Concise Review: The Evolution of human pluripotent stem cell culture: From feeder cells to synthetic coatings
dc.contributor.author | Villa‐diaz, L.g. | en_US |
dc.contributor.author | Ross, A.M. | en_US |
dc.contributor.author | Lahann, J. | en_US |
dc.contributor.author | Krebsbach, P.H. | en_US |
dc.date.accessioned | 2013-01-03T19:35:38Z | |
dc.date.available | 2014-03-03T15:09:23Z | en_US |
dc.date.issued | 2013-01 | en_US |
dc.identifier.citation | Villa‐diaz, L.g. ; Ross, A.M.; Lahann, J.; Krebsbach, P.H. (2013). "Concise Review: The Evolution of human pluripotent stem cell culture: From feeder cells to synthetic coatings ." STEM CELLS 31(1): 1-7. <http://hdl.handle.net/2027.42/94687> | en_US |
dc.identifier.issn | 1066-5099 | en_US |
dc.identifier.issn | 1549-4918 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/94687 | |
dc.description.abstract | Current practices to maintain human pluripotent stem cells (hPSCs), which include induced pluripotent stem cells and embryonic stem cells, in an undifferentiated state typically depend on the support of feeder cells such as mouse embryonic fibroblasts (MEFs) or an extracellular matrix such as Matrigel. Culture conditions that depend on these undefined support systems limit our ability to interpret mechanistic studies aimed at resolving how hPSCs interact with their extracellular environment to remain in a unique undifferentiated state and to make fate‐changing lineage decisions. Likewise, the xenogeneic components of MEFs and Matrigel ultimately hinder our ability to use pluripotent stem cells to treat debilitating human diseases. Many of these obstacles have been overcome by the development of synthetic coatings and bioreactors that support hPSC expansion and self‐renewal within defined culture conditions that are free from xenogeneic contamination. The establishment of defined culture conditions and synthetic matrices will facilitate studies to more precisely probe the molecular basis of pluripotent stem cell self‐renewal and differentiation. When combined with three‐dimensional cultures in bioreactors, these systems will also enable large‐scale expansion for future clinical applications. S TEM C ells 2013;31:1–7 | en_US |
dc.publisher | Wiley Subscription Services, Inc., A Wiley Company | en_US |
dc.subject.other | Human Embryonic Stem Cells | en_US |
dc.subject.other | Polymer Coatings | en_US |
dc.subject.other | Self‐Renewal | en_US |
dc.subject.other | Differentiation | en_US |
dc.subject.other | Pluripotent Stem Cells | en_US |
dc.subject.other | Induced Pluripotent Stem Cells | en_US |
dc.title | Concise Review: The Evolution of human pluripotent stem cell culture: From feeder cells to synthetic coatings | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave, Ann Arbor, Michigan 48109‐1078, USA | en_US |
dc.contributor.affiliationum | Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA | en_US |
dc.contributor.affiliationother | Department of Biologic & Materials Sciences, School of Dentistry | en_US |
dc.contributor.affiliationother | Department of Chemical Engineering | en_US |
dc.identifier.pmid | 23081828 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/94687/1/1260_ftp.pdf | |
dc.identifier.doi | 10.1002/stem.1260 | en_US |
dc.identifier.source | STEM CELLS | en_US |
dc.identifier.citedreference | Fonseca KB, Bidarra SJ, Oliveira MJ et al. Molecularly designed alginate hydrogels susceptible to local proteolysis as three‐dimensional cellular microenvironments. Acta Biomater 2011; 7: 1674 1682. | en_US |
dc.identifier.citedreference | Rottem S, Barile MF. Beware of mycoplasmas. Trends Biotechnol 1993; 11: 143 – 151. | en_US |
dc.identifier.citedreference | Mallon BS, Park KY, Chen KG et al. Toward xeno‐free culture of human embryonic stem cells. Int J Biochem Cell Biol 2006; 38: 1063 – 1075. | en_US |
dc.identifier.citedreference | Stacey GN, Cobo F, Nieto A et al. The development of ‘feeder’ cells for the preparation of clinical grade hES cell lines: Challenges and solutions. J Biotechnol 2006; 125: 583 – 588. | en_US |
dc.identifier.citedreference | Kleinman HK, McGarvey ML, Liotta LA et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 1982; 21: 6188 – 6193. | en_US |
dc.identifier.citedreference | Nishiuchi R, Takagi J, Hayashi M et al. Ligand‐binding specificities of laminin‐binding integrins: A comprehensive survey of laminin‐integrin interactions using recombinant alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4 integrins. Matrix Biol 2006; 25: 189 – 197. | en_US |
dc.identifier.citedreference | Miner JH, Li C, Mudd JL et al. Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development 2004; 131: 2247 – 2256. | en_US |
dc.identifier.citedreference | Domogatskaya A, Rodin S, Boutaud A et al. Laminin–511 but not –332, –111, or –411 enables mouse embryonic stem cell self‐renewal in vitro. Stem Cells 2008; 26: 2800 – 2809. | en_US |
dc.identifier.citedreference | Li L, Wang S, Jezierski A et al. A unique interplay between Rap1 and E‐cadherin in the endocytic pathway regulates self‐renewal of human embryonic stem cells. Stem Cells 2010; 28: 247 – 257. | en_US |
dc.identifier.citedreference | Xu Y, Zhu X, Hahm HS et al. Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self‐renewal by small molecules. Proc Natl Acad Sci USA 2010; 107: 8129 – 8134. | en_US |
dc.identifier.citedreference | Ross AM, Nandivada H, Ryan AL et al. Synthetic substrates for long‐term stem cell culture. Polymer 2012; 53: 2533 – 2539. | en_US |
dc.identifier.citedreference | Segers VF, Lee RT. Stem‐cell therapy for cardiac disease. Nature 2008; 451: 937 – 942. | en_US |
dc.identifier.citedreference | Chen W, Villa‐Diaz LG, Sun Y et al. Nanotopography influences adhesion, spreading, and self‐renewal of human embryonic stem cells. ACS Nano 2012; 6: 4094 – 4103. | en_US |
dc.identifier.citedreference | Sun Y, Villa‐Diaz LG, Lam RH et al. Mechanics regulates fate decisions of human embryonic stem cells. PLoS One 2012; 7: e37178. | en_US |
dc.identifier.citedreference | Kohen NT, Little LE, Healy KE. Characterization of Matrigel interfaces during defined human embryonic stem cell culture. Biointerphases 2009; 4: 69 – 79. | en_US |
dc.identifier.citedreference | Amit M, Chebath J, Margulets V et al. Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev 2010; 6: 248 – 259. | en_US |
dc.identifier.citedreference | Steiner D, Khaner H, Cohen M et al. Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol 2010; 28: 361 – 364. | en_US |
dc.identifier.citedreference | Olmer R, Haase A, Merkert S et al. Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res 2010; 5: 51 – 64. | en_US |
dc.identifier.citedreference | Singh H, Mok P, Balakrishnan T et al. Up‐scaling single cell‐inoculated suspension culture of human embryonic stem cells. Stem Cell Res 2010; 4: 165 – 179. | en_US |
dc.identifier.citedreference | Maitra A, Arking DE, Shivapurkar N et al. Genomic alterations in cultured human embryonic stem cells. Nat Genet 2005; 37: 1099 – 1103. | en_US |
dc.identifier.citedreference | Amps K, Andrews PW, Anyfantis G et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 2011; 29: 1132 – 1144. | en_US |
dc.identifier.citedreference | Elliott AM, Elliott KA, Kammesheidt A. High resolution array‐CGH characterization of human stem cells using a stem cell focused microarray. Mol Biotechnol 2010; 46: 234 – 242. | en_US |
dc.identifier.citedreference | Beaulieu N, Morin S, Chute IC et al. An essential role for DNA methyltransferase DNMT3B in cancer cell survival. J Biol Chem 2002; 277: 28176 – 28181. | en_US |
dc.identifier.citedreference | Bai H, Chen K, Gao YX et al. Bcl‐xL enhances single‐cell survival and expansion of human embryonic stem cells without affecting self‐renewal. Stem Cell Res 2012; 8: 26 – 37. | en_US |
dc.identifier.citedreference | Barone MV, Pepperkok R, Peverali FA et al. Id proteins control growth induction in mammalian cells. Proc Natl Acad Sci USA 1994; 91: 4985 – 4988. | en_US |
dc.identifier.citedreference | Wutz A. Epigenetic alterations in human pluripotent stem cells: A tale of two cultures. Cell Stem Cell 2012; 11: 9 – 15. | en_US |
dc.identifier.citedreference | Engler AJ, Sen S, Sweeney HL et al. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126: 677 – 689. | en_US |
dc.identifier.citedreference | Thomson JA, Itskovitz‐Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145 – 1147. | en_US |
dc.identifier.citedreference | Yu J, Vodyanik MA, Smuga‐Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318 – 1917 1920. | en_US |
dc.identifier.citedreference | Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861 – 872. | en_US |
dc.identifier.citedreference | Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154 – 156. | en_US |
dc.identifier.citedreference | Williams RL, Hilton DJ, Pease S et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 1988; 336: 684 – 687. | en_US |
dc.identifier.citedreference | Xu C, Inokuma MS, Denham J et al. Feeder‐free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 2001; 19: 971 – 974. | en_US |
dc.identifier.citedreference | Li Y, Powell S, Brunette E et al. Expansion of human embryonic stem cells in defined serum‐free medium devoid of animal‐derived products. Biotechnol Bioeng 2005; 91: 688 – 698. | en_US |
dc.identifier.citedreference | Lu J, Hou R, Booth CJ et al. Defined culture conditions of human embryonic stem cells. Proc Natl Acad Sci USA 2006; 103: 5688 – 5693. | en_US |
dc.identifier.citedreference | Yao S, Chen S, Clark J et al. Long‐term self‐renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 2006; 103: 6907 – 6912. | en_US |
dc.identifier.citedreference | Ludwig TE, Levenstein ME, Jones JM et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006; 24: 185 – 187. | en_US |
dc.identifier.citedreference | Wang L, Schulz TC, Sherrer ES et al. Self‐renewal of human embryonic stem cells requires insulin‐like growth factor‐1 receptor and ERBB2 receptor signaling. Blood 2007; 110: 4111 – 4119. | en_US |
dc.identifier.citedreference | Derda R, Li L, Orner BP et al. Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS Chem Biol 2007; 2: 347 – 355. | en_US |
dc.identifier.citedreference | Miyazaki T, Futaki S, Hasegawa K et al. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun 2008; 375: 27 – 32. | en_US |
dc.identifier.citedreference | Braam SR, Zeinstra L, Litjens S et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self‐renewal via alphavbeta5 integrin. Stem Cells 2008; 26: 2257 – 2265. | en_US |
dc.identifier.citedreference | Chen G, Gulbranson DR, Hou Z et al. Chemically defined conditions for human iPSC derivation and culture. Nat Methods 2011; 8: 424 – 429. | en_US |
dc.identifier.citedreference | Nagaoka M, Si‐Tayeb K, Akaike T et al. Culture of human pluripotent stem cells using completely defined conditions on a recombinant E‐cadherin substratum. BMC Dev Biol 2010; 10: 60. | en_US |
dc.identifier.citedreference | Brafman DA, Chang CW, Fernandez A et al. Long‐term human pluripotent stem cell self‐renewal on synthetic polymer surfaces. Biomaterials 2010; 31: 9135 – 9144. | en_US |
dc.identifier.citedreference | Klim JR, Li L, Wrighton PJ et al. A defined glycosaminoglycan‐binding substratum for human pluripotent stem cells. Nat Methods 2010; 7: 989 – 994. | en_US |
dc.identifier.citedreference | Mei Y, Saha K, Bogatyrev SR et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 2010; 9: 768 – 778. | en_US |
dc.identifier.citedreference | Melkoumian Z, Weber JL, Weber DM et al. Synthetic peptide‐acrylate surfaces for long‐term self‐renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 2010; 28: 606 – 610. | en_US |
dc.identifier.citedreference | Irwin EF, Gupta R, Dashti DC et al. Engineered polymer‐media interfaces for the long‐term self‐renewal of human embryonic stem cells. Biomaterials 2011; 32: 6912 – 6919. | en_US |
dc.identifier.citedreference | Villa‐Diaz LG, Nandivada H, Ding J et al. Synthetic polymer coatings for long‐term growth of human embryonic stem cells. Nat Biotechnol 2010; 28: 581 – 583. | en_US |
dc.identifier.citedreference | Nandivada H, Villa‐Diaz LG, O'Shea KS et al. Fabrication of synthetic polymer coatings and their use in feeder‐free culture of human embryonic stem cells. Nat Protoc 2011; 6: 1037 – 1043. | en_US |
dc.identifier.citedreference | Villa‐Diaz LG, Brown SE, Liu Y et al. Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates. Stem Cells 2012; 30: 1174 – 1181. | en_US |
dc.identifier.citedreference | Hongisto H, Vuoristo S, Mikhailova A et al. Laminin‐511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture. Stem Cell Res 2012; 8: 97 – 108. | en_US |
dc.identifier.citedreference | Eiselleova L, Peterkova I, Neradil J et al. Comparative study of mouse and human feeder cells for human embryonic stem cells. Int J Dev Biol 2008; 52: 353 – 363. | en_US |
dc.identifier.citedreference | Villa‐Diaz LG, Pacut C, Slawny NA et al. Analysis of the factors that limit the ability of feeder‐cells to maintain the undifferentiated state of human embryonic stem cells. Stem Cells Dev 2008; 18: 641 – 651. | en_US |
dc.identifier.citedreference | Martin MJ, Muotri A, Gage F et al. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 2005; 11: 228 – 232. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.