to bone‐forming sites. J Bone Miner Res 26: 2583 – 2596.en_US
dc.identifier.citedreferenceRizo A, Dontje B, Vellenga E, de HG, Schuringa JJ. 2008. Long‐term maintenance of human hematopoietic stem/progenitor cells by expression of BMI1. Blood 111: 2621 – 2630.en_US
dc.identifier.citedreferenceRodan GA, Fleisch HA. 1996. Bisphosphonates: Mechanisms of action. J Clin Invest 97: 2692 – 2696.en_US
dc.identifier.citedreferenceRogers TL, Holen I. 2011. Tumour macrophages as potential targets of bisphosphonates. J Transl Med 9: 177.en_US
dc.identifier.citedreferenceShiozawa Y, Jung Y, Ziegler AM, Pedersen EA, Wang J, Wang Z, Song J, Wang J, Lee CH, Sud S, Pienta KJ, Krebsbach PH, Taichman RS. 2010. Erythropoietin couples hematopoiesis with bone formation. PLoS ONE 5: e10853.en_US
dc.identifier.citedreferenceSmith KS, Chanda SK, Lingbeek M, Ross DT, Botstein D, van LM, Cleary ML. 2003. Bmi‐1 regulation of INK4A‐ARF is a downstream requirement for transformation of hematopoietic progenitors by E2a‐Pbx1. Mol Cell 12: 393 – 400.en_US
dc.identifier.citedreferenceTakahashi T, Wada T, Mori M, Kokai Y, Ishii S. 1996. Overexpression of the granulocyte colony‐stimulating factor gene leads to osteoporosis in mice. Lab Invest 74: 827 – 834.en_US
dc.identifier.citedreferenceVisnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL. 2004. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103: 3258 – 3264.en_US
dc.identifier.citedreferenceWan C, Gilbert SR, Wang Y, Cao X, Shen X, Ramaswamy G, Jacobsen KA, Alaql ZS, Eberhardt AW, Gerstenfeld LC, Einhorn TA, Deng L, Clemens TL. 2008. Activation of the hypoxia‐inducible factor‐1alpha pathway accelerates bone regeneration. Proc Natl Acad Sci USA 105: 686 – 691.en_US
dc.identifier.citedreferenceWang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, Bouxsein ML, Faugere MC, Guldberg RE, Gerstenfeld LC, Haase VH, Johnson RS, Schipani E, Clemens TL. 2007. The hypoxia‐inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 117: 1616 – 1626.en_US
dc.identifier.citedreferenceWinter MC, Coleman RE. 2009. Bisphosphonates in breast cancer: Teaching an old dog new tricks. Curr Opin Oncol 21: 499 – 506.en_US
dc.identifier.citedreferenceWood J, Bonjean K, Ruetz S, Bellahcene A, Devy L, Foidart JM, Castronovo V, Green JR. 2002. Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther 302: 1055 – 1061.en_US
dc.identifier.citedreferenceWu X, Pang L, Lei W, Lu W, Li J, Li Z, Frassica FJ, Chen X, Wan M, Cao X. 2010. Inhibition of Sca‐1‐positive skeletal stem cell recruitment by alendronate blunts the anabolic effects of parathyroid hormone on bone remodeling. Cell Stem Cell 7: 571 – 580.en_US
dc.identifier.citedreferenceYang L, Bryder D, Adolfsson J, Nygren J, Mansson R, Sigvardsson M, Jacobsen SE. 2005. Identification of Lin(−)Sca1(+)kit(+)CD34(+)Flt3‐ short‐term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105: 2717 – 2723.en_US
dc.identifier.citedreferenceYao Z, Lafage‐Proust MH, Plouet J, Bloomfield S, Alexandre C, Vico L. 2004. Increase of both angiogenesis and bone mass in response to exercise depends on VEGF. J Bone Miner Res 19: 1471 – 1480.en_US
dc.identifier.citedreferenceZhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836 – 841.en_US
dc.identifier.citedreferenceAdams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC, Kos CH, Pollak MR, Brown EM, Scadden DT. 2006. Stem cell engraftment at the endosteal niche is specified by the calcium‐sensing receptor. Nature 439: 599 – 603.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.