Nanoscale structure of type I collagen fibrils: Quantitative measurement of D‐spacing
dc.contributor.author | Erickson, Blake | en_US |
dc.contributor.author | Fang, Ming | en_US |
dc.contributor.author | Wallace, Joseph M. | en_US |
dc.contributor.author | Orr, Bradford G. | en_US |
dc.contributor.author | Les, Clifford M. | en_US |
dc.contributor.author | Banaszak Holl, Mark M. | en_US |
dc.date.accessioned | 2013-01-03T19:36:38Z | |
dc.date.available | 2014-03-03T15:09:24Z | en_US |
dc.date.issued | 2013-01 | en_US |
dc.identifier.citation | Erickson, Blake; Fang, Ming; Wallace, Joseph M.; Orr, Bradford G.; Les, Clifford M.; Banaszak Holl, Mark M. (2013). "Nanoscale structure of type I collagen fibrils: Quantitative measurement of D‐spacing." Biotechnology Journal 8(1): 117-126. <http://hdl.handle.net/2027.42/94732> | en_US |
dc.identifier.issn | 1860-6768 | en_US |
dc.identifier.issn | 1860-7314 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/94732 | |
dc.description.abstract | This article details a quantitative method to measure the D‐periodic spacing of type I collagen fibrils using atomic force microscopy coupled with analysis using a two‐dimensional fast fourier transform approach. Instrument calibration, data sampling and data analysis are discussed and comparisons of the data to the complementary methods of electron microscopy and X‐ray scattering are made. Examples of the application of this new approach to the analysis of type I collagen morphology in disease models of estrogen depletion and osteogenesis imperfecta (OI) are provided. We demonstrate that it is the D‐spacing distribution, not the D‐spacing mean, that showed statistically significant differences in estrogen depletion associated with early stage osteoporosis and OI. The ability to quantitatively characterize nanoscale morphological features of type I collagen fibrils will provide important structural information regarding type I collagen in many research areas, including tissue aging and disease, tissue engineering, and gene knockout studies. Furthermore, we also envision potential clinical applications including evaluation of tissue collagen integrity under the impact of diseases or drug treatments. The distribution of Type I collagen fibril D‐spacing provides important morphological information regarding Type I collagen in diseases such as early stages of osteoporosis and osteogenesis Imperfecta . In this article, the authors use Atomic Force Microscopy (AFM) imaging combined with two Dimensional Fast Fourier Transform (2D FFT) analysis to quantitatively assess Type I collagen fibril D‐spacing. This methodology allows imaging and characterization of Type I collagen constituted biological tissues, hydrogels, and other collagen based biomaterials. | en_US |
dc.publisher | WILEY‐VCH Verlag | en_US |
dc.subject.other | Collagen Fibril | en_US |
dc.subject.other | D‐Spacing | en_US |
dc.subject.other | 2D Fast Fourier Transform | en_US |
dc.subject.other | Atomic Force Microscopy | en_US |
dc.title | Nanoscale structure of type I collagen fibrils: Quantitative measurement of D‐spacing | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Biomedical Engineering | en_US |
dc.subject.hlbtoplevel | Engineering | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Program in Biophysics, University of Michigan, Ann Arbor, MI, USA | en_US |
dc.contributor.affiliationum | Department of Chemistry, University of Michigan, Ann Arbor, MI, USA | en_US |
dc.contributor.affiliationum | Program in Applied Physics, University of Michigan, Ann Arbor, MI, USA | en_US |
dc.contributor.affiliationum | Department of Physics, University of Michigan, Ann Arbor, MI, USA | en_US |
dc.contributor.affiliationum | Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109‐1055, USA | en_US |
dc.contributor.affiliationum | Department of Physics, 450 Church Street, University of Michigan, Ann Arbor, MI 48109, USA | en_US |
dc.contributor.affiliationother | Biomedical Engineering, Indiana University‐Purdue University, Indianapolis, IN, USA | en_US |
dc.contributor.affiliationother | Department of Biomedical Engineering, 723 W. Michigan SL220D, Indiana University‐Purdue University Indianapolis, Indianapolis, IN 46202, USA | en_US |
dc.contributor.affiliationother | Bone and Joint Center, Henry Ford Hospital, Detroit, MI, USA | en_US |
dc.contributor.affiliationother | Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, MI, USA | en_US |
dc.identifier.pmid | 23027700 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/94732/1/117_ftp.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/94732/2/biot_201200174_sm_suppinfo.pdf | |
dc.identifier.doi | 10.1002/biot.201200174 | en_US |
dc.identifier.source | Biotechnology Journal | en_US |
dc.identifier.citedreference | Buehler, M. J., Keten, S., Ackbarow, T., Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture. Prog. Mater. Sci. 2008, 53, 1101 – 1241. | en_US |
dc.identifier.citedreference | Hulmes, D. J. S., Miller, A., Quasi‐hexagonal molecular packing in collagen fibrils. Nature 1979, 282, 878 – 880. | en_US |
dc.identifier.citedreference | Fraser, R. D. B., MacRae, T. P., Miller, A., Molecular packing in type I collagen fibrils. J. Mol. Biol. 1987, 193, 115 – 125. | en_US |
dc.identifier.citedreference | Orgel, J. P. R. O., Miller, A., Irving, T. C., Fischetti, R. F. et al., The in situ supermolecular structure of type I collagen. Structure 2001, 9, 1061 – 1069. | en_US |
dc.identifier.citedreference | Trus, B. L., Piez, K. A., Compressed microfibril models of the native collagen fibril. Nature 1980, 286, 300 – 301. | en_US |
dc.identifier.citedreference | Piez, K. A., Trus, B. L., A new model for packing of type‐I collagen molecules in the native fibril. Biosci. Rep. 1981, 1, 801 – 810. | en_US |
dc.identifier.citedreference | Gautieri, A., Vesentini, S., Redaelli, A., Buehler, M. J., Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 2011, 11, 757 – 766. | en_US |
dc.identifier.citedreference | Wallace, J. M., Chen, Q., Fang, M., Erickson, B. et al., Type I collagen exists as a distribution of nanoscale morphologies in teeth, bones, and tendons. Langmuir 2010, 26, 7349 – 7354. | en_US |
dc.identifier.citedreference | Wallace, J. M., Erickson, B., Les, C. M., Orr, B. G., Banaszak Holl, M. M., Distribution of type I collagen morphologies in bone: Relation to estrogen depletion in bone. Bone 2010, 46, 1349 – 1354. | en_US |
dc.identifier.citedreference | Fang, M., Liroff, K. G., Turner, A. S., Les, C. M. et al., Estrogen depletion results in nanoscale morphology changes in dermal collagen. J. Invest. Dermatol. 2012, 132, 1791 – 1797. | en_US |
dc.identifier.citedreference | Wallace, J. M., Orr, B. G., Marini, J. C., Banaszak Holl, M. M., Nanoscale morphology of type I collagen is altered in the Brtl mouse model of osteogenesis imperfecta. J. Struct. Biology 2011, 173, 146 – 152. | en_US |
dc.identifier.citedreference | Fratzl, P., Fratzlzelman, N., Klaushofer, K., Collagen packing and mineralization – an X‐ray‐scattering investigation of turkey leg tendon. Biophys. J. 1993, 64, 260 – 266. | en_US |
dc.identifier.citedreference | Fang, M., Liroff, G. K., Turner, A. S., Les, C. M. et al., Estrogen Depletion results in nanoscale morphology changes in dermal collagen J. Invest. Dermatol. 2012, 132, 1791 – 1797. | en_US |
dc.identifier.citedreference | Habelitz, S., Balooch, M., Marshall, S. J., Balooch, G., Marshall, G. W., In situ atomic force microscopy of partially demineralized human dentin collagen fibrils. J. Struct. Biol. 2002, 138, 227 – 236. | en_US |
dc.identifier.citedreference | Hassenkam, T., Fantner, G. E., Cutroni, J. A., Weaver, J. C. et al., High‐resolution AFM imaging of intact and fractured trabecular bone. Bone 2004, 35, 4 – 10. | en_US |
dc.identifier.citedreference | Baranauskas, V., Garavello‐Freitas, I., Jingguo, Z., Cruz‐Hofling, M. A., Observation of the bone matrix structure of intact and regenerative zones of tibias by atomic force microscopy. J. Vacuum Sci. Technol. A 2001, 19, 1042 – 1045. | en_US |
dc.identifier.citedreference | Kindt, J. H., Thurner, P. J., Lauer, M. E., Bosma, B. L. et al., In situ observation of fluoride‐ion‐induced hydroxyapatite‐collagen detachment on bone fracture surfaces by atomic force microscopy. Nanotechnology 2007, 135102. | en_US |
dc.identifier.citedreference | Cremer, C., Kaufman, R., Gunkel, M., Pres, S. et al., Superresolution imaging of biological nanostructures by spectral precision distance microscopy. Biotechnol. J. 2011, 6, 1037 – 1051. | en_US |
dc.identifier.citedreference | Wallace, J. M., Applications of atomic force microscopy for the assessment of nanoscale morphological and mechanical properties of bone. Bone 2012, 50, 420 – 427. | en_US |
dc.identifier.citedreference | Mogilner, I. G., Ruderman, G., Grigera, J. R., Collagen stability, hydration and native state. J. Mol. Graphics Model. 2002, 21, 209 – 213. | en_US |
dc.identifier.citedreference | Price, R. I., Lees, S., Kirschner, D. A., X‐ray diffraction analysis of tendon collagen at ambient and cryogenic temperatures: Role of hydration. Int. J. Biol. Macromol. 1997, 20, 23 – 33. | en_US |
dc.identifier.citedreference | Habelitz, S., Balooch, M., Marshall, S. J., Balooch, G., Marshall, G. W. Jr., In situ atomic force microscopy of partially demineralized human dentin collagen fibrils. J. Struct. Biol. 2002, 138, 227 – 236. | en_US |
dc.identifier.citedreference | Brodsky, B., Eikenberry, E. F., Cassidy, K., An unusual collagen periodicity in skin. Biochim. Biophys. Acta 1980, 621, 162 – 166. | en_US |
dc.identifier.citedreference | Sasaki, N., Shukunami, N., Matsushima, N., Izumi, Y., Time‐resolved X‐ray diffraction from tendon collagen during creep using synchrotron radiation. J. Biomech. 1999, 32, 285 – 292. | en_US |
dc.identifier.citedreference | Puxkandl, R., Zizak, I., Paris, O., Keckes, J. et al., Viscoelastic properties of collagen: Synchrotron radiation investigations and structural model. Philos. Trans. R. Soc. B Biol.Sci. 2002, 357, 191 – 197. | en_US |
dc.identifier.citedreference | Gupta, H. S., Zioupos, P., Fracture of bone tissue: The 'hows' and the 'whys'. Med. Eng. Phys. 2008, 30, 1209 – 1226. | en_US |
dc.identifier.citedreference | Drits, V. A., Eberl, D. D., Srodon, J., XRD measurement of mean thickness, thickness distribution and strain for illite and illite‐smectite crystallites by the Bertaut‐Warren‐Averbach technique. Clays Clay Miner. 1998, 46, 38 – 50. | en_US |
dc.identifier.citedreference | Haczynski, J., Tarkowski, R., Jarzabek, K., Slomczynska, M. et al., Human cultured skin fibroblasts express estrogen receptor alpha and beta. Int. J. Mol. Med. 2002, 10, 149 – 153. | en_US |
dc.identifier.citedreference | Dimitrios J, H., Ioannis I, A., Bone remodeling. Ann. N. Y. Acad. Sci. 2006, 1092, 385 – 396. | en_US |
dc.identifier.citedreference | Brincat, M. P., Baron, Y. M., Galea, R., Estrogens and the skin. Climacteric 2005, 8, 110 – 123. | en_US |
dc.identifier.citedreference | Brincat, M., Moniz, C. J., Studd, J. W. W., Long‐term effects of the menopause and sex hormones on skin thickness. Br. J. Obstet. Gynaecol. 1985, 92, 256 – 259. | en_US |
dc.identifier.citedreference | Chang, S.‐W., Shefelbine, S. J., Buehler, M. J., Structural and mechanical differences between collagen homo‐ and heterotrimers: Relevance for the molecular origin of brittle bone disease. Biophys. J. 2012, 102, 640 – 648. | en_US |
dc.identifier.citedreference | Lee, K. H., Kuczera, K., Banaszak Holl, M. M., The severity of osteogenesis imperfecta: A comparison to the relative free energy differences of collagen model peptides. Biopolymers 2011, 95, 182 – 193. | en_US |
dc.identifier.citedreference | Gautieri, A., Uzel, S., Vesentini, S., Redaelli, A., Buehler, M. J., Molecular and mesoscale mechanisms of osteogenesis imperfecta disease in collagen fibrils. Biophys. J. 2009, 97, 857 – 865. | en_US |
dc.identifier.citedreference | Fratzl, P. (Ed.), Collagen: Structure and Mechanics, Springer, New York 2008. | en_US |
dc.identifier.citedreference | Kadler, K. E., Holmes, D. F., Trotter, J. A., Chapman, J. A., Collagen fibril formation. Biochem. J. 1996, 316, 1 – 11. | en_US |
dc.identifier.citedreference | Kadler, K. E., Baldock, C., Bella, J., Boot‐Hanford, R. P., Collagens at a glance. J. Cell Sci. 2007, 120, 1955 – 1958. | en_US |
dc.identifier.citedreference | Canty, E. G., Kadler, K. E., Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 2005, 118, 1341 – 1353. | en_US |
dc.identifier.citedreference | Bear, R. S., Long x‐ray diffraction spacing of collagen. J. Am. Chem. Soc. 1942, 64, 727. | en_US |
dc.identifier.citedreference | Schmitt, F. O., Hall, C. E., Jakus, M. A., Electron microscope investigations of the structure of collagen. J. Cell. Comp. Phys. 1942, 20, 11 – 33. | en_US |
dc.identifier.citedreference | Hodge, A. J., Petruska, J. A., Recent studies with the electron microscope on ordered aggregates of the tropocollagen molecule, in: Ramachandran, G. N. (Ed.), Aspects of Protein Structure, Academic Press, New York 1963, p. 289. | en_US |
dc.identifier.citedreference | Bigi, A., Koch, M. H. J., Panzavolta, S., Roveri, N., Rubini, K., Structural aspects of the calcification process of lower vertebrate collagen. Connect. Tissue Res. 2000, 41, 37 – 43. | en_US |
dc.identifier.citedreference | Fraser, R. D. B., MacRae, T. P., Miller, A., Suzuki, E., Molecular conformation and packing in collagen fibrils. J. Mol. Biol. 1983, 167, 497 – 521. | en_US |
dc.identifier.citedreference | Eikenberry, E. F., Brodsky, B., Parry, D. A. D., Collagen fibril morphology in developing chick metatarsal tendons: I. X‐ray diffraction studies. Int. J.Biol. Macromol. 1982, 4, 322 – 328. | en_US |
dc.identifier.citedreference | Brodsky, B., Eikenberry, E. F., Characterization of fibrous forms of collagen. Methods Enzymol. 1982, 82(PtA), 127 – 174. | en_US |
dc.identifier.citedreference | Chapman, J. A., Tzaphlidou, M., Meek, K. M., Kadler, K. E., The collagen fibril – a model system for studying the staining and fixation of a protein. Electron Microsc. Rev. 1990, 3, 143 – 182. | en_US |
dc.identifier.citedreference | Lin, A. C., Goh, M. C., Investigating the ultrastructure of fibrous long spacing collagen by parallel atomic force and transmission electron microscopy. Proteins 2002, 49, 378 – 384. | en_US |
dc.identifier.citedreference | Arsenault, A. L., Image analysis of mineralized and non‐mineralized type I collagen fibrils. J. Electron Microsc. Tech. 1991, 18, 262 – 268. | en_US |
dc.identifier.citedreference | Orgel, J., Irving, T. C., Miller, A., Wess, T. J., Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. USA 2006, 103, 9001 – 9005. | en_US |
dc.identifier.citedreference | Hulmes, D. J. S., Wess, T. J., Prockop, D. J., Fratzl, P., Radial packing, order, and disorder in collagen fibrils. Biophys. J. 1995, 68, 1661 – 1670. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.