Show simple item record

Antimicrobial polymers as synthetic mimics of host‐defense peptides

dc.contributor.authorKuroda, Kenichien_US
dc.contributor.authorCaputo, Gregory A.en_US
dc.date.accessioned2013-01-03T19:38:28Z
dc.date.available2014-03-03T15:09:24Zen_US
dc.date.issued2013-01en_US
dc.identifier.citationKuroda, Kenichi; Caputo, Gregory A. (2013). "Antimicrobial polymers as synthetic mimics of host‐defense peptides." Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 5(1): 49-66. <http://hdl.handle.net/2027.42/94848>en_US
dc.identifier.issn1939-5116en_US
dc.identifier.issn1939-0041en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94848
dc.description.abstractAntibiotic‐resistant bacteria ‘superbugs’ are an emerging threat to public health due to the decrease in effective antibiotics as well as the slowed pace of development of new antibiotics to replace those that become ineffective. The need for new antimicrobial agents is a well‐documented issue relating to world health. Tremendous efforts have been given to developing compounds that not only show high efficacy, but also those that are less susceptible to resistance development in the bacteria. However, the development of newer, stronger antibiotics which can overcome these acquired resistances is still a scientific challenge because a new mode of antimicrobial action is likely required. To that end, amphiphilic, cationic polymers have emerged as a promising candidate for further development as an antimicrobial agent with decreased potential for resistance development. These polymers are designed to mimic naturally occurring host‐defense antimicrobial peptides which act on bacterial cell walls or membranes. Antimicrobial‐peptide mimetic polymers display antibacterial activity against a broad spectrum of bacteria including drug‐resistant strains and are less susceptible to resistance development in bacteria. These polymers also showed selective activity to bacteria over mammalian cells. Antimicrobial polymers provide a new molecular framework for chemical modification and adaptation to tune their biological functions. The peptide‐mimetic design of antimicrobial polymers will be versatile, generating a new generation of antibiotics toward implementation of polymers in biomedical applications. WIREs Nanomed Nanobiotechnol 2013, 5:49–66. doi: 10.1002/wnan.1199 Conflict of interest: K. K. is a coinventor on a patent application filed by the University of Pennsylvania covering ‘Antimicrobial Copolymers and Uses Thereof’. The patent application has been licensed to PolyMedix Inc. (Radnor, PA). PolyMedix did not play a role in the design and conduct of this study; in the collection, analysis, or interpretation of the data; or in the preparation, review, or approval of the article. For further resources related to this article, please visit the WIREs website .en_US
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.titleAntimicrobial polymers as synthetic mimics of host‐defense peptidesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, USAen_US
dc.contributor.affiliationotherDepartment of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, USAen_US
dc.identifier.pmid23076870en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94848/1/1199_ftp.pdf
dc.identifier.doi10.1002/wnan.1199en_US
dc.identifier.sourceWiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnologyen_US
dc.identifier.citedreferenceStrandberg E, Killian JA. Snorkeling of lysine side chains in transmembrane helices: how easy can it get? FEBS Lett 2003, 544: 69 – 73.en_US
dc.identifier.citedreferenceMondal J, Zhu X, Cui QA, Yethiraj A. Sequence‐dependent interaction of β ‐peptides with membranes. J Phys Chem B 2010, 114: 13585 – 13592.en_US
dc.identifier.citedreferenceEpand RF, Sarig H, Mor A, Epand RM. Cell‐wall interactions and the selective bacteriostatic activity of a miniature oligo‐acyl‐lysyl. Biophys J 2009, 97: 2250 – 2257.en_US
dc.identifier.citedreferenceRaafat D, von Bargen K, Haas A, Sahl H‐G. Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 2008, 74: 3764 – 3773.en_US
dc.identifier.citedreferenceGibney K, Sovadinova I, Lopez AI, Urban M, Ridgway Z, Caputo GA, Kuroda K. Poly(ethylene imine)s as antimicrobial agents with selective activity. Macromol Biosci 2012, 12: 1279 – 1289.en_US
dc.identifier.citedreferenceLienkamp K, Kumar K‐N, Som A, Nuesslein K, Tew GN. “Doubly selective” antimicrobial polymers: how do they differentiate between bacteria? Chem Euro J 2009, 15: 11710 – 11714.en_US
dc.identifier.citedreferenceFischer D, Li YX, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 2003, 24: 1121 – 1131.en_US
dc.identifier.citedreferenceTew GN, Clements D, Tang HZ, Arnt L, Scott RW. Antimicrobial activity of an abiotic host defense peptide mimic. Biochim Biophys Acta Biomembranes 2006, 1758: 1387 – 1392.en_US
dc.identifier.citedreferenceGoldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM. Human β ‐defensin‐1 is a salt‐sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 1997, 88: 553 – 560.en_US
dc.identifier.citedreferenceMaisetta G, Di Luca M, Esin S, Florio W, Brancatisano FL, Bottai D, Campa M, Batoni G. Evaluation of the inhibitory effects of human serum components on bactericidal activity of human β defensin 3. Peptides 2008, 29: 1 – 6.en_US
dc.identifier.citedreferenceNie N, Tu Q, Wang J‐C, Chao F, Liu R, Zhang Y, Liu W, Wang J. Synthesis of copolymers using dendronized polyethylene glycol and assay of their blood compatibility and antibacterial adhesion activity. Colloids Surfaces B 2012, 97: 226 – 235.en_US
dc.identifier.citedreferenceYang WJ, Cai T, Neoh K‐G, Kang E‐T, Dickinson GH, Teo SL‐M, Rittschof D. Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel. Langmuir 2011, 27: 7065 – 7076.en_US
dc.identifier.citedreferenceWang YQ, Xu JJ, Zhang YH, Yan HS, Liu KL. Antimicrobial and hemolytic activities of copolymers with cationic and hydrophobic groups: a comparison of block and random copolymers. Macromol Biosci 2011, 11: 1499 – 1504.en_US
dc.identifier.citedreferenceChu B. Structure and dynamics of block‐copolymer colloids. Langmuir 1995, 11: 414 – 421.en_US
dc.identifier.citedreferenceTominaga Y, Mizuse M, Hashidzume A, Morishima Y, Sato T. Flower micelle of amphiphilic random copolymers in aqueous media. J Phys Chem B 2010, 114: 11403 – 11408.en_US
dc.identifier.citedreferenceNederberg F, Zhang Y, Tan JPK, Xu K, Wang H, Yang C, Gao S, Guo XD, Fukushima K, Li L, et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat Chem 2011, 3: 409 – 414.en_US
dc.identifier.citedreferenceLiu L, Xu K, Wang H, Tan JPK, Fan W, Venkatraman SS, Li L, Yang Y‐Y. Self‐assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 2009, 4: 457 – 463.en_US
dc.identifier.citedreferenceRosenberg LE, Carbone AL, Romling U, Uhrich KE, Chikindas ML. Salicylic acid‐based poly(anhydride esters) for control of biofilm formation in Salmonella enterica serovar typhimurium. Lett Appl Microbiol 2008, 46: 593 – 599.en_US
dc.identifier.citedreferenceWoo GLY, Mittelman MW, Santerre JP. Synthesis and characterization of a novel biodegradable antimicrobial polymer. Biomaterials 2000, 21: 1235 – 1246.en_US
dc.identifier.citedreferenceZawaneh PN, Singh SP, Padera RF, Henderson PW, Spector JA, Putnam D. Design of an injectable synthetic and biodegradable surgical biomaterial. Proc Natl Acad Sci U S A 2010, 107: 11014 – 11019.en_US
dc.identifier.citedreferenceFernandes P. Antibacterial discovery and development ‐ the failure of success? Nat Biotechnol 2006, 24: 1497 – 1503.en_US
dc.identifier.citedreferenceFischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science 2009, 325: 1089 – 1093.en_US
dc.identifier.citedreferenceLevy SB. The Antibiotic Paradox. How Miracle Drugs Are Destroying the Miracle. New York: Plenum Press; 1992.en_US
dc.identifier.citedreferenceLevy SB. Antibiotic resistance: an ecological imbalance. In: Chadwick DJ, Goode J, eds. Antibiotic Resistance: Origins, Evolution, Selection and Spread. 207 ed. Chichester: Wiley; 1997, 1 – 14.en_US
dc.identifier.citedreferenceLevy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 2004, 10: S122 – S129.en_US
dc.identifier.citedreferenceNathan C. Antibiotics at the crossroads. Nature 2004, 431: 899 – 902.en_US
dc.identifier.citedreferenceGabriel GJ, Som A, Madkour AE, Eren T, Tew GN. Infectious disease: connecting innate immunity to biocidal polymers. Mater Sci Eng R 2007, 57: 28 – 64.en_US
dc.identifier.citedreferenceKenawy ER, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state‐of‐the‐art review. Biomacromolecules 2007, 8: 1359 – 1384.en_US
dc.identifier.citedreferenceLi P, Li X, Saravanan R, Li CM, Leong SSJ. Antimicrobial macromolecules: synthesis methods and future applications. RSC Adv 2012, 2: 4031 – 4044.en_US
dc.identifier.citedreferenceTimofeeva L, Kleshcheva N. Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol 2011, 89: 475 – 492.en_US
dc.identifier.citedreferencePalermo EF, Kuroda K. Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Appl Microbiol Biotechnol 2010, 87: 1605 – 1615.en_US
dc.identifier.citedreferenceEpand RF, Mowery BP, Lee SE, Stahl SS, Lehrer RI, Gellman SH, Epand RM. Dual mechanism of bacterial lethality for a cationic sequence‐random copolymer that mimics host‐defense antimicrobial peptides. J Mol Biol 2008, 379: 38 – 50.en_US
dc.identifier.citedreferenceGabriel GJ, Pool JG, Som A, Dabkowski JM, Coughlin EB, Muthukurnar M, Tew GN. Interactions between antimicrobial polynorbornenes and phospholipid vesicles monitored by light scattering and microcalorimetry. Langmuir 2008, 24: 12489 – 12495.en_US
dc.identifier.citedreferenceRawlinson L‐AB, Ryan SM, Mantovani G, Syrett JA, Haddleton DM, Brayden DJ. Antibacterial effects of poly(2‐(dimethylamino ethyl)methacrylate) against selected Gram‐positive and Gram‐negative bacteria. Biomacromolecules 2010, 11: 443 – 453.en_US
dc.identifier.citedreferenceBrogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005, 3: 238 – 250.en_US
dc.identifier.citedreferenceZasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415: 389 – 395.en_US
dc.identifier.citedreferenceMarr AK, Gooderham WJ, Hancock REW. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 2006, 6: 468 – 472.en_US
dc.identifier.citedreferenceHancock REW, Sahl HG. Antimicrobial and host‐defense peptides as new anti‐infective therapeutic strategies. Nat Biotechnol 2006, 24: 1551 – 1557.en_US
dc.identifier.citedreferenceShai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers 2002, 66: 236 – 248.en_US
dc.identifier.citedreferenceRodriguez de Castro F, Naranjo OR, Marco JA, Violan JS. New antimicrobial molecules and new antibiotic strategies. Semin Respir Crit Care Med 2009, 30: 161 – 171.en_US
dc.identifier.citedreferenceMatsuzaki K. Why and how are peptide‐lipid interactions utilized for self‐defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta Biomembranes 1999, 1462: 1 – 10.en_US
dc.identifier.citedreferenceTossi A, Sandri L, Giangaspero A. Amphipathic, α ‐helical antimicrobial peptides. Biopolymers 2000, 55: 4 – 30.en_US
dc.identifier.citedreferenceSchmidt NW, Mishra A, Lai GH, Davis M, Sanders LK, Dat T, Garcia A, Tai KP, McCray PB, Jr. Ouellette AJ, et al. Criterion for amino acid composition of defensins and antimicrobial peptides based on geometry of membrane destabilization. J Am Chem Soc 2011, 133: 6720 – 6727.en_US
dc.identifier.citedreferenceSochacki KA, Barns KJ, Bucki R, Weisshaar JC. Real‐time attack on single Escherichia coli cells by the human antimicrobial peptide LL‐37. Proc Natl Acad Sci U S A 2011, 108: E77 – E81.en_US
dc.identifier.citedreferencePeschel A, Sahl H‐G. The co‐evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 2006, 4: 529 – 536.en_US
dc.identifier.citedreferenceFranco OL. Peptide promiscuity: an evolutionary concept for plant defense. FEBS Lett 2011, 585: 995 – 1000.en_US
dc.identifier.citedreferenceHancock REW, Lehrer R. Cationic peptides: a new source of antibiotics. Trends Biotechnol 1998, 16: 82 – 88.en_US
dc.identifier.citedreferenceGiuliani A, Pirri G, Nicoletto S. Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2007, 2: 33.en_US
dc.identifier.citedreferencePapo N, Shai Y. Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci 2005, 62: 784 – 790.en_US
dc.identifier.citedreferenceRiedl S, Zweytick D, Lohner K. Membrane‐active host defense peptides ‐ challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids 2011, 164: 766 – 781.en_US
dc.identifier.citedreferenceWade D, Boman A, Wahlin B, Drain CM, Andreu D, Boman HG, Merrifield RB. All‐d amino acid‐containing channel‐forming antibiotic peptides. Proc Natl Acad Sci U S A 1990, 87: 4761 – 4765.en_US
dc.identifier.citedreferenceOren Z, Ramesh J, Avrahami D, Suryaprakash N, Shai Y, Jelinek R. Structures and mode of membrane interaction of a short α helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy. Eur J Biochem 2002, 269: 3869 – 3880.en_US
dc.identifier.citedreferenceTashiro T. Antibacterial and bacterium adsorbing macromolecules. Macromol Mater Eng 2001, 286: 63 – 87.en_US
dc.identifier.citedreferenceChakrabarty S, King A, Kurt P, Zhang W, Ohman DE, Wood LF, Lovelace C, Rao R, Wynne KJ. Highly effective, water‐soluble, hemocompatible 1,3‐propylene oxide‐based antimicrobials: poly[(3,3‐quaternary/PEG)‐copolyoxetanes]. Biomacromolecules 2011, 12: 757 – 769.en_US
dc.identifier.citedreferenceStratton TR, Rickus JL, Youngblood JP. In vitro biocompatibility studies of antibacterial quaternary polymers. Biomacromolecules 2009, 10: 2550 – 2555.en_US
dc.identifier.citedreferenceSambhy V, Peterson BR, Sen A. Antibacterial and hemolytic activities of pyridinium polymers as a function of the spatial relationship between the positive charge and the pendant alkyl tail. Angew Chem Int Ed 2008, 47: 1250 – 1254.en_US
dc.identifier.citedreferenceKuroda K, DeGrado WF. Amphiphilic polymethacrylate derivatives as antimicrobial agents. J Am Chem Soc 2005, 127: 4128 – 4129.en_US
dc.identifier.citedreferenceLienkamp K, Madkour AE, Musante A, Nelson CF, Nusslein K, Tew GN. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach. J Am Chem Soc 2008, 130: 9836 – 9843.en_US
dc.identifier.citedreferenceMowery BP, Lee SE, Kissounko DA, Epand RF, Epand RM, Weisblum B, Stahl SS, Gellman SH. Mimicry of antimicrobial host‐defense peptides by random copolymers. J Am Chem Soc 2007, 129: 15474 – 15476.en_US
dc.identifier.citedreferenceOda Y, Kanaoka S, Sato T, Aoshima S, Kuroda K. Block versus random amphiphilic copolymers as antibacterial agents. Biomacromolecules 2011, 12: 3581 – 3591.en_US
dc.identifier.citedreferenceSong A, Walker SG, Parker KA, Sampson NS. Antibacterial studies of cationic polymers with alternating, random, and uniform backbones. ACS Chem Biol 2011, 6: 590 – 599.en_US
dc.identifier.citedreferenceAvery CW, Palermo EF, McLaughin A, Kuroda K, Chen Z. Investigations of the interactions between synthetic antimicrobial polymers and substrate‐supported lipid bilayers using sum frequency generation vibrational spectroscopy. Anal Chem 2011, 83: 1342 – 1349.en_US
dc.identifier.citedreferenceMizutani M, Palermo EF, Thoma LM, Satoh K, Kamigaito M, Kuroda K. Design and synthesis of self‐degradable antibacterial polymers by simultaneous chain‐ and step‐growth radical copolymerization. Biomacromolecules 2012, 13: 1554 – 1563.en_US
dc.identifier.citedreferencePalermo EF, Kuroda K. Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules 2009, 10: 1416 – 1428.en_US
dc.identifier.citedreferencePalermo EF, Lee DK, Ramamoorthy A, Kuroda K. Role of cationic group structure in membrane binding and disruption by amphiphilic copolymers. J Phys Chem B 2011, 115: 366 – 375.en_US
dc.identifier.citedreferencePalermo EF, Sovadinova I, Kuroda K. Structural determinants of antimicrobial activity and biocompatibility in membrane‐disrupting methacrylamide random copolymers. Biomacromolecules 2009, 10: 3098 – 3107.en_US
dc.identifier.citedreferencePalermo EF, Vemparala S, Kuroda K. Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers. Biomacromolecules 2012, 13: 1632 – 1641.en_US
dc.identifier.citedreferenceSovadinova I, Palermo EF, Huang R, Thoma LM, Kuroda K. Mechanism of polymer‐induced hemolysis: nanosized pore formation and osmotic lysis. Biomacromolecules 2011, 12: 260 – 268.en_US
dc.identifier.citedreferenceSovadinova IP, Urban EF, Mpiga M, Caputo P, Kuroda GA. K Activity and mechanism of antimicrobial peptide‐mimetic amphiphilic polymethacrylate derivatives. Polymers 2011, 3: 1512 – 1532.en_US
dc.identifier.citedreferenceKuroda K, Caputo GA, DeGrado WF. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chem Eur J 2009, 15: 1123 – 1133.en_US
dc.identifier.citedreferenceMunoz‐Bonilla A, Fernandez‐Garcia M. Polymeric materials with antimicrobial activity. Prog Polym Sci 2012, 37: 281 – 339.en_US
dc.identifier.citedreferenceNCCLS. Approved standards M7‐A3. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Philadelphia, PA: NCCLS; 2003.en_US
dc.identifier.citedreferenceWiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 2008, 3: 163 – 175.en_US
dc.identifier.citedreferenceGiacometti A, Cirioni O, Barchiesi F, Del Prete MS, Fortuna M, Caselli F, Scalise G. In vitro susceptibility tests for cationic peptides: comparison of broth microdilution methods for bacteria that grow aerobically. Antimicrob Agents Chemother 2000, 44: 1694 – 1696.en_US
dc.identifier.citedreferenceCenters for Disease Control and Prevention. Acinetobacter baumannii infections among patients at military medical facilities treating injured U.S. service members, 2002–2004. Morbid Mortal Week Rep 2004, Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5345a1.htm.en_US
dc.identifier.citedreferenceCaputo GA, London E. Cumulative effects of amino acid substitutions and hydrophobic mismatch upon the transmembrane stability and conformation of hydrophobic α ‐helices. Biochem 2003, 42: 3275 – 3285.en_US
dc.identifier.citedreferenceJaud S, Fernandez‐Vidal M, Nilsson I, Meindi‐Beinker NM, Hubner NC, Tobias DJ, von Heijne G, White SH. Insertion of short transmembrane helices by the Sec61 translocon. Proc Natl Acad Sci U S A 2009, 106: 11588 – 11593.en_US
dc.identifier.citedreferenceKrishnakumar SS, London E. The control of transmembrane helix transverse position in membranes by hydrophilic residues. J Mol Biol 2007, 374: 1251 – 1269.en_US
dc.identifier.citedreferenceMishra VK, Palgunachari MN, Segrest JP, Anantharamaiah GM. Interactions of synthetic peptide analogs of the class a amphipathic helix with lipids ‐ evidence for the snorkel hypothesis. J Biol Chem 1994, 269: 7185 – 7191.en_US
dc.identifier.citedreferenceMonne M, Nilsson I, Johansson M, Elmhed N, von Heijne G. Positively and negatively charged residues have different effects on the position in the membrane of a model transmembrane helix. J Mol Biol 1998, 284: 1177 – 1183.en_US
dc.identifier.citedreferenceSchow EV, Freites JA, Cheng P, Bernsel A, von Heijne G, White SH, Tobias DJ. Arginine in membranes: the connection between molecular dynamics simulations and translocon‐mediated insertion experiments. J Membr Biol 2011, 239: 35 – 48.en_US
dc.identifier.citedreferenceStrandberg E, Morein S, Rijkers DTS, Liskamp RMJ, van der Wel PCA, Killian JA. Lipid dependence of membrane anchoring properties and snorkeling behavior of aromatic and charged residues in transmembrane peptides. Biochem 2002, 41: 7190 – 7198.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.