Show simple item record

Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC 1

dc.contributor.authorJoo, Nam E.en_US
dc.contributor.authorRitchie, Kathrynen_US
dc.contributor.authorKamarajan, Pachiyappanen_US
dc.contributor.authorMiao, Dien_US
dc.contributor.authorKapila, Yvonne L.en_US
dc.date.accessioned2012-12-11T17:37:36Z
dc.date.available2014-02-03T16:21:43Zen_US
dc.date.issued2012-12en_US
dc.identifier.citationJoo, Nam E.; Ritchie, Kathryn; Kamarajan, Pachiyappan; Miao, Di; Kapila, Yvonne L. (2012). "Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC 1." Cancer Medicine 1(3): 295-305. <http://hdl.handle.net/2027.42/94527>en_US
dc.identifier.issn2045-7634en_US
dc.identifier.issn2045-7634en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94527
dc.description.abstractNisin, a bacteriocin and commonly used food preservative, may serve as a novel potential therapeutic for treating head and neck squamous cell carcinoma ( HNSCC ), as it induces preferential apoptosis, cell cycle arrest, and reduces cell proliferation in HNSCC cells, compared with primary keratinocytes. Nisin also reduces HNSCC tumorigenesis in vivo. Mechanistically, nisin exerts these effects on HNSCC , in part, through CHAC 1, a proapoptotic cation transport regulator, and through a concomitant CHAC 1‐independent influx of extracellular calcium. In addition, although CHAC 1 is known as an apoptotic mediator, its effects on cancer cell apoptosis have not been examined. Our studies are the first to report CHAC 1's new role in promoting cancer cell apoptosis under nisin treatment. These data support the concept that nisin decreases HNSCC tumorigenesis in vitro and in vivo by inducing increased cell apoptosis and decreased cell proliferation; effects that are mediated by activation of CHAC 1, increased calcium influxes, and induction of cell cycle arrest. These findings support the use of nisin as a potentially novel therapeutic for HNSCC , and as nisin is safe for human consumption and currently used in food preservation, its translation into a clinical setting may be facilitated. Nisin decreases HNSCC tumorigenesis in vitro and in vivo by inducing increased cell apoptosis and decreased cell proliferation; effects that are mediated by activation of CHAC1, increased calcium influxes, and induction of cell cycle arrest. These findings support the use of nisin as a potentially novel therapeutic for HNSCC , and as nisin is safe for human consumption and currently used in food preservation, its translation into a clinical setting may be facilitated.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherTranslational Researchen_US
dc.subject.otherDrug Discovery and Deliveryen_US
dc.subject.otherCellular Biologyen_US
dc.subject.otherCancer Biologyen_US
dc.titleNisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC 1en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelHematology and Oncologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23342279en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94527/1/cam435.pdf
dc.identifier.doi10.1002/cam4.35en_US
dc.identifier.sourceCancer Medicineen_US
dc.identifier.citedreferenceFrazer, A. C., M. Sharratt, and J. R. Hickman. 1962. The biological effects of food additives. J. Sci. Food Agric. 13: 32 – 42.en_US
dc.identifier.citedreferenceMoll, G. N., W. C. Chan, B. W. Bycroft, G. C. Roberts, W. N. Konings, and A. J. Driessen. 1997. Role of transmembrane pH gradient and membrane binding in nisin pore formation. J. Bacteriol. 179: 135 – 140.en_US
dc.identifier.citedreferenceWiedemann, I., E. Breukink, C. van Kraaij, O. P. Kuipers, G. Bierbaum, B. de Kruijff, et al. 2001. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem. 276: 1772 – 1779.en_US
dc.identifier.citedreferenceGiffard, C. J., S. Ladha, A. R. Mackie, D. C. Clark, and D. Sanders. 1996. Interaction of nisin with planar lipid bilayers monitored by fluorescence recovery after photobleaching. J. Membr. Biol. 151: 293 – 300.en_US
dc.identifier.citedreferenceWere, L. M., B. D. Bruce, P. M. Davidson, and J. Weiss. 2003. Size, stability, and entrapment efficiency of phospholipids nanocapsules containing polypeptide antimicrobials. J. Agric. Food Chem. 51: 8073 – 8079.en_US
dc.identifier.citedreferenceEckert, R. L. 1989. Structure, function, and differentiation of the keratinoctye. Phys. Rev. 69: 1316 – 1346.en_US
dc.identifier.citedreferenceGasparoni, A., L. Fonzi, G. B. Schneider, P. W. Wertz, G. K. Johnson, and C. A. Squier. 2004. Comparison of differentiation markers between normal and two squamous cell carcinoma cell lines in culture. Arch. Oral Biol. 49: 653 – 664.en_US
dc.identifier.citedreferencePonec, M., J. Kempenaar, and J. Boonstra. 1987. Regulation of lipid synthesis in relation to keratinocyte differentiation capacity. Biochim. Biophys. Acta 921: 512 – 521.en_US
dc.identifier.citedreferencePonec, M., L. Havekes, J. Kempenaar, S. Lavrijsen, and B. J. Vermeer. 1984. Defective low‐density lipoprotein metabolism in cultured, normal, transformed, and malignant keratinocytes. J. Invest. Derm. 83: 436 – 440.en_US
dc.identifier.citedreferenceTertoolen, L. G. J., J. Kempenaar, J. Boonstra, S. W. de Laat, and M. Ponec. 1988. Lateral mobility of plasma membrane lipids in normal and transformed keratinoctyes. Biochem. Biophys. Res. Commun. 152: 491 – 496.en_US
dc.identifier.citedreferenceTripathi, P., P. Kamarajan, S. S. Bagganahalli, N. MacKinnon, A. M. Chinnaiyan, Y. L. Kapila, et al. 2012. Delineating metabolic signatures of head and neck squamous cell carcinoma: phospholipase A 2, a potential therapeutic target. Int. J. Biochem. Cell Biol. 44: 1852 – 1861.en_US
dc.identifier.citedreferenceMattson, M., and S. Chan. 2003. Calcium orchestrates apoptosis. Nat. Cell Biol. 5: 1041 – 1043.en_US
dc.identifier.citedreferenceMungrue, I. N., J. Pagnon, O. Kohannim, P. S. Gargalovic, and A. J. Lusis. 2009. CHAC1/MGC4504 is a novel proapoptotic component of the unfolded protein response, downstream of the ATF4‐ATF3‐CHOP cascade. J. Immunol. 182: 466 – 476.en_US
dc.identifier.citedreferenceBaker, M. A., W. L. Molay, M. Zasloff, and L. S. Jacob. 1993. Anticancer efficacy of magainin 2 and analogue peptides. Cancer Res. 53: 3052 – 3057.en_US
dc.identifier.citedreferenceHara, S., K. Yakazu, K. Nakakawaji, T. Takeuchi, T. Kobayashi, M. Sata, et al. 1962. An investigation of toxicity of Nisin. Tokyo Med. Univ. J. 20: 176.en_US
dc.identifier.citedreferencePesquera, T. I. 1966. Nisin – its use, estimation and toxicology in sterilized milk. Revita Espanola de Lecheria 5: 25.en_US
dc.identifier.citedreferenceAlhazzazi, T. Y., P. Kamarajan, N. Joo, J. Y. Huang, E. Verdin, N. J. D'Silva, et al. 2011. Sirtuin‐3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer 117: 1670 – 1678.en_US
dc.identifier.citedreferenceKamarajan, P., T. Y. Alhazzazi, T. Danciu, N. J. D'silva, E. Verdin, and Y. L. Kapila. 2012. Receptor‐interacting protein (RIP) and Sirtuin‐3 (SIRT3) are on opposite sides of anoikis and tumorigenesis. Cancer. doi: 10.1002/cncr.27655.en_US
dc.identifier.citedreferenceBreukink, E., I. Wiedemann, C. van Kraaij, O. P. Kuipers, H. Sahl, and B. de Kruijff. 1999. Use of the cell wall precursor lipid II by a pore‐forming peptide antibiotic. Science 286: 2361 – 2364.en_US
dc.identifier.citedreferenceChoi, J., M. K. Lee, O. K. Ho, Y. S. Kim, H. Y. Choi, S. K. Baek, et al. 2011. Interaction effect between the receptor for advanced glycation end products (RAGE) and high‐mobility group box‐1 (HMGB‐1) for the migration of a squamous cell carcinoma cell line. Tumori 97: 196 – 202.en_US
dc.identifier.citedreferenceKohn, E. C., E. Reed, E. Sarosy, M. Christian, C. J. Link, K. A. Cole, et al. 1996. Clinical investigation of a cytostatic calcium influx inhibitor in patients with refractory cancers. Cancer Res. 56: 569 – 573.en_US
dc.identifier.citedreferenceWu, Y., A. J. Palad, W. J. Wasilenko, P. F. Blackmore, W. A. Pincus, G. L. Schechter, et al. 1997. Inhibition of head and neck squamous cell carcinoma growth and invasion by the calcium influx inhibitor carboxyamido‐triazole. Clin. Cancer Res. 3: 1915 – 1921.en_US
dc.identifier.citedreferenceWu, D. M., D. Zhao, D. Z. Li, D. Y. Xu, W. F. Chu, and X. F. Wang. 2011. Maslinic acid induces apoptosis in salivary gland adenoid cystic carcinoma cells by Ca2+‐evoked p38 signaling pathway. Naunyn Schmiedebergs Arch. Pharmacol. 383: 321 – 330.en_US
dc.identifier.citedreferenceFarkas‐Himsley, H., R. Hill, B. Rosen, S. Arab, and C. A. Lingwood. 1995. The bacterial colicin active against tumor cells in vitro and in vivo is verotoxin 1. Proc. Natl. Acad. Sci. USA 92: 6996 – 7000.en_US
dc.identifier.citedreferenceFarkas‐Himsley, H., Y. S. Zhang, M. Yuan, and C. E. Musclow. 1992. Partially purified bacteriocin kills malignant cells by apoptosis: programmed cell death. Cell Mol. Biol. 38: 643 – 651.en_US
dc.identifier.citedreferenceSand, S. L., T. M. Haug, J. Nissen‐Meyer, and O. Sand. 2007. The bacterial peptide pheromone plantaricin A permeabilizes cancerous, but not normal, rat pituitary cells and differentiates between the outer and inner membrane leaflet. J. Membr. Biol. 216: 61 – 71.en_US
dc.identifier.citedreferenceKoczulla, A. R., and R. Bals. 2003. Antimicrobial peptides: current status and therapeutic potential. Drugs 63: 389 – 406.en_US
dc.identifier.citedreferenceBrotz, H., and H.‐G. Sahl. 2000. New insights into the mechanism of action of lantibiotics‐diverse biological effects by binding at the same molecular target. J. Antimicrob. Chemother. 46: 1 – 6.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.