Show simple item record

Concise Review: The Evolution of human pluripotent stem cell culture: From feeder cells to synthetic coatings

dc.contributor.authorVilla‐diaz, L.g.en_US
dc.contributor.authorRoss, A.M.en_US
dc.contributor.authorLahann, J.en_US
dc.contributor.authorKrebsbach, P.H.en_US
dc.date.accessioned2013-01-03T19:35:38Z
dc.date.available2014-03-03T15:09:23Zen_US
dc.date.issued2013-01en_US
dc.identifier.citationVilla‐diaz, L.g. ; Ross, A.M.; Lahann, J.; Krebsbach, P.H. (2013). "Concise Review: The Evolution of human pluripotent stem cell culture: From feeder cells to synthetic coatings ." STEM CELLS 31(1): 1-7. <http://hdl.handle.net/2027.42/94687>en_US
dc.identifier.issn1066-5099en_US
dc.identifier.issn1549-4918en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94687
dc.description.abstractCurrent practices to maintain human pluripotent stem cells (hPSCs), which include induced pluripotent stem cells and embryonic stem cells, in an undifferentiated state typically depend on the support of feeder cells such as mouse embryonic fibroblasts (MEFs) or an extracellular matrix such as Matrigel. Culture conditions that depend on these undefined support systems limit our ability to interpret mechanistic studies aimed at resolving how hPSCs interact with their extracellular environment to remain in a unique undifferentiated state and to make fate‐changing lineage decisions. Likewise, the xenogeneic components of MEFs and Matrigel ultimately hinder our ability to use pluripotent stem cells to treat debilitating human diseases. Many of these obstacles have been overcome by the development of synthetic coatings and bioreactors that support hPSC expansion and self‐renewal within defined culture conditions that are free from xenogeneic contamination. The establishment of defined culture conditions and synthetic matrices will facilitate studies to more precisely probe the molecular basis of pluripotent stem cell self‐renewal and differentiation. When combined with three‐dimensional cultures in bioreactors, these systems will also enable large‐scale expansion for future clinical applications. S TEM C ells 2013;31:1–7en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherHuman Embryonic Stem Cellsen_US
dc.subject.otherPolymer Coatingsen_US
dc.subject.otherSelf‐Renewalen_US
dc.subject.otherDifferentiationen_US
dc.subject.otherPluripotent Stem Cellsen_US
dc.subject.otherInduced Pluripotent Stem Cellsen_US
dc.titleConcise Review: The Evolution of human pluripotent stem cell culture: From feeder cells to synthetic coatingsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave, Ann Arbor, Michigan 48109‐1078, USAen_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherDepartment of Biologic & Materials Sciences, School of Dentistryen_US
dc.contributor.affiliationotherDepartment of Chemical Engineeringen_US
dc.identifier.pmid23081828en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94687/1/1260_ftp.pdf
dc.identifier.doi10.1002/stem.1260en_US
dc.identifier.sourceSTEM CELLSen_US
dc.identifier.citedreferenceFonseca KB, Bidarra SJ, Oliveira MJ et al. Molecularly designed alginate hydrogels susceptible to local proteolysis as three‐dimensional cellular microenvironments. Acta Biomater 2011; 7: 1674 1682.en_US
dc.identifier.citedreferenceRottem S, Barile MF. Beware of mycoplasmas. Trends Biotechnol 1993; 11: 143 – 151.en_US
dc.identifier.citedreferenceMallon BS, Park KY, Chen KG et al. Toward xeno‐free culture of human embryonic stem cells. Int J Biochem Cell Biol 2006; 38: 1063 – 1075.en_US
dc.identifier.citedreferenceStacey GN, Cobo F, Nieto A et al. The development of ‘feeder’ cells for the preparation of clinical grade hES cell lines: Challenges and solutions. J Biotechnol 2006; 125: 583 – 588.en_US
dc.identifier.citedreferenceKleinman HK, McGarvey ML, Liotta LA et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 1982; 21: 6188 – 6193.en_US
dc.identifier.citedreferenceNishiuchi R, Takagi J, Hayashi M et al. Ligand‐binding specificities of laminin‐binding integrins: A comprehensive survey of laminin‐integrin interactions using recombinant alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4 integrins. Matrix Biol 2006; 25: 189 – 197.en_US
dc.identifier.citedreferenceMiner JH, Li C, Mudd JL et al. Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development 2004; 131: 2247 – 2256.en_US
dc.identifier.citedreferenceDomogatskaya A, Rodin S, Boutaud A et al. Laminin–511 but not –332, –111, or –411 enables mouse embryonic stem cell self‐renewal in vitro. Stem Cells 2008; 26: 2800 – 2809.en_US
dc.identifier.citedreferenceLi L, Wang S, Jezierski A et al. A unique interplay between Rap1 and E‐cadherin in the endocytic pathway regulates self‐renewal of human embryonic stem cells. Stem Cells 2010; 28: 247 – 257.en_US
dc.identifier.citedreferenceXu Y, Zhu X, Hahm HS et al. Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self‐renewal by small molecules. Proc Natl Acad Sci USA 2010; 107: 8129 – 8134.en_US
dc.identifier.citedreferenceRoss AM, Nandivada H, Ryan AL et al. Synthetic substrates for long‐term stem cell culture. Polymer 2012; 53: 2533 – 2539.en_US
dc.identifier.citedreferenceSegers VF, Lee RT. Stem‐cell therapy for cardiac disease. Nature 2008; 451: 937 – 942.en_US
dc.identifier.citedreferenceChen W, Villa‐Diaz LG, Sun Y et al. Nanotopography influences adhesion, spreading, and self‐renewal of human embryonic stem cells. ACS Nano 2012; 6: 4094 – 4103.en_US
dc.identifier.citedreferenceSun Y, Villa‐Diaz LG, Lam RH et al. Mechanics regulates fate decisions of human embryonic stem cells. PLoS One 2012; 7: e37178.en_US
dc.identifier.citedreferenceKohen NT, Little LE, Healy KE. Characterization of Matrigel interfaces during defined human embryonic stem cell culture. Biointerphases 2009; 4: 69 – 79.en_US
dc.identifier.citedreferenceAmit M, Chebath J, Margulets V et al. Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev 2010; 6: 248 – 259.en_US
dc.identifier.citedreferenceSteiner D, Khaner H, Cohen M et al. Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol 2010; 28: 361 – 364.en_US
dc.identifier.citedreferenceOlmer R, Haase A, Merkert S et al. Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res 2010; 5: 51 – 64.en_US
dc.identifier.citedreferenceSingh H, Mok P, Balakrishnan T et al. Up‐scaling single cell‐inoculated suspension culture of human embryonic stem cells. Stem Cell Res 2010; 4: 165 – 179.en_US
dc.identifier.citedreferenceMaitra A, Arking DE, Shivapurkar N et al. Genomic alterations in cultured human embryonic stem cells. Nat Genet 2005; 37: 1099 – 1103.en_US
dc.identifier.citedreferenceAmps K, Andrews PW, Anyfantis G et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 2011; 29: 1132 – 1144.en_US
dc.identifier.citedreferenceElliott AM, Elliott KA, Kammesheidt A. High resolution array‐CGH characterization of human stem cells using a stem cell focused microarray. Mol Biotechnol 2010; 46: 234 – 242.en_US
dc.identifier.citedreferenceBeaulieu N, Morin S, Chute IC et al. An essential role for DNA methyltransferase DNMT3B in cancer cell survival. J Biol Chem 2002; 277: 28176 – 28181.en_US
dc.identifier.citedreferenceBai H, Chen K, Gao YX et al. Bcl‐xL enhances single‐cell survival and expansion of human embryonic stem cells without affecting self‐renewal. Stem Cell Res 2012; 8: 26 – 37.en_US
dc.identifier.citedreferenceBarone MV, Pepperkok R, Peverali FA et al. Id proteins control growth induction in mammalian cells. Proc Natl Acad Sci USA 1994; 91: 4985 – 4988.en_US
dc.identifier.citedreferenceWutz A. Epigenetic alterations in human pluripotent stem cells: A tale of two cultures. Cell Stem Cell 2012; 11: 9 – 15.en_US
dc.identifier.citedreferenceEngler AJ, Sen S, Sweeney HL et al. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126: 677 – 689.en_US
dc.identifier.citedreferenceThomson JA, Itskovitz‐Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145 – 1147.en_US
dc.identifier.citedreferenceYu J, Vodyanik MA, Smuga‐Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318 – 1917 1920.en_US
dc.identifier.citedreferenceTakahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861 – 872.en_US
dc.identifier.citedreferenceEvans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154 – 156.en_US
dc.identifier.citedreferenceWilliams RL, Hilton DJ, Pease S et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 1988; 336: 684 – 687.en_US
dc.identifier.citedreferenceXu C, Inokuma MS, Denham J et al. Feeder‐free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 2001; 19: 971 – 974.en_US
dc.identifier.citedreferenceLi Y, Powell S, Brunette E et al. Expansion of human embryonic stem cells in defined serum‐free medium devoid of animal‐derived products. Biotechnol Bioeng 2005; 91: 688 – 698.en_US
dc.identifier.citedreferenceLu J, Hou R, Booth CJ et al. Defined culture conditions of human embryonic stem cells. Proc Natl Acad Sci USA 2006; 103: 5688 – 5693.en_US
dc.identifier.citedreferenceYao S, Chen S, Clark J et al. Long‐term self‐renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 2006; 103: 6907 – 6912.en_US
dc.identifier.citedreferenceLudwig TE, Levenstein ME, Jones JM et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006; 24: 185 – 187.en_US
dc.identifier.citedreferenceWang L, Schulz TC, Sherrer ES et al. Self‐renewal of human embryonic stem cells requires insulin‐like growth factor‐1 receptor and ERBB2 receptor signaling. Blood 2007; 110: 4111 – 4119.en_US
dc.identifier.citedreferenceDerda R, Li L, Orner BP et al. Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS Chem Biol 2007; 2: 347 – 355.en_US
dc.identifier.citedreferenceMiyazaki T, Futaki S, Hasegawa K et al. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun 2008; 375: 27 – 32.en_US
dc.identifier.citedreferenceBraam SR, Zeinstra L, Litjens S et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self‐renewal via alphavbeta5 integrin. Stem Cells 2008; 26: 2257 – 2265.en_US
dc.identifier.citedreferenceChen G, Gulbranson DR, Hou Z et al. Chemically defined conditions for human iPSC derivation and culture. Nat Methods 2011; 8: 424 – 429.en_US
dc.identifier.citedreferenceNagaoka M, Si‐Tayeb K, Akaike T et al. Culture of human pluripotent stem cells using completely defined conditions on a recombinant E‐cadherin substratum. BMC Dev Biol 2010; 10: 60.en_US
dc.identifier.citedreferenceBrafman DA, Chang CW, Fernandez A et al. Long‐term human pluripotent stem cell self‐renewal on synthetic polymer surfaces. Biomaterials 2010; 31: 9135 – 9144.en_US
dc.identifier.citedreferenceKlim JR, Li L, Wrighton PJ et al. A defined glycosaminoglycan‐binding substratum for human pluripotent stem cells. Nat Methods 2010; 7: 989 – 994.en_US
dc.identifier.citedreferenceMei Y, Saha K, Bogatyrev SR et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 2010; 9: 768 – 778.en_US
dc.identifier.citedreferenceMelkoumian Z, Weber JL, Weber DM et al. Synthetic peptide‐acrylate surfaces for long‐term self‐renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 2010; 28: 606 – 610.en_US
dc.identifier.citedreferenceIrwin EF, Gupta R, Dashti DC et al. Engineered polymer‐media interfaces for the long‐term self‐renewal of human embryonic stem cells. Biomaterials 2011; 32: 6912 – 6919.en_US
dc.identifier.citedreferenceVilla‐Diaz LG, Nandivada H, Ding J et al. Synthetic polymer coatings for long‐term growth of human embryonic stem cells. Nat Biotechnol 2010; 28: 581 – 583.en_US
dc.identifier.citedreferenceNandivada H, Villa‐Diaz LG, O'Shea KS et al. Fabrication of synthetic polymer coatings and their use in feeder‐free culture of human embryonic stem cells. Nat Protoc 2011; 6: 1037 – 1043.en_US
dc.identifier.citedreferenceVilla‐Diaz LG, Brown SE, Liu Y et al. Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates. Stem Cells 2012; 30: 1174 – 1181.en_US
dc.identifier.citedreferenceHongisto H, Vuoristo S, Mikhailova A et al. Laminin‐511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture. Stem Cell Res 2012; 8: 97 – 108.en_US
dc.identifier.citedreferenceEiselleova L, Peterkova I, Neradil J et al. Comparative study of mouse and human feeder cells for human embryonic stem cells. Int J Dev Biol 2008; 52: 353 – 363.en_US
dc.identifier.citedreferenceVilla‐Diaz LG, Pacut C, Slawny NA et al. Analysis of the factors that limit the ability of feeder‐cells to maintain the undifferentiated state of human embryonic stem cells. Stem Cells Dev 2008; 18: 641 – 651.en_US
dc.identifier.citedreferenceMartin MJ, Muotri A, Gage F et al. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 2005; 11: 228 – 232.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.