Show simple item record

Danger‐associated molecular patterns ( DAMPs ) in acute lung injury

dc.contributor.authorTolle, Leslie Ben_US
dc.contributor.authorStandiford, Theodore Jen_US
dc.date.accessioned2013-01-03T19:36:07Z
dc.date.available2014-03-03T15:09:24Zen_US
dc.date.issued2013-01en_US
dc.identifier.citationTolle, Leslie B; Standiford, Theodore J (2013). "Danger‐associated molecular patterns ( DAMPs ) in acute lung injury." The Journal of Pathology 229(2): 145-156. <http://hdl.handle.net/2027.42/94713>en_US
dc.identifier.issn0022-3417en_US
dc.identifier.issn1096-9896en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94713
dc.description.abstractDanger‐associated molecular patterns ( DAMPs ) are host‐derived molecules that can function to regulate the activation of pathogen recognition receptors ( PRRs ). These molecules play a critical role in modulating the lung injury response. DAMPs originate from multiple sources, including injured and dying cells, the extracellular matrix, or exist as immunomodulatory proteins within the airspace and interstitium. DAMPs can function as either toll‐like receptor ( TLR ) agonists or antagonists, and can modulate both TLR and nod‐like receptor ( NLR ) signalling cascades. Collectively, this diverse group of molecules may represent important therapeutic targets in the prevention and/or treatment of acute lung injury ( ALI ) and its more severe form, acute respiratory distress syndrome ( ARDS ).en_US
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherPathogen Recognition Receptorsen_US
dc.subject.otherFibrosisen_US
dc.subject.otherChemokinesen_US
dc.subject.otherAcute Lung Injuryen_US
dc.subject.otherAcute Respiratory Distress Syndromeen_US
dc.titleDanger‐associated molecular patterns ( DAMPs ) in acute lung injuryen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPathologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23097158en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94713/1/path4124.pdf
dc.identifier.doi10.1002/path.4124en_US
dc.identifier.sourceThe Journal of Pathologyen_US
dc.identifier.citedreferenceO'Neill LA, Sheedy FJ, McCoy CE. MicroRNAs: the fine‐tuners of Toll‐like receptor signalling. Nat Rev Immunol 2011; 11: 163 – 175.en_US
dc.identifier.citedreferenceSano H, Kuronuma K, Kudo K, et al. Regulation of inflammation and bacterial clearance by lung collectins. Respirology 2006; 11 ( suppl ): S46 – 50.en_US
dc.identifier.citedreferenceWhite MK, Baireddy V, Strayer DS. Natural protection from apoptosis by surfactant protein A in type II pneumocytes. Exp Cell Res 2001; 263: 183 – 192.en_US
dc.identifier.citedreferenceGoto H, Ledford JG, Mukherjee S, et al. The role of surfactant protein A in bleomycin‐induced acute lung injury. Am J Respir Crit Care Med 2010; 181: 1336 – 1344.en_US
dc.identifier.citedreferenceCheng IW, Ware LB, Greene KE, et al. Prognostic value of surfactant proteins A and D in patients with acute lung injury. Crit Care Med 2003; 31: 20 – 27.en_US
dc.identifier.citedreferenceDoyle IR, Nicholas TE, Bersten AD. Serum surfactant protein‐A levels in patients with acute cardiogenic pulmonary edema and adult respiratory distress syndrome. Am J Respir Crit Care Med 1995; 152: 307 – 317.en_US
dc.identifier.citedreferenceEisner MD, Parsons P, Matthay MA, et al. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax 2003; 58: 983 – 988.en_US
dc.identifier.citedreferenceOhya M, Nishitani C, Sano H, et al. Human pulmonary surfactant protein D binds the extracellular domains of Toll‐like receptors 2 and 4 through the carbohydrate recognition domain by a mechanism different from its binding to phosphatidylinositol and lipopolysaccharide. Biochemistry 2006; 45: 8657 – 8664.en_US
dc.identifier.citedreferenceYamazoe M, Nishitani C, Takahashi M, et al. Pulmonary surfactant protein D inhibits lipopolysaccharide (LPS)‐induced inflammatory cell responses by altering LPS binding to its receptors. J Biol Chem 2008; 283: 35878 – 35888.en_US
dc.identifier.citedreferenceIkegami M, Scoville EA, Grant S, et al. Surfactant protein‐D and surfactant inhibit endotoxin‐induced pulmonary inflammation. Chest 2007; 132: 1447 – 1454.en_US
dc.identifier.citedreferenceKing BA, Kingma PS. Surfactant protein D deficiency increases lung injury during endotoxemia. Am J Respir Cell Mol Biol 2011; 44: 709 – 715.en_US
dc.identifier.citedreferenceFujita M, Shannon JM, Ouchi H, et al. Serum surfactant protein D is increased in acute and chronic inflammation in mice. Cytokine 2005; 31: 25 – 33.en_US
dc.identifier.citedreferenceCasey J, Kaplan J, Atochina‐Vasserman EN, et al. Alveolar surfactant protein D content modulates bleomycin‐induced lung injury. Am J Respir Crit Care Med 2005; 172: 869 – 877.en_US
dc.identifier.citedreferenceKersse K, Bertrand MJ, Lamkanfi M, et al. NOD‐like receptors and the innate immune system: coping with danger, damage and death. Cytokine Growth Factor Rev 2011; 22: 257 – 276.en_US
dc.identifier.citedreferenceFranchi L, Amer A, Body‐Malapel M, et al. Cytosolic flagellin requires Ipaf for activation of caspase‐1 and interleukin 1 β in Salmonella ‐infected macrophages. Nat Immunol 2006; 7: 576 – 582.en_US
dc.identifier.citedreferenceGirardin SE, Boneca IG, Viala J, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003; 278: 8869 – 8872.en_US
dc.identifier.citedreferenceDostert C, Petrilli V, Van Bruggen R, et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008; 320: 674 – 677.en_US
dc.identifier.citedreferenceShi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003; 425: 516 – 521.en_US
dc.identifier.citedreferenceMartinon F, Petrilli V, Mayor A, et al. Gout‐associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440: 237 – 241.en_US
dc.identifier.citedreferenceGasse P, Riteau N, Charron S, et al. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med 2009; 179: 903 – 913.en_US
dc.identifier.citedreferenceYamasaki K, Muto J, Taylor KR, et al. NLRP3/cryopyrin is necessary for interleukin‐1 β (IL‐1 β ) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem 2009; 284: 12762 – 12771.en_US
dc.identifier.citedreferenceBastarache JA, Ware LB, Bernard GR. The role of the coagulation cascade in the continuum of sepsis and acute lung injury and acute respiratory distress syndrome. Semin Respir Crit Care Med 2006; 27: 365 – 376.en_US
dc.identifier.citedreferenceHallgren R, Gerdin B, Tengblad A, et al. Accumulation of hyaluronan (hyaluronic acid) in myocardial interstitial tissue parallels development of transplantation edema in heart allografts in rats. J Clin Invest 1990; 85: 668 – 673.en_US
dc.identifier.citedreferenceTomashefski JF Jr. Pulmonary pathology of acute respiratory distress syndrome. Clin Chest Med 2000; 21: 435 – 466.en_US
dc.identifier.citedreferenceMartin C, Papazian L, Payan MJ, et al. Pulmonary fibrosis correlates with outcome in adult respiratory distress syndrome. A study in mechanically ventilated patients. Chest 1995; 107: 196 – 200.en_US
dc.identifier.citedreferenceJiang D, Liang J, Li Y, et al. The role of Toll‐like receptors in non‐infectious lung injury. Cell Res 2006; 16: 693 – 701.en_US
dc.identifier.citedreferenceKovach MA, Standiford TJ. Toll like receptors in diseases of the lung. Int Immunopharmacol 2011; 11: 1399 – 1406.en_US
dc.identifier.citedreferencePisetsky D. Cell death in the pathogenesis of immune‐mediated diseases: the role of HMGB1 and DAMP–PAMP complexes. Swiss Med Wkly 2011; 141: w13256.en_US
dc.identifier.citedreferenceRubartelli A, Lotze MT. Inside, outside, upside down: damage‐associated molecular‐pattern molecules (DAMPs) and redox. Trends Immunol 2007; 28: 429 – 436.en_US
dc.identifier.citedreferenceOkamura Y, Watari M, Jerud ES, et al. The extra domain A of fibronectin activates Toll‐like receptor 4. J Biol Chem 2001; 276: 10229 – 10233.en_US
dc.identifier.citedreferenceTermeer C, Benedix F, Sleeman J, et al. Oligosaccharides of hyaluronan activate dendritic cells via toll‐like receptor 4. J Exp Med 2002; 195: 99 – 111.en_US
dc.identifier.citedreferenceVabulas RM, Ahmad‐Nejad P, da Costa C, et al. Endocytosed HSP60s use toll‐like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin‐1 receptor signaling pathway in innate immune cells. J Biol Chem 2001; 276: 31332 – 31339.en_US
dc.identifier.citedreferenceKokkola R, Andersson A, Mullins G, et al. RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand J Immunol 2005; 61: 1 – 9.en_US
dc.identifier.citedreferencePark JS, Gamboni‐Robertson F, He Q, et al. High mobility group box 1 protein interacts with multiple Toll‐like receptors. Am J Physiol Cell Physiol 2006; 290: C917 – 924.en_US
dc.identifier.citedreferencePark JS, Svetkauskaite D, He Q, et al. Involvement of toll‐like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 2004; 279: 7370 – 7377.en_US
dc.identifier.citedreferencePopovic PJ, DeMarco R, Lotze MT, et al. High mobility group B1 protein suppresses the human plasmacytoid dendritic cell response to TLR9 agonists. J Immunol 2006; 177: 8701 – 8707.en_US
dc.identifier.citedreferenceHenning LN, Azad AK, Parsa KV, et al. Pulmonary surfactant protein A regulates TLR expression and activity in human macrophages. J Immunol 2008; 180: 7847 – 7858.en_US
dc.identifier.citedreferenceYamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88‐independent toll‐like receptor signaling pathway. Science 2003; 301: 640 – 643.en_US
dc.identifier.citedreferenceNace G, Evankovich J, Eid R, et al. Dendritic cells and damage‐associated molecular patterns: endogenous danger signals linking innate and adaptive immunity. J Innate Immun 2012; 4: 6 – 15.en_US
dc.identifier.citedreferenceCargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK‐activated protein kinases. Microbiol Mol Biol Rev 2011; 75: 50 – 83.en_US
dc.identifier.citedreferenceStandiford LR, Standiford TJ, Newstead MJ, et al. TLR4‐dependent GM‐CSF protects against lung injury in Gram‐negative bacterial pneumonia. Am J Physiol Lung Cell Mol Physiol 2012; 302: L447 – 454.en_US
dc.identifier.citedreferenceJiang D, Liang J, Fan J, et al. Regulation of lung injury and repair by Toll‐like receptors and hyaluronan. Nat Med 2005; 11: 1173 – 1179.en_US
dc.identifier.citedreferenceQureshi ST, Zhang X, Aberg E, et al. Inducible activation of TLR4 confers resistance to hyperoxia‐induced pulmonary apoptosis. J Immunol 2006; 176: 4950 – 4958.en_US
dc.identifier.citedreferenceZhang X, Shan P, Qureshi S, et al. Cutting edge: TLR4 deficiency confers susceptibility to lethal oxidant lung injury. J Immunol 2005; 175: 4834 – 4838.en_US
dc.identifier.citedreferenceMurray LA, Knight DA, McAlonan L, et al. Deleterious role of TLR3 during hyperoxia‐induced acute lung injury. Am J Respir Crit Care Med 2008; 178: 1227 – 1237.en_US
dc.identifier.citedreferenceSloane JA, Blitz D, Margolin Z, et al. A clear and present danger: endogenous ligands of Toll‐like receptors. Neuromol Med 2010; 12: 149 – 163.en_US
dc.identifier.citedreferencePeters JH, Grote MN, Lane NE, et al. Changes in plasma fibronectin isoform levels predict distinct clinical outcomes in critically ill patients. Biomark Insights 2011; 6: 59 – 68.en_US
dc.identifier.citedreferenceGrinnell F. Fibronectin and wound healing. J Cell Biochem 1984; 26: 107 – 116.en_US
dc.identifier.citedreferenceLabat‐Robert J. Cell–matrix interactions, the role of fibronectin and integrins. A survey. Pathol Biol (Paris) 2012; 60: 15 – 19.en_US
dc.identifier.citedreferenceGondokaryono SP, Ushio H, Niyonsaba F, et al. The extra domain A of fibronectin stimulates murine mast cells via toll‐like receptor 4. J Leukoc Biol 2007; 82: 657 – 665.en_US
dc.identifier.citedreferenceLefebvre JS, Levesque T, Picard S, et al. Extra domain A of fibronectin primes leukotriene biosynthesis and stimulates neutrophil migration through activation of Toll‐like receptor 4. Arthritis Rheum 2011; 63: 1527 – 1533.en_US
dc.identifier.citedreferenceMcFadden JP, Basketter DA, Dearman RJ, et al. Extra domain A‐positive fibronectin‐positive feedback loops and their association with cutaneous inflammatory disease. Clin Dermatol 2011; 29: 257 – 265.en_US
dc.identifier.citedreferenceDurr RA, Dubaybo BA, Thet LA. Repair of chronic hyperoxic lung injury: changes in lung ultrastructure and matrix. Exp Mol Pathol 1987; 47: 219 – 240.en_US
dc.identifier.citedreferenceKradin RL, Zhu Y, Hales CA, et al. Response of pulmonary macrophages to hyperoxic pulmonary injury. Acquisition of surface fibronectin and fibrin/ogen and enhanced expression of a fibronectin receptor. Am J Pathol 1986; 125: 349 – 357.en_US
dc.identifier.citedreferenceManiscalco WM, Watkins RH, Chess PR, et al. Cell‐specific expression of fibronectin and EIIIA and EIIIB splice variants after oxygen injury. Am J Physiol 1998; 274: L599 – 609.en_US
dc.identifier.citedreferenceKelley J, Chrin L, Shull S, et al. Bleomycin selectively elevates mRNA levels for procollagen and fibronectin following acute lung injury. Biochem Biophys Res Commun 1985; 131: 836 – 843.en_US
dc.identifier.citedreferenceLazenby AJ, Crouch EC, McDonald JA, et al. Remodeling of the lung in bleomycin‐induced pulmonary fibrosis in the rat. An immunohistochemical study of laminin, type IV collagen, and fibronectin. Am Rev Respir Dis 1990; 142: 206 – 214.en_US
dc.identifier.citedreferenceBellows CF, Brain JD. Role of fibronectin in pancreatitis‐associated lung injury. Dig Dis Sci 2003; 48: 1445 – 1452.en_US
dc.identifier.citedreferencePendino KJ, Shuler RL, Laskin JD, et al. Enhanced production of interleukin‐1, tumor necrosis factor‐ α, and fibronectin by rat lung phagocytes following inhalation of a pulmonary irritant. Am J Respir Cell Mol Biol 1994; 11: 279 – 286.en_US
dc.identifier.citedreferencePeters JH, Ginsberg MH, Case CM, et al. Release of soluble fibronectin containing an extra type III domain (ED1) during acute pulmonary injury mediated by oxidants or leukocytes in vivo. Am Rev Respir Dis 1988; 138: 167 – 174.en_US
dc.identifier.citedreferenceMorales MM, Pires‐Neto RC, Inforsato N, et al. Small airway remodeling in acute respiratory distress syndrome: a study in autopsy lung tissue. Crit Care 2011; 15: R4.en_US
dc.identifier.citedreferenceAllegra L, Della Patrona S, Petrigni G. Hyaluronic acid: perspectives in lung diseases. Handb Exp Pharmacol 2012; 207: 385 – 401.en_US
dc.identifier.citedreferenceTermeer CC, Hennies J, Voith U, et al. Oligosaccharides of hyaluronan are potent activators of dendritic cells. J Immunol 2000; 165: 1863 – 1870.en_US
dc.identifier.citedreferenceTaylor KR, Trowbridge JM, Rudisill JA, et al. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J Biol Chem 2004; 279: 17079 – 17084.en_US
dc.identifier.citedreferenceJiang D, Liang J, Noble PW. Regulation of non‐infectious lung injury, inflammation, and repair by the extracellular matrix glycosaminoglycan hyaluronan. Anat Rec (Hoboken) 2010; 293: 982 – 985.en_US
dc.identifier.citedreferenceHernnas J, Nettelbladt O, Bjermer L, et al. Alveolar accumulation of fibronectin and hyaluronan precedes bleomycin‐induced pulmonary fibrosis in the rat. Eur Respir J 1992; 5: 404 – 410.en_US
dc.identifier.citedreferenceNettelbladt O, Bergh J, Schenholm M, et al. Accumulation of hyaluronic acid in the alveolar interstitial tissue in bleomycin‐induced alveolitis. Am Rev Respir Dis 1989; 139: 759 – 762.en_US
dc.identifier.citedreferenceNettelbladt O, Hallgren R. Hyaluronan (hyaluronic acid) in bronchoalveolar lavage fluid during the development of bleomycin‐induced alveolitis in the rat. Am Rev Respir Dis 1989; 140: 1028 – 1032.en_US
dc.identifier.citedreferenceNettelbladt O, Tengblad A, Hallgren R. Lung accumulation of hyaluronan parallels pulmonary edema in experimental alveolitis. Am J Physiol 1989; 257: L379 – 384.en_US
dc.identifier.citedreferenceHallgren R, Samuelsson T, Laurent TC, et al. Accumulation of hyaluronan (hyaluronic acid) in the lung in adult respiratory distress syndrome. Am Rev Respir Dis 1989; 139: 682 – 687.en_US
dc.identifier.citedreferenceWhitelock JM, Iozzo RV. Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 2005; 105: 2745 – 2764.en_US
dc.identifier.citedreferenceJohnson GB, Brunn GJ, Kodaira Y, et al. Receptor‐mediated monitoring of tissue well‐being via detection of soluble heparan sulfate by Toll‐like receptor 4. J Immunol 2002; 168: 5233 – 5239.en_US
dc.identifier.citedreferenceJohnson GB, Brunn GJ, Platt JL. Cutting edge: an endogenous pathway to systemic inflammatory response syndrome (SIRS)‐like reactions through Toll‐like receptor 4. J Immunol 2004; 172: 20 – 24.en_US
dc.identifier.citedreferenceTsan MF, Gao B. Heat shock protein and innate immunity. Cell Mol Immunol 2004; 1: 274 – 279.en_US
dc.identifier.citedreferenceAsea A. Heat shock proteins and toll‐like receptors. Handb Exp Pharmacol 2008; 183: 111 – 127.en_US
dc.identifier.citedreferenceOhashi K, Burkart V, Flohe S, et al. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll‐like receptor‐4 complex. J Immunol 2000; 164: 558 – 561.en_US
dc.identifier.citedreferenceAsea A, Rehli M, Kabingu E, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll‐like receptor (TLR) 2 and TLR4. J Biol Chem 2002; 277: 15028 – 15034.en_US
dc.identifier.citedreferenceVabulas RM, Ahmad‐Nejad P, Ghose S, et al. HSP70 as endogenous stimulus of the Toll/interleukin‐1 receptor signal pathway. J Biol Chem 2002; 277: 15107 – 15112.en_US
dc.identifier.citedreferenceVabulas RM, Braedel S, Hilf N, et al. The endoplasmic reticulum‐resident heat shock protein Gp96 activates dendritic cells via the Toll‐like receptor 2/4 pathway. J Biol Chem 2002; 277: 20847 – 20853.en_US
dc.identifier.citedreferenceWheeler DS, Chase MA, Senft AP, et al. Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll‐like receptor (TLR)‐4. Respir Res 2009; 10: 31.en_US
dc.identifier.citedreferenceChase MA, Wheeler DS, Lierl KM, et al. Hsp72 induces inflammation and regulates cytokine production in airway epithelium through a TLR4‐ and NF‐ κ B‐dependent mechanism. J Immunol 2007; 179: 6318 – 6324.en_US
dc.identifier.citedreferenceWheeler DS. Stress proteins and acute lung injury: dreams can come true … eventually. Crit Care Med 2008; 36: 360 – 362.en_US
dc.identifier.citedreferenceTanaka K, Tanaka Y, Namba T, et al. Heat shock protein 70 protects against bleomycin‐induced pulmonary fibrosis in mice. Biochem Pharmacol 2010; 80: 920 – 931.en_US
dc.identifier.citedreferenceWong HR, Menendez IY, Ryan MA, et al. Increased expression of heat shock protein‐70 protects A549 cells against hyperoxia. Am J Physiol 1998; 275: L836 – 841.en_US
dc.identifier.citedreferenceShao L, Perez RE, Gerthoffer WT, et al. Heat shock protein 27 protects lung epithelial cells from hyperoxia‐induced apoptotic cell death. Pediatr Res 2009; 65: 328 – 333.en_US
dc.identifier.citedreferenceChambellan A, Cruickshank PJ, McKenzie P, et al. Gene expression profile of human airway epithelium induced by hyperoxia in vivo. Am J Respir Cell Mol Biol 2006; 35: 424 – 435.en_US
dc.identifier.citedreferenceGanter MT, Ware LB, Howard M, et al. Extracellular heat shock protein 72 is a marker of the stress protein response in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2006; 291: L354 – 361.en_US
dc.identifier.citedreferencePespeni M, Mackersie RC, Lee H, et al. Serum levels of Hsp60 correlate with the development of acute lung injury after trauma. J Surg Res 2005; 126: 41 – 47.en_US
dc.identifier.citedreferenceErlandsson Harris H, Andersson U. Mini‐review: The nuclear protein HMGB1 as a proinflammatory mediator. Eur J Immunol 2004; 34: 1503 – 1512.en_US
dc.identifier.citedreferenceLotze MT, Deisseroth A, Rubartelli A. Damage associated molecular pattern molecules. Clin Immunol 2007; 124: 1 – 4.en_US
dc.identifier.citedreferenceScaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418: 191 – 195.en_US
dc.identifier.citedreferenceHori O, Brett J, Slattery T, et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co‐expression of rage and amphoterin in the developing nervous system. J Biol Chem 1995; 270: 25752 – 25761.en_US
dc.identifier.citedreferenceHuttunen HJ, Fages C, Kuja‐Panula J, et al. Receptor for advanced glycation end products‐binding COOH‐terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res 2002; 62: 4805 – 4811.en_US
dc.identifier.citedreferenceHuttunen HJ, Fages C, Rauvala H. Receptor for advanced glycation end products (RAGE)‐mediated neurite outgrowth and activation of NF‐ κ B require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 1999; 274: 19919 – 19924.en_US
dc.identifier.citedreferencePark JS, Gamboni‐Robertson F, He QB, et al. High mobility group box 1 protein interacts with multiple Toll‐like receptors. Am J Physiol Cell Physiol 2006; 290: C917 – 924.en_US
dc.identifier.citedreferenceHreggvidsdottir HS, Ostberg T, Wahamaa H, et al. The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation. J Leukoc Biol 2009; 86: 655 – 662.en_US
dc.identifier.citedreferencevan Beijnum JR, Buurman WA, Griffioen AW. Convergence and amplification of toll‐like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 2008; 11: 91 – 99.en_US
dc.identifier.citedreferenceYu M, Wang H, Ding A, et al. HMGB1 signals through toll‐like receptor (TLR)‐4 and TLR2. Shock 2006; 26: 174 – 179.en_US
dc.identifier.citedreferenceAbraham E, Arcaroli J, Carmody A, et al. HMG‐1 as a mediator of acute lung inflammation. J Immunol 2000; 165: 2950 – 2954.en_US
dc.identifier.citedreferenceRen D, Sun R, Wang S. Role of inducible nitric oxide synthase expressed by alveolar macrophages in high mobility group box 1 – induced acute lung injury. Inflamm Res 2006; 55: 207 – 215.en_US
dc.identifier.citedreferenceHe M, Kubo H, Ishizawa K, et al. The role of the receptor for advanced glycation end‐products in lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2007; 293: L1427 – 1436.en_US
dc.identifier.citedreferenceKim JY, Park JS, Strassheim D, et al. HMGB1 contributes to the development of acute lung injury after hemorrhage. Am J Physiol Lung Cell Mol Physiol 2005; 288: L958 – 965.en_US
dc.identifier.citedreferenceKong X, Zhang C, Jin X, et al. The effect of HMGB1 A box on lung injury in mice with acute pancreatitis. Biofactors 2011; 37: 323 – 327.en_US
dc.identifier.citedreferenceFan J, Li Y, Levy RM, et al. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1–TLR4 signaling. J Immunol 2007; 178: 6573 – 6580.en_US
dc.identifier.citedreferenceLi Y, Xiang M, Yuan Y, et al. Hemorrhagic shock augments lung endothelial cell activation: role of temporal alterations of TLR4 and TLR2. Am J Physiol Regul Integr Comp Physiol 2009; 297: R1670 – 1680.en_US
dc.identifier.citedreferenceUeno H, Matsuda T, Hashimoto S, et al. Contributions of high mobility group box protein in experimental and clinical acute lung injury. Am J Respir Crit Care Med 2004; 170: 1310 – 1316.en_US
dc.identifier.citedreferenceAlexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double‐stranded RNA and activation of NF‐ κ B by Toll‐like receptor 3. Nature 2001; 413: 732 – 738.en_US
dc.identifier.citedreferenceDiebold SS, Kaisho T, Hemmi H, et al. Innate antiviral responses by means of TLR7‐mediated recognition of single‐stranded RNA. Science 2004; 303: 1529 – 1531.en_US
dc.identifier.citedreferenceHemmi H, Takeuchi O, Kawai T, et al. A Toll‐like receptor recognizes bacterial DNA. Nature 2000; 408: 740 – 745.en_US
dc.identifier.citedreferencePlatz J, Beisswenger C, Dalpke A, et al. Microbial DNA induces a host defense reaction of human respiratory epithelial cells. J Immunol 2004; 173: 1219 – 1223.en_US
dc.identifier.citedreferenceUrbonaviciute V, Furnrohr BG, Meister S, et al. Induction of inflammatory and immune responses by HMGB1–nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med 2008; 205: 3007 – 3018.en_US
dc.identifier.citedreferenceBarrat FJ, Meeker T, Gregorio J, et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll‐like receptors and may promote systemic lupus erythematosus. J Exp Med 2005; 202: 1131 – 1139.en_US
dc.identifier.citedreferenceKariko K, Ni H, Capodici J, et al. mRNA is an endogenous ligand for Toll‐like receptor 3. J Biol Chem 2004; 279: 12542 – 12550.en_US
dc.identifier.citedreferenceCavassani KA, Ishii M, Wen H, et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J Exp Med 2008; 205: 2609 – 2621.en_US
dc.identifier.citedreferenceBoule MW, Broughton C, Mackay F, et al. Toll‐like receptor 9‐dependent and ‐independent dendritic cell activation by chromatin–immunoglobulin G complexes. J Exp Med 2004; 199: 1631 – 1640.en_US
dc.identifier.citedreferenceTian J, Avalos AM, Mao SY, et al. Toll‐like receptor 9‐dependent activation by DNA‐containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 2007; 8: 487 – 496.en_US
dc.identifier.citedreferenceIvanov S, Dragoi AM, Wang X, et al. A novel role for HMGB1 in TLR9‐mediated inflammatory responses to CpG‐DNA. Blood 2007; 110: 1970 – 1981.en_US
dc.identifier.citedreferenceCai ZG, Zhang SM, Zhang Y, et al. MicroRNAs are dynamically regulated and play an important role in LPS‐induced lung injury. Can J Physiol Pharmacol 2012; 90: 37 – 43.en_US
dc.identifier.citedreferenceZhou T, Garcia JG, Zhang W. Integrating microRNAs into a system biology approach to acute lung injury. Transl Res 2011; 157: 180 – 190.en_US
dc.identifier.citedreferenceQuinn SR, O'Neill LA. A trio of microRNAs that control Toll‐like receptor signalling. Int Immunol 2011; 23: 421 – 425.en_US
dc.identifier.citedreferenceFabbri M, Paone A, Calore F, et al. MicroRNAs bind to Toll‐like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA 2012; 109: E2110 – 6. Epub ahead of print.en_US
dc.identifier.citedreferenceLehrer RI, Lichtenstein AK, Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 1993; 11: 105 – 128.en_US
dc.identifier.citedreferenceBiragyn A, Ruffini PA, Leifer CA, et al. Toll‐like receptor 4‐dependent activation of dendritic cells by β ‐defensin 2. Science 2002; 298: 1025 – 1029.en_US
dc.identifier.citedreferenceBiragyn A, Coscia M, Nagashima K, et al. Murine β ‐defensin 2 promotes TLR‐4/MyD88‐mediated and NF‐ κ B‐dependent atypical death of APCs via activation of TNFR2. J Leukoc Biol 2008; 83: 998 – 1008.en_US
dc.identifier.citedreferenceFunderburg N, Lederman MM, Feng Z, et al. Human defensin‐3 activates professional antigen‐presenting cells via Toll‐like receptors 1 and 2. Proc Natl Acad Sci USA 2007; 104: 18631 – 18635.en_US
dc.identifier.citedreferenceShu Q, Shi Z, Zhao Z, et al. Protection against Pseudomonas aeruginosa pneumonia and sepsis‐induced lung injury by overexpression of β ‐defensin‐2 in rats. Shock 2006; 26: 365 – 371.en_US
dc.identifier.citedreferenceLiu KX, Chen SQ, Zhang H, et al. Intestinal ischaemia/reperfusion upregulates β ‐defensin‐2 expression and causes acute lung injury in the rat. Injury 2009; 40: 950 – 955.en_US
dc.identifier.citedreferenceKuroki Y, Takahashi M, Nishitani C. Pulmonary collectins in innate immunity of the lung. Cell Microbiol 2007; 9: 1871 – 1879.en_US
dc.identifier.citedreferenceKoptides M, Umstead TM, Floros J, et al. Surfactant protein A activates NF‐ κ B in the THP‐1 monocytic cell line. Am J Physiol 1997; 273: L382 – 388.en_US
dc.identifier.citedreferenceGuillot L, Balloy V, McCormack FX, et al. Cutting edge: the immunostimulatory activity of the lung surfactant protein‐A involves Toll‐like receptor 4. J Immunol 2002; 168: 5989 – 5992.en_US
dc.identifier.citedreferenceMurakami S, Iwaki D, Mitsuzawa H, et al. Surfactant protein A inhibits peptidoglycan‐induced tumor necrosis factor‐ α secretion in U937 cells and alveolar macrophages by direct interaction with toll‐like receptor 2. J Biol Chem 2002; 277: 6830 – 6837.en_US
dc.identifier.citedreferenceYamada C, Sano H, Shimizu T, et al. Surfactant protein A directly interacts with TLR4 and MD‐2 and regulates inflammatory cellular response. Importance of supratrimeric oligomerization. J Biol Chem 2006; 281: 21771 – 21780.en_US
dc.identifier.citedreferenceWu Y, Adam S, Hamann L, et al. Accumulation of inhibitory κ B‐ α as a mechanism contributing to the anti‐inflammatory effects of surfactant protein‐A. Am J Respir Cell Mol Biol 2004; 31: 587 – 594.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.