On the application of simple rift basin models to the south polar region of Enceladus
dc.contributor.author | Walker, C. C. | en_US |
dc.contributor.author | Bassis, J. N. | en_US |
dc.contributor.author | Liemohn, M. W. | en_US |
dc.date.accessioned | 2013-01-03T19:35:51Z | |
dc.date.available | 2013-09-03T15:38:26Z | en_US |
dc.date.issued | 2012-07 | en_US |
dc.identifier.citation | Walker, C. C.; Bassis, J. N.; Liemohn, M. W. (2012). "On the application of simple rift basin models to the south polar region of Enceladus." Journal of Geophysical Research: Planets 117(E7): n/a-n/a. <http://hdl.handle.net/2027.42/94698> | en_US |
dc.identifier.issn | 0148-0227 | en_US |
dc.identifier.issn | 2156-2202 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/94698 | |
dc.publisher | Blackwell | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Icy Satellites | en_US |
dc.subject.other | Planetary Tectonics | en_US |
dc.subject.other | Rifting | en_US |
dc.title | On the application of simple rift basin models to the south polar region of Enceladus | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Geological Sciences | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Atmospheric Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan, USA | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/94698/1/jgre3058.pdf | |
dc.identifier.doi | 10.1029/2012JE004084 | en_US |
dc.identifier.source | Journal of Geophysical Research: Planets | en_US |
dc.identifier.citedreference | Solomon, S. C., S. K. Stephens, and J. W. Head ( 1982 ), On Venus impact basins: Viscous relaxation of topographic relief, J. Geophys. Res., 87, 7763 – 7771, doi: 10.1029/JB087iB09p07763. | en_US |
dc.identifier.citedreference | Schenk, P. M., and W. B. McKinnon ( 2009 ), One‐hundred‐km‐scale basins on Enceladus: Evidence for an active ice shell, Geophys. Res. Lett., 36, L16202, doi: 10.1029/2009GL039916. | en_US |
dc.identifier.citedreference | Schlische, R. W. ( 1991 ), Half‐graben basin filling models: New constraints on continental extensional basin development, Basin Res., 3 ( 3 ), 123 – 141. | en_US |
dc.identifier.citedreference | Schulson, E. M. ( 1999 ), The structure and mechanical behavior of ice, J. Miner. Metals Mater. Soc., 51 ( 2 ), 21 – 27, doi: 10.1007/s11837‐999‐0206‐4. | en_US |
dc.identifier.citedreference | Sleep, N. H., J. A. Nunn, and L. Chou ( 1980 ), Platform basins, Annu. Rev. Earth Planet. Sci., 8, 17 – 34, doi: 10.1146/annurev.ea.08.050180.000313. | en_US |
dc.identifier.citedreference | Smith‐Konter, B., and R. T. Pappalardo ( 2008 ), Tidally driven stress accumulation and shear failure of Enceladus's tiger stripes, Icarus, 198, 435 – 451, doi: 10.1016/j.icarus.2008.07.005. | en_US |
dc.identifier.citedreference | Barr, A. C., and W. B. McKinnon ( 2007 ), Convection in Enceladus' ice shell: Conditions for initiation, Geophys. Res. Lett., 34, L09202, doi: 10.1029/2006GL028799. | en_US |
dc.identifier.citedreference | Spencer, J. R., A. C. Barr, L. W. Esposito, P. Helfenstein, A. P. Ingersoll, R. Jaumann, C. P. McKay, F. Nimmo, and J. H. Waite ( 2009 ), Enceladus: An active cryovolcanic satellite, in Saturn From Cassini‐Huygens, edited by M. K. Dougherty, L. W. Esposito, and S. M. Krimigis, pp. 683 – 724, Springer Netherlands, Heidelberg, Germany, doi: 10.1007/978‐1‐4020‐9217‐6‐21. | en_US |
dc.identifier.citedreference | Tanimoto, T. ( 1997 ), Bending of spherical lithosphere—Axisymmetric case, Geophys. J. Int., 129, 305 – 310, doi: 10.1111/j.1365‐246X.1997.tb01583.x. | en_US |
dc.identifier.citedreference | Tanimoto, T. ( 1998 ), State of stress within a bending spherical shell and its implications for subducting lithosphere, Geophys. J. Int., 134, 199 – 206, doi: 10.1046/j.1365‐246x.1998.00554.x. | en_US |
dc.identifier.citedreference | Thomas, P. C., et al. ( 2007 ), Shapes of the saturnian icy satellites and their significance, Icarus, 190, 573 – 584, doi: 10.1016/j.icarus.2007.03.012. | en_US |
dc.identifier.citedreference | Timoshenko, S. P., and S. Woinosky‐Krieger ( 1959 ), Theory of Plates and Shells, 2 nd ed., McGraw‐Hill, New York. | en_US |
dc.identifier.citedreference | Tobie, G., et al. ( 2010 ), Surface, subsurface and atmosphere exchanges on the aatellites of the outer solar system, Space Sci. Rev., 153, 375 – 410, doi: 10.1007/s11214‐010‐9641‐3. | en_US |
dc.identifier.citedreference | Turcotte, D. L., and G. Schubert ( 1982 ), Geodynamics: Applications of Continuum Physics to Geological Problems, 1 st ed., John Wiley, Hoboken, N. J. | en_US |
dc.identifier.citedreference | Turcotte, D. L., R. J. Willemann, W. F. Haxby, and J. Norberry ( 1981 ), Role of membrane stresses in the support of planetary topography, J. Geophys. Res., 86, 3951 – 3959, doi: 10.1029/JB086iB05p03951. | en_US |
dc.identifier.citedreference | Vening‐Meinesz, F. A. ( 1950 ), Les grabens africains, resultat de compression ou de tension dans la croute terrestre, Bull. Inst. R. Colon. Belge, 21, 539 – 552. | en_US |
dc.identifier.citedreference | Watts, A. B. ( 2001 ), Isostasy and Flexure of the Lithosphere, Cambridge Univ. Press, U. K. | en_US |
dc.identifier.citedreference | Weissel, J. K., and G. D. Karner ( 1989 ), Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension, J. Geophys. Res., 94, 13,919 – 13,950, doi: 10.1029/JB094iB10p13919. | en_US |
dc.identifier.citedreference | Withjack, M. O., R. W. Schlische, and P. E. Olsen ( 2002 ), Rift‐basin structure and its influence on sedimentary basins, Spec. Publ. SEPM Soc. Sediment. Geol., 73, 57 – 81, doi: 10.2110/pec.02.73.0057. | en_US |
dc.identifier.citedreference | Yamaoka, K. ( 1988 ), Spherical shell tectonics: on the buckling of the lithosphere at subduction zones, Tectonophysics, 147, 179 – 191, doi: 10.1016/0040‐1951(88)90186‐2. | en_US |
dc.identifier.citedreference | Yamaoka, K., Y. Fukao, and M. Kumazawa ( 1986 ), Spherical shell tectonics: Effects of sphericity and inextensibility on the geometry of the descending lithosphere, Rev. Geophys., 24, 27 – 53, doi: 10.1029/RG024i001p00027. | en_US |
dc.identifier.citedreference | Abramov, O., and J. R. Spencer ( 2009 ), Endogenic heat from Enceladus' south polar fractures: New observations, and models of conductive surface heating, Icarus, 199, 189 – 196, doi: 10.1016/j.icarus.2008.07.016. | en_US |
dc.identifier.citedreference | Allen, P. A., and J. R. Allen ( 2005 ), Basin Analysis: Principles and Applications, 2 nd ed., 549 pp., Blackwell, Malden, Mass. | en_US |
dc.identifier.citedreference | Barr, A. C. ( 2008 ), Mobile lid convection beneath Enceladus' south polar terrain, J. Geophys. Res., 113, E07009, doi: 10.1029/2008JE003114. | en_US |
dc.identifier.citedreference | Barr, A. C., and L. J. Preuss ( 2010 ), On the origin of south polar folds on Enceladus, Icarus, 208, 499 – 503, doi: 10.1016/j.icarus.2010.03.038. | en_US |
dc.identifier.citedreference | Bassis, J. N., and C. C. Walker ( 2011 ), Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice, Proc. R. Soc. A, 57, 1 – 17, doi: 10.1098/rspa.2011.0422. | en_US |
dc.identifier.citedreference | Beuthe, M. ( 2008 ), Thin elastic shells with variable thickness for lithospheric flexure of one‐plate planets, Geophys. J. Int., 172, 817 – 841, doi: 10.1111/j.1365‐246X.2007.03671.x. | en_US |
dc.identifier.citedreference | Bland, M. T., R. A. Beyer, and A. P. Showman ( 2007 ), Unstable extension of Enceladus' lithosphere, Icarus, 192, 92 – 105, doi: 10.1016/j.icarus.2007.06.011. | en_US |
dc.identifier.citedreference | Bullard, E. C. ( 1936 ), Gravity measurements in East Africa, Philos. Trans. R. Soc. London A, 235, 445 – 531, doi: 10.1098/rsta.1936.0008. | en_US |
dc.identifier.citedreference | Collins, G. C., and J. C. Goodman ( 2007 ), Enceladus' south polar sea, Icarus, 189, 72 – 82, doi: 10.1016/j.icarus.2007.01.010. | en_US |
dc.identifier.citedreference | Colman, S. M., E. B. Karabanov, and C. H. Nelson ( 2003 ), Quaternary sedimentation and subsidence history of Lake Baikal, Siberia, based on seismic stratigraphy and coring, J. Sed. Res., 73, 941 – 956, doi: 10.1306/041703730941. | en_US |
dc.identifier.citedreference | Giese, B., R. Wagner, H. Hussmann, G. Neukum, J. Perry, P. Helfenstein, and P. C. Thomas ( 2008 ), Enceladus: An estimate of heat flux and lithospheric thickness from flexurally supported topography, Geophys. Res. Lett., 35, L24204, doi: 10.1029/2008GL036149. | en_US |
dc.identifier.citedreference | Gioia, G., P. Chakraborty, S. Marshak, and S. W. Kieffer ( 2007 ), Unified model of tectonics and heat transport in a frigid Enceladus, Proc. Natl. Acad. Sci., 1041, 13,578 – 13,581, doi: 10.1073/pnas.0706018104. | en_US |
dc.identifier.citedreference | Helfenstein, P., et al. ( 2011 ), Structural expression of transtension and transpression at the south pole of Enceladus, paper presented at Enceladus Focus Group Meeting, SETI Inst., Mountain View, Calif., 23–24 May. | en_US |
dc.identifier.citedreference | Howett, C. J. A., J. R. Spencer, J. Pearl, and M. Segura ( 2011 ), High heat flow from Enceladus' south polar region measured using 10–600 cm −1 Cassini/CIRS data, J. Geophys. Res., 116, E03003, doi: 10.1029/2010JE003718. | en_US |
dc.identifier.citedreference | Huismans, R. S., Y. Y. Podladchikov, and S. Cloetingh ( 2001 ), Dynamic modeling of the transition from passive to active rifting, application to the Pannonian basin, Tectonics, 20, 1021 – 1039, doi: 10.1029/2001TC900010. | en_US |
dc.identifier.citedreference | Jeffreys, H. ( 1915 ), Viscosity of the Earth, Mon. Not. R. Astron. Soc., 75, 648 – 658. | en_US |
dc.identifier.citedreference | Kargel, J. S., and S. Pozio ( 1996 ), The volcanic and tectonic history of Enceladus, Icarus, 119, 385 – 404, doi: 10.1006/icar.1996.0026. | en_US |
dc.identifier.citedreference | Lagabrielle, Y., J. Goslin, H. Martin, J.‐L. Thirot, and J.‐M. Auzende ( 1997 ), Multiple active spreading centres in the hot north fiji basin (southwest pacific): a possible model for archaean seafloor dynamics?, Earth Planet. Sci. Lett., 149 ( 1–4 ), 1 – 13, doi: 10.1016/S0012‐821X(97)00060‐5. | en_US |
dc.identifier.citedreference | Mahadevan, L., R. Bendick, and H. Liang ( 2010 ), Why subduction zones are curved, Tectonics, 29, TC6002, doi: 10.1029/2010TC002720. | en_US |
dc.identifier.citedreference | Manga, M., and C.‐Y. Wang ( 2007 ), Pressurized oceans and the eruption of liquid water on Europa and Enceladus, Geophys. Res. Lett., 34, L07202, doi: 10.1029/2007GL029297. | en_US |
dc.identifier.citedreference | McKenzie, D. ( 1978 ), Some remarks on the development of sedimentary basins, Earth Planet. Sci. Lett., 40 ( 1 ), 25 – 32, doi: 10.1016/0012‐821X(78)90071‐7. | en_US |
dc.identifier.citedreference | Mitri, G., and A. P. Showman ( 2008 ), Thermal convection in ice‐I shells of Titan and Enceladus, Icarus, 193, 387 – 396, doi: 10.1016/j.icarus.2007.07.016. | en_US |
dc.identifier.citedreference | Nimmo, F., and R. T. Pappalardo ( 2006 ), Diapir‐induced reorientation of Saturn's moon Enceladus, Nature, 441, 614 – 616, doi: 10.1038/nature04821. | en_US |
dc.identifier.citedreference | Nimmo, F., and P. Schenk ( 2006 ), Normal faulting on Europa: Implications for ice shell properties, J. Struct. Geol., 28, 2194 – 2203, doi: 10.1016/j.jsg.2005.08.009. | en_US |
dc.identifier.citedreference | Olgin, J. G., B. R. Smith‐Konter, and R. T. Pappalardo ( 2011 ), Limits of Enceladus's ice shell thickness from tidally driven tiger stripe shear failure, Geophys. Res. Lett., 380, L02201, doi: 10.1029/2010GL044950. | en_US |
dc.identifier.citedreference | Ori, G. G., and V. R. Baker ( 1995 ), Geological mechanisms of resurfacing on Venus (Atalanta and Niobe Planitae, Atropos Tessera, Vesta and UT Rupes), Lunar Planet. Sci., XXVI, 1085. | en_US |
dc.identifier.citedreference | Parkinson, C. D., M.‐C. Liang, Y. L. Yung, and J. L. Kirschivnk ( 2008 ), Habitability of Enceladus: Planetary conditions for life, Origins Life Evol. Biosph., 38, 355 – 369, doi: 10.1007/s11084‐008‐9135‐4. | en_US |
dc.identifier.citedreference | Patthoff, D. A., and S. A. Kattenhorn ( 2011 ), Separating old and young: The south polar dichotomy on Enceladus, Lunar Planet. Sci., XLII, 2700. | en_US |
dc.identifier.citedreference | Porco, C. C., et al. ( 2006 ), Cassini observes the active south pole of Enceladus, Science, 311, 1393 – 1401, doi: 10.1126/science.1123013. | en_US |
dc.identifier.citedreference | Roberts, J. H., and F. Nimmo ( 2008 ), Near‐surface heating on Enceladus and the south polar thermal anomaly, Lunar Planet. Sci., XXXIX, 1481. | en_US |
dc.identifier.citedreference | Rudolph, M. L., and M. Manga ( 2009 ), Fracture penetration in planetary ice shells, Icarus, 199, 536 – 541, doi: 10.1016/j.icarus.2008.10.010. | en_US |
dc.identifier.citedreference | Sandwell, D., and G. Schubert ( 2010 ), A contraction model for the flattening and equatorial ridge of Iapetus, Icarus, 210, 817 – 822, doi: 10.1016/j.icarus.2010.06.025. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.