Show simple item record

The myofibroblast matrix: implications for tissue repair and fibrosis

dc.contributor.authorKlingberg, Francoen_US
dc.contributor.authorHinz, Borisen_US
dc.contributor.authorWhite, Eric Sen_US
dc.date.accessioned2013-01-03T19:35:11Z
dc.date.available2014-03-03T15:09:23Zen_US
dc.date.issued2013-01en_US
dc.identifier.citationKlingberg, Franco; Hinz, Boris; White, Eric S (2013). "The myofibroblast matrix: implications for tissue repair and fibrosis." The Journal of Pathology 229(2): 298-309. <http://hdl.handle.net/2027.42/94657>en_US
dc.identifier.issn0022-3417en_US
dc.identifier.issn1096-9896en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94657
dc.description.abstractMyofibroblasts, and the extracellular matrix ( ECM ) in which they reside, are critical components of wound healing and fibrosis. The ECM , traditionally viewed as the structural elements within which cells reside, is actually a functional tissue whose components possess not only scaffolding characteristics, but also growth factor, mitogenic, and other bioactive properties. Although it has been suggested that tissue fibrosis simply reflects an ‘exuberant’ wound‐healing response, examination of the ECM and the roles of myofibroblasts during fibrogenesis instead suggest that the organism may be attempting to recapitulate developmental programmes designed to regenerate functional tissue. Evidence of this is provided by the temporospatial re‐emergence of embryonic ECM proteins by fibroblasts and myofibroblasts that induce cellular programmatic responses intended to produce a functional tissue. In the setting of wound healing (or physiological fibrosis), this occurs in a highly regulated and exquisitely choreographed fashion which results in cessation of haemorrhage, restoration of barrier integrity, and re‐establishment of tissue function. However, pathological tissue fibrosis, which oftentimes causes organ dysfunction and significant morbidity or mortality, likely results from dysregulation of normal wound‐healing processes or abnormalities of the process itself. This review will focus on the myofibroblast ECM and its role in both physiological and pathological fibrosis, and will discuss the potential for therapeutically targeting ECM proteins for treatment of fibrotic disorders.en_US
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherFibrosisen_US
dc.subject.otherMyofibroblasten_US
dc.subject.otherECMen_US
dc.titleThe myofibroblast matrix: implications for tissue repair and fibrosisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPathologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22996908en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94657/1/path4104.pdf
dc.identifier.doi10.1002/path.4104en_US
dc.identifier.sourceThe Journal of Pathologyen_US
dc.identifier.citedreferenceFitzgerald ML, Wang ZH, Park PW, et al. Shedding of syndecan‐1 and‐4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP‐3‐sensitive metalloproteinase. J Cell Biol 2000; 148: 811 – 824.en_US
dc.identifier.citedreferenceTokudome T, Horio T, Yoshihara F, et al. Direct effects of high glucose and insulin on protein synthesis in cultured cardiac myocytes and DNA and collagen synthesis in cardiac fibroblasts. Metabolism 2004; 53: 710 – 715.en_US
dc.identifier.citedreferenceMartin P, Leibovich SJ. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 2005; 15: 599 – 607.en_US
dc.identifier.citedreferenceChung AC, Zhang H, Kong YZ, et al. Advanced glycation end‐products induce tubular CTGF via TGF‐beta‐independent Smad3 signaling. J Am Soc Nephrol 2010; 21: 249 – 260.en_US
dc.identifier.citedreferenceSchnider SL, Kohn RR. Glucosylation of human collagen in aging and diabetes mellitus. J Clin Invest 1980; 66: 1179 – 1181.en_US
dc.identifier.citedreferenceBooth AJ, Hadley R, Cornett AM, et al. Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am J Resp Crit Care Med 2012; doi 10.1164/rccm.201204-0754OC.en_US
dc.identifier.citedreferenceKornblihtt AR, Pesce CG, Alonso CR, et al. The fibronectin gene as a model for splicing and transcription studies. FASEB J 1996; 10: 248 – 257.en_US
dc.identifier.citedreferenceMuro AF, Chauhan AK, Gajovic S, et al. Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. Journal Cell Biol 2003; 162: 149 – 160.en_US
dc.identifier.citedreferenceMuro AF, Moretti FA, Moore BB, et al. An essential role for fibronectin extra type III domain A in pulmonary fibrosis. Am J Respir Crit Care Med 2008; 177: 638 – 645.en_US
dc.identifier.citedreferenceRodriguez HM, Vaysberg M, Mikels A, et al. Modulation of lysyl oxidase‐like 2 enzymatic activity by an allosteric antibody inhibitor. J Biol Chem 2010; 285: 20964 – 20974.en_US
dc.identifier.citedreferenceBarry‐Hamilton V, Spangler R, Marshall D, et al. Allosteric inhibition of lysyl oxidase‐like‐2 impedes the development of a pathologic microenvironment. Nature Med 2010; 16: 1009 – 1017.en_US
dc.identifier.citedreferenceCox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 2011; 4: 165 – 178.en_US
dc.identifier.citedreferenceLugassy J, Zaffryar‐Eilot S, Soueid S, et al. The enzymatic activity of lysyl oxidas‐like‐2 (LOXL2) is not required for LOXL2‐induced inhibition of keratinocyte differentiation. J Biol Chem 2012; 287: 3541 – 3549.en_US
dc.identifier.citedreferenceGullberg D. Shift happens – a paradigm shift for the role of integrins in fibrosis. Matrix Biol 2009; 28: 383.en_US
dc.identifier.citedreferenceKim KK, Wei Y, Szekeres C, et al. Epithelial cell alpha3beta1 integrin links beta‐catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J Clin Invest 2009; 119: 213 – 224.en_US
dc.identifier.citedreferenceCarracedo S, Lu N, Popova SN, et al. The fibroblast integrin alpha11beta1 is induced in a mechanosensitive manner involving activin A and regulates myofibroblast differentiation. J Biol Chem 2010; 285: 10434 – 10445.en_US
dc.identifier.citedreferenceTalior‐Volodarsky I, Connelly KA, Arora PD, et al. α11 integrin stimulates myofibroblast differentiation in diabetic cardiomyopathy. Cardiovasc Res 2012; doi 10.1093/cvr/cvs259.en_US
dc.identifier.citedreferenceHinz B. Masters and servants of the force: the role of matrix adhesions in myofibroblast force perception and transmission. Eur J Cell Biol 2006; 85: 175 – 181.en_US
dc.identifier.citedreferenceChan MW, Chaudary F, Lee W, et al. Force‐induced myofibroblast differentiation through collagen receptors is dependent on mammalian diaphanous (mDia). J Biol Chem 2010; 285: 9273 – 9281.en_US
dc.identifier.citedreferenceHoran GS, Wood S, Ona V, et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med 2008; 177: 56 – 65.en_US
dc.identifier.citedreferenceHerzog EL, Bucala R. Fibrocytes in health and disease. Exp Hematol 2010; 38: 548 – 556.en_US
dc.identifier.citedreferenceKeeley EC, Mehrad B, Strieter RM. The role of fibrocytes in fibrotic diseases of the lungs and heart. Fibrogenesis Tissue Repair 2011; 4: 2.en_US
dc.identifier.citedreferenceHinz B, Phan SH, Thannickal VJ, et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 2012; 180: 1340 – 1355.en_US
dc.identifier.citedreferenceWynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008; 214: 199 – 210.en_US
dc.identifier.citedreferenceHinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 2007; 127: 526 – 537.en_US
dc.identifier.citedreferenceHardie WD, Glasser SW, Hagood JS. Emerging concepts in the pathogenesis of lung fibrosis. Am J Pathol 2009; 175: 3 – 16.en_US
dc.identifier.citedreferenceAraya J, Nishimura SL. Fibrogenic reactions in lung disease. Annu Rev Pathol 2010; 5: 77 – 98.en_US
dc.identifier.citedreferenceWynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med 2011; 208: 1339 – 1350.en_US
dc.identifier.citedreferenceHernandez‐Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol 2011; 6: 425 – 456.en_US
dc.identifier.citedreferenceIredale J. Defining therapeutic targets for liver fibrosis: exploiting the biology of inflammation and repair. Pharmacol Res 2008; 58: 129 – 136.en_US
dc.identifier.citedreferenceIwaisako K, Brenner DA, Kisseleva T. What's new in liver fibrosis? The origin of myofibroblasts in liver fibrosis. J Gastroenterol Hepatol 2012; 27 ( Suppl 2 ): 65 – 68.en_US
dc.identifier.citedreferenceMeran S, Steadman R. Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol 2011; 92: 158 – 167.en_US
dc.identifier.citedreferenceGrande MT, Lopez‐Novoa JM. Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nature Rev Nephrol 2009; 5: 319 – 328.en_US
dc.identifier.citedreferenceSerrano AL, Mann CJ, Vidal B, et al. Cellular and molecular mechanisms regulating fibrosis in skeletal muscle repair and disease. Curr Top Dev Biol 2011; 96: 167 – 201.en_US
dc.identifier.citedreferenceBeyer C, Distler O, Distler JH. Innovative antifibrotic therapies in systemic sclerosis. Curr Opin Rheumatol 2012; 24: 274 – 280.en_US
dc.identifier.citedreferenceVarga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 2007; 117: 557 – 567.en_US
dc.identifier.citedreferenceAsano Y. Future treatments in systemic sclerosis. J Dermatol 2010; 37: 54 – 70.en_US
dc.identifier.citedreferencevan den Borne SW, Diez J, Blankesteijn WM, et al. Myocardial remodeling after infarction: the role of myofibroblasts. Nature Rev Cardiol 2010; 7: 30 – 37.en_US
dc.identifier.citedreferenceRohr S. Myofibroblasts in diseased hearts: new players in cardiac arrhythmias? Heart Rhythm 2009; 6: 848 – 856.en_US
dc.identifier.citedreferenceKrenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 2010; 225: 631 – 637.en_US
dc.identifier.citedreferenceDe Wever O, Demetter P, Mareel M, et al. Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 2008; 123: 2229 – 2238.en_US
dc.identifier.citedreferenceOtranto M, Sarrazy V, Bonte F, et al. The role of the myofibroblast in tumor stroma remodeling. Cell Adh Migr 2012; 6: 203 – 219.en_US
dc.identifier.citedreferenceHinz B, Phan SH, Thannickal VJ, et al. The myofibroblast: one function, multiple origins. Am J Pathol 2007; 170: 1807 – 1816.en_US
dc.identifier.citedreferenceDranoff JA, Wells RG. Portal fibroblasts: underappreciated mediators of biliary fibrosis. Hepatology 2010; 51: 1438 – 1444.en_US
dc.identifier.citedreferenceDesmoulière A. Hepatic stellate cells: the only cells involved in liver fibrogenesis? A dogma challenged. Gastroenterology 2007; 132: 2059 – 2062.en_US
dc.identifier.citedreferenceCirri P, Chiarugi P. Cancer‐associated‐fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 2012; 31: 195 – 208.en_US
dc.identifier.citedreferencePorter KE, Turner NA. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 2009; 123: 255 – 278.en_US
dc.identifier.citedreferenceBellini A, Mattoli S. The role of the fibrocyte, a bone marrow‐derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 2007; 87: 858 – 870.en_US
dc.identifier.citedreferenceCoen M, Gabbiani G, Bochaton‐Piallat ML. Myofibroblast‐mediated adventitial remodeling: an underestimated player in arterial pathology. Arterioscler Thromb Vasc Biol 2011; 31: 2391 – 2396.en_US
dc.identifier.citedreferenceHumphreys BD, Lin SL, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 2010; 176: 85 – 97.en_US
dc.identifier.citedreferenceLin SL, Kisseleva T, Brenner DA, et al. Pericytes and perivascular fibroblasts are the primary source of collagen‐producing cells in obstructive fibrosis of the kidney. Am J Pathol 2008; 173: 1617 – 1627.en_US
dc.identifier.citedreferenceArmulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 2011; 21: 193 – 215.en_US
dc.identifier.citedreferenceKidd S, Spaeth E, Watson K, et al. Origins of the tumor microenvironment: quantitative assessment of adipose‐derived and bone marrow‐derived stroma. PLoS One 2012; 7: e30563.en_US
dc.identifier.citedreferenceChapman HA. Epithelial–mesenchymal interactions in pulmonary fibrosis. Annu Rev Physiol 2011; 73: 413 – 435.en_US
dc.identifier.citedreferenceBurns WC, Thomas MC. The molecular mediators of type 2 epithelial to mesenchymal transition (EMT) and their role in renal pathophysiology. Expert Rev Mol Med 2010; 12: e17.en_US
dc.identifier.citedreferenceQuaggin SE, Kapus A. Scar wars: mapping the fate of epithelial–mesenchymal–myofibroblast transition. Kidney Int 2011; 80: 41 – 50.en_US
dc.identifier.citedreferenceLee K, Nelson CM. New insights into the regulation of epithelial–mesenchymal transition and tissue fibrosis. Int Rev Cell Mol Biol 2012; 294: 171 – 221.en_US
dc.identifier.citedreferencePiera‐Velazquez S, Li Z, Jimenez SA. Role of endothelial–mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 2011; 179: 1074 – 1080.en_US
dc.identifier.citedreferenceMishra PJ, Glod JW, Banerjee D. Mesenchymal stem cells: flip side of the coin. Cancer Res 2009; 69: 1255 – 1258.en_US
dc.identifier.citedreferenceHinz B. The myofibroblast in connective tissue repair and regeneration. In Regenerative Medicine and Biomaterials for the Repair of Connective Tissues, Archer C, Ralphs J (eds). Woodhead Publishing Ltd: Cambridge, 2010; 39 – 82.en_US
dc.identifier.citedreferenceKis K, Liu X, Hagood JS. Myofibroblast differentiation and survival in fibrotic disease. Expert Rev Mol Med 2011; 13: e27.en_US
dc.identifier.citedreferenceSandbo N, Dulin N. Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl Res 2011; 158: 181 – 196.en_US
dc.identifier.citedreferenceFollonier Castella L, Gabbiani G, McCulloch CA, et al. Regulation of myofibroblast activities: calcium pulls some strings behind the scene. Exp Cell Res 2010; 316: 2390 – 2401.en_US
dc.identifier.citedreferenceHinz B, Gabbiani G. Fibrosis: recent advances in myofibroblast biology and new therapeutic perspectives. F1000 Biol Rep 2010; 2: 78.en_US
dc.identifier.citedreferenceDouglass A, Wallace K, Koruth M, et al. Targeting liver myofibroblasts: a novel approach in anti‐fibrogenic therapy. Hepatol Int 2008; 2: 405 – 415.en_US
dc.identifier.citedreferenceSivakumar P, Ntolios P, Jenkins G, et al. Into the matrix: targeting fibroblasts in pulmonary fibrosis. Curr Opin Pulm Med 2012; 18: 462 – 469.en_US
dc.identifier.citedreferenceLeask A. Towards an anti‐fibrotic therapy for scleroderma: targeting myofibroblast differentiation and recruitment. Fibrogenesis Tissue Repair 2010; 3: 8.en_US
dc.identifier.citedreferenceScotton CJ, Chambers RC. Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest 2007; 132: 1311 – 1321.en_US
dc.identifier.citedreferenceFrantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci 2010; 123: 4195 – 4200.en_US
dc.identifier.citedreferenceHynes RO. The evolution of metazoan extracellular matrix. J Cell Biol 2012; 196: 671 – 679.en_US
dc.identifier.citedreferenceOzbek S, Balasubramanian PG, Chiquet‐Ehrismann R, et al. The evolution of extracellular matrix. Mol Biol Cell 2010; 21: 4300 – 4305.en_US
dc.identifier.citedreferenceSchultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 2009; 17: 153 – 162.en_US
dc.identifier.citedreferenceDischer DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science 2009; 324: 1673 – 1677.en_US
dc.identifier.citedreferenceMacri L, Silverstein D, Clark RA. Growth factor binding to the pericellular matrix and its importance in tissue engineering. Adv Drug Deliv Rev 2007; 59: 1366 – 1381.en_US
dc.identifier.citedreferenceGabbiani G, Ryan GB, Majno G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 1971; 27: 549 – 550.en_US
dc.identifier.citedreferenceTomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano‐regulation of connective tissue remodelling. Nature Rev Mol Cell Biol 2002; 3: 349 – 363.en_US
dc.identifier.citedreferenceHinz B. The myofibroblast: paradigm for a mechanically active cell. J Biomech 2010; 43: 146 – 155.en_US
dc.identifier.citedreferenceCukierman E, Pankov R, Stevens DR, et al. Taking cell–matrix adhesions to the third dimension. Science 2001; 294: 1708 – 1712.en_US
dc.identifier.citedreferenceRohr S. Cardiac fibroblasts in cell culture systems: myofibroblasts all along? J Cardiovasc Pharmacol 2011; 57: 389 – 399.en_US
dc.identifier.citedreferenceZhang K, Rekhter MD, Gordon D, et al. Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am J Pathol 1994; 145: 114 – 125.en_US
dc.identifier.citedreferenceTomasek JJ, Schultz RJ, Episalla CW, et al. The cytoskeleton and extracellular matrix of the Dupuytren's disease ‘myofibroblast’: an immunofluorescence study of a nonmuscle cell type. J Hand Surg Am 1986; 11: 365 – 371.en_US
dc.identifier.citedreferenceChang LY, Overby LH, Brody AR, et al. Progressive lung cell reactions and extracellular matrix production after a brief exposure to asbestos. Am J Pathol 1988; 131: 156 – 170.en_US
dc.identifier.citedreferenceKuhn C, McDonald JA. The roles of the myofibroblast in idiopathic pulmonary fibrosis. Ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pathol 1991; 138: 1257 – 1265.en_US
dc.identifier.citedreferenceBerndt A, Kosmehl H, Katenkamp D, et al. Appearance of the myofibroblastic phenotype in Dupuytren's disease is associated with a fibronectin, laminin, collagen type IV and tenascin extracellular matrix. Pathobiology 1994; 62: 55 – 58.en_US
dc.identifier.citedreferenceAigner T, Neureiter D, Muller S, et al. Extracellular matrix composition and gene expression in collagenous colitis. Gastroenterology 1997; 113: 136 – 143.en_US
dc.identifier.citedreferenceMagro G, Fraggetta F, Colombatti A, et al. Myofibroblasts and extracellular matrix glycoproteins in palmar fibromatosis. Gen Diagn Pathol 1997; 142: 185 – 190.en_US
dc.identifier.citedreferenceMahida YR, Beltinger J, Makh S, et al. Adult human colonic subepithelial myofibroblasts express extracellular matrix proteins and cyclooxygenase‐1 and −2. Am J Physiol 1997; 273: G1341 ‐ G1348.en_US
dc.identifier.citedreferenceStokes MB, Hudkins KL, Zaharia V, et al. Up‐regulation of extracellular matrix proteoglycans and collagen type I in human crescentic glomerulonephritis. Kidney Int 2001; 59: 532 – 542.en_US
dc.identifier.citedreferenceWhiting CV, Tarlton JF, Bailey M, et al. Abnormal mucosal extracellular matrix deposition is associated with increased TGF‐beta receptor‐expressing mesenchymal cells in a mouse model of colitis. J Histochem Cytochem 2003; 51: 1177 – 1189.en_US
dc.identifier.citedreferenceCrabb RA, Chau EP, Decoteau DM, et al. Microstructural characteristics of extracellular matrix produced by stromal fibroblasts. Ann Biomed Eng 2006; 34: 1615 – 1627.en_US
dc.identifier.citedreferenceAkhmetshina A, Dees C, Pileckyte M, et al. Rho‐associated kinases are crucial for myofibroblast differentiation and production of extracellular matrix in scleroderma fibroblasts. Arthritis Rheum 2008; 58: 2553 – 2564.en_US
dc.identifier.citedreferenceZwetsloot KA, Nedergaard A, Gilpin LT, et al. Differences in transcriptional patterns of extracellular matrix, inflammatory, and myogenic regulatory genes in myofibroblasts, fibroblasts, and muscle precursor cells isolated from old male rat skeletal muscle using a novel cell isolation procedure. Biogerontology 2012; 13: 383 – 398.en_US
dc.identifier.citedreferenceVolk SW, Wang Y, Mauldin EA, et al. Diminished type III collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing. Cells Tissues Organs 2011; 194: 25 – 37.en_US
dc.identifier.citedreferenceSchürch W, Lagacé R, Seemayer TA. Myofibroblastic stromal reaction in retracted scirrhous carcinoma of the breast. Surg Gynecol Obstet 1982; 154: 351 – 358.en_US
dc.identifier.citedreferenceLagace R, Grimaud JA, Schurch W, et al. Myofibroblastic stromal reaction in carcinoma of the breast: variations of collagenous matrix and structural glycoproteins. Virchows Arch A Pathol Anat Histopathol 1985; 408: 49 – 59.en_US
dc.identifier.citedreferenceBarsky SH, Rao CN, Grotendorst GR, et al. Increased content of type V collagen in desmoplasia of human breast carcinoma. Am J Pathol 1982; 108: 276 – 283.en_US
dc.identifier.citedreferenceWilkes DS, Heidler KM, Yasufuku K, et al. Cell‐mediated immunity to collagen V in lung transplant recipients: correlation with collagen V release into BAL fluid. J Heart Lung Transplant 2001; 20: 167.en_US
dc.identifier.citedreferenceMares DC, Heidler KM, Smith GN, et al. Type V collagen modulates alloantigen‐induced pathology and immunology in the lung. Am J Respir Cell Mol Biol 2000; 23: 62 – 70.en_US
dc.identifier.citedreferenceBetz P, Nerlich A, Wilske J, et al. Immunohistochemical localization of collagen types I and VI in human skin wounds. Int J Legal Med 1993; 106: 31 – 34.en_US
dc.identifier.citedreferenceMollnau H, Munkel B, Schaper J. Collagen VI in the extracellular matrix of normal and failing human myocardium. Herz 1995; 20: 89 – 94.en_US
dc.identifier.citedreferenceSabatelli P, Gualandi F, Gara SK, et al. Expression of collagen VI alpha5 and alpha6 chains in human muscle and in Duchenne muscular dystrophy‐related muscle fibrosis. Matrix Biol 2012; 31: 187 – 196.en_US
dc.identifier.citedreferenceSpecks U, Nerlich A, Colby TV, et al. Increased expression of type VI collagen in lung fibrosis. Am J Respir Crit Care Med 1995; 151: 1956 – 1964.en_US
dc.identifier.citedreferenceZeichen J, van Griensven M, Albers I, et al. Immunohistochemical localization of collagen VI in arthrofibrosis. Arch Orthop Trauma Surg 1999; 119: 315 – 318.en_US
dc.identifier.citedreferenceStreuli CH, Schmidhauser C, Kobrin M, et al. Extracellular matrix regulates expression of the TGF‐beta 1 gene. J Cell Biol 1993; 120: 253 – 260.en_US
dc.identifier.citedreferenceWhite ES, Baralle FE, Muro AF. New insights into form and function of fibronectin splice variants. J Pathol 2008; 216: 1 – 14.en_US
dc.identifier.citedreferenceHynes RO. Fibronectins. Springer‐Verlag: New York, 1990.en_US
dc.identifier.citedreferenceMuro AF, Iaconcig A, Baralle FE. Regulation of the fibronectin EDA exon alternative splicing. Cooperative role of the exonic enhancer element and the 5' splicing site. FEBS Lett 1998; 437: 137 – 141.en_US
dc.identifier.citedreferenceBorsi L, Castellani P, Risso AM, et al. Transforming growth factor‐beta regulates the splicing pattern of fibronectin messenger RNA precursor. FEBS Lett 1990; 261: 175 – 178.en_US
dc.identifier.citedreferenceSerini G, Bochaton‐Piallat ML, Ropraz P, et al. The fibronectin domain ED‐A is crucial for myofibroblastic phenotype induction by transforming growth factor‐beta1. J Cell Biol 1998; 142: 873 – 881.en_US
dc.identifier.citedreferenceKohan M, Muro AF, White ES, et al. EDA‐containing cellular fibronectin induces fibroblast differentiation through binding to alpha4beta7 integrin receptor and MAPK/Erk 1/2‐dependent signaling. FASEB J 2010; 24: 4503 – 4512.en_US
dc.identifier.citedreferenceFontana L, Chen Y, Prijatelj P, et al. Fibronectin is required for integrin alphavbeta6‐mediated activation of latent TGF‐beta complexes containing LTBP‐1. FASEB J 2005; 19: 1798 – 1808.en_US
dc.identifier.citedreferenceWijelath ES, Rahman S, Namekata M, et al. Heparin‐II domain of fibronectin is a vascular endothelial growth factor‐binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ Res 2006; 99: 853 – 860.en_US
dc.identifier.citedreferenceHuang G, Zhang Y, Kim B, et al. Fibronectin binds and enhances the activity of bone morphogenetic protein 1. J Biol Chem 2009; 284: 25879 – 25888.en_US
dc.identifier.citedreferenceRahman S, Patel Y, Murray J, et al. Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met‐integrin induced signalling pathway in endothelial cells. BMC Cell Biol 2005; 6: 8.en_US
dc.identifier.citedreferenceBossard C, Van den Berghe L, Laurell H, et al. Antiangiogenic properties of fibstatin, an extracellular FGF‐2‐binding polypeptide. Cancer Res 2004; 64: 7507 – 7512.en_US
dc.identifier.citedreferenceSmith EM, Mitsi M, Nugent MA, et al. PDGF‐A interactions with fibronectin reveal a critical role for heparan sulfate in directed cell migration during Xenopus gastrulation. Proc Natl Acad Sci U S A 2009; 106: 21683 – 21688.en_US
dc.identifier.citedreferenceBaldock C, Oberhauser AF, Ma L, et al. Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity. Proc Natl Acad Sci U S A 2011; 108: 4322 – 4327.en_US
dc.identifier.citedreferenceUitto J, Christiano AM, Kahari VM, et al. Molecular biology and pathology of human elastin. Biochem Soc Trans 1991; 19: 824 – 829.en_US
dc.identifier.citedreferenceSwee MH, Parks WC, Pierce RA. Developmental regulation of elastin production. Expression of tropoelastin pre‐mRNA persists after down‐regulation of steady‐state mRNA levels. J Biol Chem 1995; 270: 14899 – 14906.en_US
dc.identifier.citedreferenceCaves JM, Cui W, Wen J, et al. Elastin‐like protein matrix reinforced with collagen microfibers for soft tissue repair. Biomaterials 2011; 32: 5371 – 5379.en_US
dc.identifier.citedreferenceLamme EN, de Vries HJ, van Veen H, et al. Extracellular matrix characterization during healing of full‐thickness wounds treated with a collagen/elastin dermal substitute shows improved skin regeneration in pigs. J Histochem Cytochem 1996; 44: 1311 – 1322.en_US
dc.identifier.citedreferenceAnnabi N, Mithieux SM, Weiss AS, et al. Cross‐linked open‐pore elastic hydrogels based on tropoelastin, elastin and high pressure CO 2. Biomaterials 2010; 31: 1655 – 1665.en_US
dc.identifier.citedreferenceVenkataraman L, Ramamurthi A. Induced elastic matrix deposition within three‐dimensional collagen scaffolds. Tissue Eng Part A 2011; 17: 2879 – 2889.en_US
dc.identifier.citedreferenceDong XR, Majesky MW. Restoring elastin with microRNA‐29. Arterioscler Thromb Vasc Biol 2012; 32: 548 – 551.en_US
dc.identifier.citedreferenceRosenbloom J, Bashir M, Yeh H, et al. Regulation of elastin gene expression. Ann N Y Acad Sci 1991; 624: 116 – 136.en_US
dc.identifier.citedreferencePierce RA, Moore CH, Arikan MC. Positive transcriptional regulatory element located within exon 1 of elastin gene. Am J Physiol Lung Cell Mol Physiol 2006; 291: L391 – L399.en_US
dc.identifier.citedreferenceShifren A, Woods JC, Rosenbluth DB, et al. Upregulation of elastin expression in constrictive bronchiolitis obliterans. Int J Chron Obstruct Pulmon Dis 2007; 2: 593 – 598.en_US
dc.identifier.citedreferenceWagenseil JE, Mecham RP. New insights into elastic fiber assembly. Birth Defects Res C Embryo Today 2007; 81: 229 – 240.en_US
dc.identifier.citedreferenceRamirez F, Rifkin DB. Extracellular microfibrils: contextual platforms for TGFbeta and BMP signaling. Curr Opin Cell Biol 2009; 21: 616 – 622.en_US
dc.identifier.citedreferenceRamirez F, Sakai LY. Biogenesis and function of fibrillin assemblies. Cell Tissue Res 2010; 339: 71 – 82.en_US
dc.identifier.citedreferenceRamirez F, Dietz HC. Marfan syndrome: from molecular pathogenesis to clinical treatment. Curr Opin Genet Dev 2007; 17: 252 – 258.en_US
dc.identifier.citedreferenceFleischmajer R, Jacobs L, Schwartz E, et al. Extracellular microfibrils are increased in localized and systemic scleroderma skin. Lab Invest 1991; 64: 791 – 798.en_US
dc.identifier.citedreferenceGodfrey M. Congenital contractural arachnodactyly. In GeneReviews™ [Internet], Pagon RA, Bird TD, Dolan CR, et al. (eds). University of Washington, Seattle: Seattle, WA; 1993.en_US
dc.identifier.citedreferenceAvvedimento EV, Gabrielli A. Stiff and tight skin: a rear window into fibrosis without inflammation. Sci Transl Med 2010; 2: 23ps13.en_US
dc.identifier.citedreferenceBarisic‐Dujmovic T, Boban I, Adams DJ, et al. Marfan‐like skeletal phenotype in the tight skin (Tsk) mouse. Calcif Tissue Int 2007; 81: 305 – 315.en_US
dc.identifier.citedreferenceMangasser‐Stephan K, Gartung C, Lahme B, et al. Expression of isoforms and splice variants of the latent transforming growth factor beta binding protein (LTBP) in cultured human liver myofibroblasts. Liver 2001; 21: 105 – 113.en_US
dc.identifier.citedreferenceZilberberg L, Todorovic V, Dabovic B, et al. Specificity of latent TGF‐ss binding protein (LTBP) incorporation into matrix: role of fibrillins and fibronectin. J Cell Physiol 2012; 227: 3828 – 3836.en_US
dc.identifier.citedreferenceDallas SL, Sivakumar P, Jones CJ, et al. Fibronectin regulates latent transforming growth factor‐beta (TGF beta) by controlling matrix assembly of latent TGF beta‐binding protein‐1. J Biol Chem 2005; 280: 18871 – 18880.en_US
dc.identifier.citedreferenceAnnes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci 2003; 116: 217 – 224.en_US
dc.identifier.citedreferenceDesmoulière A, Geinoz A, Gabbiani F, et al. Transforming growth factor‐beta 1 induces alpha‐smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 1993; 122: 103 – 111.en_US
dc.identifier.citedreferenceSerini G, Gabbiani G. Modulation of alpha‐smooth muscle actin expression in fibroblasts by transforming growth factor‐beta isoforms: an in vivo and in vitro study. Wound Rep Reg 1996; 4: 278 – 287.en_US
dc.identifier.citedreferenceShah M, Foreman DM, Ferguson MW. Neutralisation of TGF‐beta 1 and TGF‐beta 2 or exogenous addition of TGF‐beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 1995; 108: 985 – 1002.en_US
dc.identifier.citedreferenceYoshinaga K, Obata H, Jurukovski V, et al. Perturbation of transforming growth factor (TGF)‐beta1 association with latent TGF‐beta binding protein yields inflammation and tumors. Proc Natl Acad Sci U S A 2008; 105: 18758 – 18763.en_US
dc.identifier.citedreferenceHynes RO. The extracellular matrix: not just pretty fibrils. Science 2009; 326: 1216 – 1219.en_US
dc.identifier.citedreferenceTodorovic V, Rifkin DB. LTBPs, more than just an escort service. J Cell Biochem 2012; 113: 410 – 418.en_US
dc.identifier.citedreferenceJenkins G. The role of proteases in transforming growth factor‐beta activation. Int J Biochem Cell Biol 2008; 40: 1068 – 1078.en_US
dc.identifier.citedreferenceWipff PJ, Hinz B. Integrins and the activation of latent transforming growth factor beta1 – an intimate relationship. Eur J Cell Biol 2008; 87: 601 – 615.en_US
dc.identifier.citedreferenceBradshaw AD. The role of SPARC in extracellular matrix assembly. J Cell Commun Signal 2009; 3: 239 – 246.en_US
dc.identifier.citedreferenceCrawford SE, Stellmach V, Murphy‐Ullrich JE, et al. Thrombospondin‐1 is a major activator of TGF‐beta1 in vivo. Cell 1998; 93: 1159 – 1170.en_US
dc.identifier.citedreferenceFrangogiannis NG. Matricellular proteins in cardiac adaptation and disease. Physiol Rev 2012; 92: 635 – 688.en_US
dc.identifier.citedreferenceGrotendorst GR, Duncan MR. Individual domains of connective tissue growth factor regulate fibroblast proliferation and myofibroblast differentiation. FASEB J 2005; 19: 729 – 738.en_US
dc.identifier.citedreferenceHarris BS, Zhang Y, Card L, et al. SPARC regulates collagen interaction with cardiac fibroblast cell surfaces. Am J Physiol Heart Circ Physiol 2011; 301: H841 – H847.en_US
dc.identifier.citedreferenceKos K, Wilding JP. SPARC: a key player in the pathologies associated with obesity and diabetes. Nature Rev Endocrinol 2010; 6: 225 – 235.en_US
dc.identifier.citedreferenceLenga Y, Koh A, Perera AS, et al. Osteopontin expression is required for myofibroblast differentiation. Circ Res 2008; 102: 319 – 327.en_US
dc.identifier.citedreferenceMcCurdy S, Baicu CF, Heymans S, et al. Cardiac extracellular matrix remodeling: fibrillar collagens and Secreted Protein Acidic and Rich in Cysteine (SPARC). J Mol Cell Cardiol 2010; 48: 544 – 549.en_US
dc.identifier.citedreferenceMcCurdy SM, Dai Q, Zhang J, et al. SPARC mediates early extracellular matrix remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 2011; 301: H497 – H505.en_US
dc.identifier.citedreferenceMori R, Shaw TJ, Martin P. Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring. J Exp Med 2008; 205: 43 – 51.en_US
dc.identifier.citedreferenceRentz TJ, Poobalarahi F, Bornstein P, et al. SPARC regulates processing of procollagen I and collagen fibrillogenesis in dermal fibroblasts. J Biol Chem 2007; 282: 22062 – 22071.en_US
dc.identifier.citedreferenceSingh M, Foster CR, Dalal S, et al. Osteopontin: role in extracellular matrix deposition and myocardial remodeling post‐MI. J Mol Cell Cardiol 2010; 48: 538 – 543.en_US
dc.identifier.citedreferenceSweetwyne MT, Murphy‐Ullrich JE. Thrombospondin1 in tissue repair and fibrosis: TGF‐β‐dependent and independent mechanisms. Matrix Biol 2012; 31: 178 – 186.en_US
dc.identifier.citedreferenceBorkham‐Kamphorst E, van Roeyen CR, Van de Leur E, et al. CCN3/NOV small interfering RNA enhances fibrogenic gene expression in primary hepatic stellate cells and cirrhotic fat storing cell line CFSC. J Cell Commun Signal 2012; 6: 11 – 25.en_US
dc.identifier.citedreferenceColston JT, de la Rosa SD, Koehler M, et al. Wnt‐induced secreted protein‐1 is a prohypertrophic and profibrotic growth factor. Am J Physiol Heart Circ Physiol 2007; 293: H1839 ‐ H1846.en_US
dc.identifier.citedreferenceHeise RL, Stober V, Cheluvaraju C, et al. Mechanical stretch induces epithelial–mesenchymal transition in alveolar epithelia via hyaluronan activation of innate immunity. J Biol Chem 2011; 286: 17435 – 17444.en_US
dc.identifier.citedreferenceBrigstock DR, Goldschmeding R, Katsube KI, et al. Proposal for a unified CCN nomenclature. Mol Pathol 2003; 56: 127 – 128.en_US
dc.identifier.citedreferenceJun JI, Lau LF. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nature Rev Drug Discov 2011; 10: 945 – 963.en_US
dc.identifier.citedreferenceChen XM, Qi W, Pollock CA. CTGF and chronic kidney fibrosis. Frontiers Biosci 2009; 1: 132 – 141.en_US
dc.identifier.citedreferenceGressner OA, Gressner AM. Connective tissue growth factor: a fibrogenic master switch in fibrotic liver diseases. Liver Int 2008; 28: 1065 – 1079.en_US
dc.identifier.citedreferenceShi‐Wen X, Leask A, Abraham D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev 2008; 19: 133 – 144.en_US
dc.identifier.citedreferenceFonseca C, Lindahl GE, Ponticos M, et al. A polymorphism in the CTGF promoter region associated with systemic sclerosis. N Engl J Med 2007; 357: 1210 – 1220.en_US
dc.identifier.citedreferenceShi‐wen X, Kennedy L, Renzoni EA, et al. Endothelin is a downstream mediator of profibrotic responses to transforming growth factor beta in human lung fibroblasts. Arthritis Rheum 2007; 56: 4189 – 4194.en_US
dc.identifier.citedreferenceBrigstock DR. Connective tissue growth factor (CCN2, CTGF) and organ fibrosis: lessons from transgenic animals. J Cell Commun Signal 2010; 4: 1 – 4.en_US
dc.identifier.citedreferenceWang Q, Usinger W, Nichols B, et al. Cooperative interaction of CTGF and TGF‐beta in animal models of fibrotic disease. Fibrogenesis Tissue Repair 2011; 4: 4.en_US
dc.identifier.citedreferenceYates CC, Bodnar R, Wells A. Matrix control of scarring. Cell Mol Life Sci 2011; 68: 1871 – 1881.en_US
dc.identifier.citedreferenceTamaoki M, Imanaka‐Yoshida K, Yokoyama K, et al. Tenascin‐C regulates recruitment of myofibroblasts during tissue repair after myocardial injury. Am J Pathol 2005; 167: 71 – 80.en_US
dc.identifier.citedreferenceChiquet‐Ehrismann R, Chiquet M. Tenascins: regulation and putative functions during pathological stress. J Pathol 2003; 200: 488 – 499.en_US
dc.identifier.citedreferenceCarey WA, Taylor GD, Dean WB, et al. Tenascin‐C deficiency attenuates TGF‐ss‐mediated fibrosis following murine lung injury. Am J Physiol Lung Cell Mol Physiol 2010; 299: L785 – L793.en_US
dc.identifier.citedreferenceEl‐Karef A, Yoshida T, Gabazza EC, et al. Deficiency of tenascin‐C attenuates liver fibrosis in immune‐mediated chronic hepatitis in mice. J Pathol 2007; 211: 86 – 94.en_US
dc.identifier.citedreferenceMao JR, Taylor G, Dean WB, et al. Tenascin‐X deficiency mimics Ehlers–Danlos syndrome in mice through alteration of collagen deposition. Nature Genet 2002; 30: 421 – 425.en_US
dc.identifier.citedreferenceBurch GH, Gong Y, Liu W, et al. Tenascin‐X deficiency is associated with Ehlers–Danlos syndrome. Nature Genet 1997; 17: 104 – 108.en_US
dc.identifier.citedreferenceEgging D, van Vlijmen‐Willems I, van Tongeren T, et al. Wound healing in tenascin‐X deficient mice suggests that tenascin‐X is involved in matrix maturation rather than matrix deposition. Connect Tissue Res 2007; 48: 93 – 98.en_US
dc.identifier.citedreferenceChen Q, Sivakumar P, Barley C, et al. Potential role for heparan sulfate proteoglycans in regulation of transforming growth factor‐beta (TGF‐beta) by modulating assembly of latent TGF‐beta‐binding protein‐1. J Biol Chem 2007; 282: 26418 – 26430.en_US
dc.identifier.citedreferenceGressner OA, Weiskirchen R, Gressner AM. Biomarkers of hepatic fibrosis, fibrogenesis and genetic pre‐disposition pending between fiction and reality. J Cell Mol Med 2007; 11: 1031 – 1051.en_US
dc.identifier.citedreferenceWebber J, Jenkins RH, Meran S, et al. Modulation of TGFbeta1‐dependent myofibroblast differentiation by hyaluronan. Am J Pathol 2009; 175: 148 – 160.en_US
dc.identifier.citedreferenceSimpson RM, Meran S, Thomas D, et al. Age‐related changes in pericellular hyaluronan organization leads to impaired dermal fibroblast to myofibroblast differentiation. Am J Pathol 2009; 175: 1915 – 1928.en_US
dc.identifier.citedreferenceIto T, Williams JD, Fraser D, et al. Hyaluronan attenuates transforming growth factor‐beta1‐mediated signaling in renal proximal tubular epithelial cells. Am J Pathol 2004; 164: 1979 – 1988.en_US
dc.identifier.citedreferenceTwarock S, Tammi MI, Savani RC, et al. Hyaluronan stabilizes focal adhesions, filopodia, and the proliferative phenotype in esophageal squamous carcinoma cells. J Biol Chem 2010; 285: 23274 – 23282.en_US
dc.identifier.citedreferenceHinz B, Dugina V, Ballestrem C, et al. Alpha‐smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts. Mol Biol Cell 2003; 14: 2508 – 2519.en_US
dc.identifier.citedreferenceAcharya PS, Majumdar S, Jacob M, et al. Fibroblast migration is mediated by CD44‐dependent TGF beta activation. J Cell Sci 2008; 121: 1393 – 1402.en_US
dc.identifier.citedreferenceLi Y, Jiang D, Liang J, et al. Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. J Exp Med 2011; 208: 1459 – 1471.en_US
dc.identifier.citedreferenceFrangogiannis NG. Syndecan‐1: a critical mediator in cardiac fibrosis. Hypertension 2010; 55: 233 – 235.en_US
dc.identifier.citedreferenceBartlett AH, Hayashida K, Park PW. Molecular and cellular mechanisms of syndecans in tissue injury and inflammation. Mol Cells 2007; 24: 153 – 166.en_US
dc.identifier.citedreferenceKliment CR, Oury TD. Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radic Biol Med 2010; 49: 707 – 717.en_US
dc.identifier.citedreferenceKliment CR, Englert JM, Gochuico BR, et al. Oxidative stress alters syndecan‐1 distribution in lungs with pulmonary fibrosis. J Biol Chem 2009; 284: 3537 – 3545.en_US
dc.identifier.citedreferenceStepp MA, Daley WP, Bernstein AM, et al. Syndecan‐1 regulates cell migration and fibronectin fibril assembly. Exp Cell Res 2010; 316: 2322 – 2339.en_US
dc.identifier.citedreferenceChen L, Klass C, Woods A. Syndecan‐2 regulates transforming growth factor‐beta signaling. J Biol Chem 2004; 279: 15715 – 15718.en_US
dc.identifier.citedreferenceMatsui Y, Ikesue M, Danzaki K, et al. Syndecan‐4 prevents cardiac rupture and dysfunction after myocardial infarction. Circ Res 2011; 108: 1328 – 1339.en_US
dc.identifier.citedreferenceJiang D, Liang J, Campanella GS, et al. Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan‐4. J Clin Invest 2010; 120: 2049 – 2057.en_US
dc.identifier.citedreferenceKalamajski S, Oldberg A. The role of small leucine‐rich proteoglycans in collagen fibrillogenesis. Matrix Biol 2010; 29: 248 – 253.en_US
dc.identifier.citedreferenceHildebrand A, Romaris M, Rasmussen LM, et al. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J 1994; 302: 527 – 534.en_US
dc.identifier.citedreferenceIozzo RV, Schaefer L. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine‐rich proteoglycans. FEBS J 2010; 277: 3864 – 3875.en_US
dc.identifier.citedreferenceHonardoust D, Varkey M, Hori K, et al. Small leucine‐rich proteoglycans, decorin and fibromodulin, are reduced in postburn hypertrophic scar. Wound Repair Regen 2011; 19: 368 – 378.en_US
dc.identifier.citedreferenceYamaguchi Y, Mann DM, Ruoslahti E. Negative regulation of transforming growth factor‐beta by the proteoglycan decorin. Nature 1990; 346: 281 – 284.en_US
dc.identifier.citedreferenceMelchior‐Becker A, Dai G, Ding Z, et al. Deficiency of biglycan causes cardiac fibroblasts to differentiate into a myofibroblast phenotype. J Biol Chem 2011; 286: 17365 – 17375.en_US
dc.identifier.citedreferenceFunderburgh JL, Caterson B, Conrad GW. Distribution of proteoglycans antigenically related to corneal keratan sulfate proteoglycan. J Biol Chem 1987; 262: 11634 – 11640.en_US
dc.identifier.citedreferenceLiu F, Mih JD, Shea BS, et al. Feedback amplification of fibrosis through matrix stiffening and COX‐2 suppression. J Cell Biol 2010; 190: 693 – 706.en_US
dc.identifier.citedreferenceGrenard P, Bates MK, Aeschlimann D. Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J Biol Chem 2001; 276: 33066 – 33078.en_US
dc.identifier.citedreferenceLorand L, Graham RM. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nature Rev Mol Cell Biol 2003; 4: 140 – 156.en_US
dc.identifier.citedreferenceAeschlimann D, Paulsson M. Transglutaminases: protein cross‐linking enzymes in tissues and body fluids. Thromb Haemost 1994; 71: 402 – 415.en_US
dc.identifier.citedreferenceEsposito C, Caputo I. Mammalian transglutaminases. Identification of substrates as a key to physiological function and physiopathological relevance. FEBS J 2005; 272: 615 – 631.en_US
dc.identifier.citedreferenceGundemir S, Colak G, Tucholski J, et al. Transglutaminase 2: a molecular Swiss army knife. Biochim Biophys Acta 2012; 1823: 406 – 419.en_US
dc.identifier.citedreferenceNurminskaya MV, Belkin AM. Cellular functions of tissue transglutaminase. Int Rev Cell Mol Biol 2012; 294: 1 – 97.en_US
dc.identifier.citedreferenceWang Z, Griffin M. TG2, a novel extracellular protein with multiple functions. Amino Acids 2012; 42: 939 – 949.en_US
dc.identifier.citedreferenceHuang L, Haylor JL, Hau Z, et al. Transglutaminase inhibition ameliorates experimental diabetic nephropathy. Kidney Int 2009; 76: 383 – 394.en_US
dc.identifier.citedreferenceKagan HM. Lysyl oxidase: mechanism, regulation and relationship to liver fibrosis. Pathol Res Pract 1994; 190: 910 – 919.en_US
dc.identifier.citedreferenceSmith‐Mungo LI, Kagan HM. Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol 1998; 16: 387 – 398.en_US
dc.identifier.citedreferenceKagan HM. Intra‐ and extracellular enzymes of collagen biosynthesis as biological and chemical targets in the control of fibrosis. Acta Trop 2000; 77: 147 – 152.en_US
dc.identifier.citedreferenceLopez B, Gonzalez A, Hermida N, et al. Role of lysyl oxidase in myocardial fibrosis: from basic science to clinical aspects. Am J Physiol Heart Circ Physiol 2010; 299: H1 – H9.en_US
dc.identifier.citedreferenceRoy R, Polgar P, Wang Y, et al. Regulation of lysyl oxidase and cyclooxygenase expression in human lung fibroblasts: interactions among TGF‐beta, IL‐1 beta, and prostaglandin E. J Cell Biochem 1996; 62: 411 – 417.en_US
dc.identifier.citedreferenceVoloshenyuk TG, Landesman ES, Khoutorova E, et al. Induction of cardiac fibroblast lysyl oxidase by TGF‐beta1 requires PI3K/Akt, Smad3, and MAPK signaling. Cytokine 2011; 55: 90 – 97.en_US
dc.identifier.citedreferenceGoto Y, Uchio‐Yamada K, Anan S, et al. Transforming growth factor‐beta1 mediated up‐regulation of lysyl oxidase in the kidneys of hereditary nephrotic mouse with chronic renal fibrosis. Virchows Arch 2005; 447: 859 – 868.en_US
dc.identifier.citedreferenceChanoki M, Ishii M, Kobayashi H, et al. Increased expression of lysyl oxidase in skin with scleroderma. Br J Dermatol 1995; 133: 710 – 715.en_US
dc.identifier.citedreferenceDi Donato A, Ghiggeri GM, Di Duca M, et al. Lysyl oxidase expression and collagen cross‐linking during chronic adriamycin nephropathy. Nephron 1997; 76: 192 – 200.en_US
dc.identifier.citedreferenceCounts DF, Evans JN, Dipetrillo TA, et al. Collagen lysyl oxidase activity in the lung increases during bleomycin‐induced lung fibrosis. J Pharmacol Exp Ther 1981; 219: 675 – 678.en_US
dc.identifier.citedreferenceLopez B, Querejeta R, Gonzalez A, et al. Collagen cross‐linking but not collagen amount associates with elevated filling pressures in hypertensive patients with stage C heart failure: potential role of lysyl oxidase. Hypertension 2012; 60: 677 – 683.en_US
dc.identifier.citedreferenceNoblesse E, Cenizo V, Bouez C, et al. Lysyl oxidase‐like and lysyl oxidase are present in the dermis and epidermis of a skin equivalent and in human skin and are associated to elastic fibers. J Invest Dermatol 2004; 122: 621 – 630.en_US
dc.identifier.citedreferenceBarker HE, Chang J, Cox TR, et al. LOXL2‐mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res 2011; 71: 1561 – 1572.en_US
dc.identifier.citedreferenceVadasz Z, Kessler O, Akiri G, et al. Abnormal deposition of collagen around hepatocytes in Wilson's disease is associated with hepatocyte specific expression of lysyl oxidase and lysyl oxidase like protein‐2. J Hepatol 2005; 43: 499 – 507.en_US
dc.identifier.citedreferenceVerzijl N, DeGroot J, Thorpe SR, et al. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 2000; 275: 39027 – 39031.en_US
dc.identifier.citedreferenceSivan SS, Wachtel E, Tsitron E, et al. Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J Biol Chem 2008; 283: 8796 – 8801.en_US
dc.identifier.citedreferencevan Heerebeek L, Hamdani N, Handoko ML, et al. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 2008; 117: 43 – 51.en_US
dc.identifier.citedreferenceSingh BK, Mascarenhas DD. Bioactive peptides control receptor for advanced glycated end product‐induced elevation of kidney insulin receptor substrate 2 and reduce albuminuria in diabetic mice. Am J Nephrol 2008; 28: 890 – 899.en_US
dc.identifier.citedreferenceTang M, Zhang W, Lin H, et al. High glucose promotes the production of collagen types I and III by cardiac fibroblasts through a pathway dependent on extracellular‐signal‐regulated kinase 1/2. Mol Cell Biochem 2007; 301: 109 – 114.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.