Show simple item record

Reconstructing plant invasions using historical aerial imagery and pollen core analysis: T ypha in the L aurentian G reat L akes

dc.contributor.authorLishawa, Shane C.en_US
dc.contributor.authorTreering, David. J.en_US
dc.contributor.authorVail, Lane M.en_US
dc.contributor.authorMcKenna, Owenen_US
dc.contributor.authorGrimm, Eric C.en_US
dc.contributor.authorTuchman, Nancy C.en_US
dc.date.accessioned2013-01-03T19:38:46Z
dc.date.available2014-03-03T15:09:24Zen_US
dc.date.issued2013-01en_US
dc.identifier.citationLishawa, Shane C.; Treering, David. J.; Vail, Lane M.; McKenna, Owen; Grimm, Eric C.; Tuchman, Nancy C. (2013). "Reconstructing plant invasions using historical aerial imagery and pollen core analysis: T ypha in the L aurentian G reat L akes." Diversity and Distributions 19(1): 14-28. <http://hdl.handle.net/2027.42/94878>en_US
dc.identifier.issn1366-9516en_US
dc.identifier.issn1472-4642en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94878
dc.description.abstractAim Determining the spatial‐temporal spread of an invasive plant is vital for understanding long‐term impacts. However, invasions have rarely been directly documented given the resources required and the need for substantial foresight. One method widely used is historical photography interpretation, but this can be hard to verify. We attempt to improve this method by linking historical aerial photos to a paleobotanical analysis of pollen cores. Location Laurentian G reat L akes coastal wetlands, U nited S tates of A merica. Methods We chose invasive cattail ( T ypha ) as our model species because it is identifiable from aerial imagery and has persistent, identifiable pollen, and its ecological impacts appear to be time‐dependent. We used G eographic I nformation S ystems, aerial photo‐interpretation and field verification to post‐dict the invasion history of T ypha in several wetland ecosystems. Using 210 P b and 137 C s sediment dating and pollen classification, we correlated the temporal dominance of T ypha to our estimates of per cent coverage at one site. The pollen record was then used to estimate the T ypha invasion dynamics for dates earlier than those for which aerial photos were available. Results Typha spread through time in all study wetlands. Typha pollen dominance increased through time corresponding with increased spatial dominance. Hybrid cattail, T .  ×  glauca increased in pollen abundance relative to T . angustifolia pollen through time. Main conclusions This study illustrates the value of generating historical invasion maps with publically available aerial imagery and linking these maps with paleobotanical data to study recent (< 100 years) invasions. We determined rates of T ypha expansion in two coastal wetland types, validated our mapping methods and modelled the relationship between pollen abundance and wetland coverage, enhancing the temporal precision and breadth of analyses. Our methodology should be replicable with similar invasive plant species. The combination of pollen records and historical photography promises to be a valuable additional tool for determining invasion dynamics.en_US
dc.publisherWileyen_US
dc.subject.otherAerial Imageryen_US
dc.subject.otherBiological Invasionsen_US
dc.subject.otherT Yphaen_US
dc.subject.otherPollen Core Analysesen_US
dc.subject.otherLong‐Term Effectsen_US
dc.subject.otherInvasive Speciesen_US
dc.titleReconstructing plant invasions using historical aerial imagery and pollen core analysis: T ypha in the L aurentian G reat L akesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94878/1/ddi929.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94878/2/ddi929-sup-0001-FigureS1.pdf
dc.identifier.doi10.1111/j.1472-4642.2012.00929.xen_US
dc.identifier.sourceDiversity and Distributionsen_US
dc.identifier.citedreferenceSnow, A.A., Travis, S.E., Wildova, R., Fér, T., Sweeney, P.M., Marburger, J.E., Windels, S., Kubatova, B., Goldberg, D.E. & Mutegi, E. ( 2010 ) Species‐specific SSR alleles for studies of hybrid cattails ( Typha latifolia × T. angustifolia; Typhaceae) in North America. American Journal of Botany, 97, 2061 – 2067.en_US
dc.identifier.citedreferenceSpringsteen, A., Loya, W., Liebig, M. & Hendrickson, J. ( 2010 ) Soil carbon and nitrogen across a chronosequence of woody plant expansion in North Dakota. Plant and Soil, 328, 369 – 379.en_US
dc.identifier.citedreferenceStrayer, D.L., Eviner, V.T., Jeschke, J.M. & Pace, M.L. ( 2006 ) Understanding the long‐term effects of species invasions. Trends in Ecology & Evolution, 21, 645 – 651.en_US
dc.identifier.citedreferenceTchoukanski, I. ( 2008 ) ET Geowizard tool for ArcMap. www.ian-ko.com.en_US
dc.identifier.citedreferenceTravis, S.E., Marburger, J.E., Windels, S. & Kubatova, B. ( 2010 ) Hybridization dynamics of invasive cattail (Typhaceae) stands in the Western Great Lakes Region of North America: a molecular analysis. Journal of Ecology, 98, 7 – 16.en_US
dc.identifier.citedreferenceTrebitz, A.S. & Taylor, D.L. ( 2007 ) Exotic and invasive aquatic plants in Great Lakes coastal wetlands: distribution and relation to watershed land use and plant richness and cover. Journal of Great Lakes Research, 33, 705 – 721.en_US
dc.identifier.citedreferenceTrebitz, A.S., Brazner, J.C., Cotter, A.M., Knuth, M.L., Morrice, J.A., Peterson, G.S., Sierszen, M.E., Thompson, J.A. & Kelly, J.R. ( 2007 ) Water quality in Great Lakes coastal wetlands: basin‐wide patterns and responses to an anthropogenic disturbance gradient. Journal of Great Lakes Research, 33, 67 – 85.en_US
dc.identifier.citedreferenceTuchman, N.C., Jankowski, K.J., Geddes, P., Wildova, R., Larkin, D.J. & Goldberg, D.E. ( 2009 ) Patterns of environmental change associates with Typha X glauca invasion in a Great Lakes coastal wetland. Wetlands, 29, 964 – 975.en_US
dc.identifier.citedreferenceTulbure, M.G., Johnston, C.A. & Auger, D.L. ( 2007 ) Rapid invasion of a Great Lakes coastal wetland by non‐native Phragmites australis and Typha. Journal of Great Lakes Research, 33, 269 – 279.en_US
dc.identifier.citedreferenceUnderwood, E., Ustin, S. & DiPietro, D. ( 2003 ) Mapping nonnative plants using hyperspectral imagery. Remote Sensing of Environment, 86, 150 – 161.en_US
dc.identifier.citedreferenceUSACE ( 2010 ) Historic Great Lakes water level data (1918‐2009). United States Army Corps of Engineers, Detroit. Available at: http://www.lre.usace.army.mil/greatlakes/hh/ (accessed 11 November 2010).en_US
dc.identifier.citedreferenceUSDA ( 2009 ) Natural Resource Conservation Service, Farm Service Administration Aerial photography 2007–2009. United States Department of Agriculture, Washington. Available at: http://datagateway.nrcs.usda.gov/ (accessed 1 November 2010).en_US
dc.identifier.citedreferenceUSGS ( 2009 ) Aerial photography 1939–2009. EarthExplorer. United States Geologic Survey, Washington. Available at: http://earthexplorer.usgs.gov/ (accessed 1 November 2010).en_US
dc.identifier.citedreferenceUSGS ( 2010 ) Aerial photography 1939‐2010. Earth Resources Observation and Science Center. United States Geologic Survey, Washington. Available at: http://eros.usgs.gov/ (accessed 1 November 2010).en_US
dc.identifier.citedreferenceUSNARA ( 2009 ) Aerial photography 1939–1986. Cartographic and Architectural Section. United States National Archives and Records Administration. Available at: http://www.archives.gov/ (accessed 1 November 2010).en_US
dc.identifier.citedreferenceVaccaro, L.E., Bedford, B.L. & Johnston, C.A. ( 2009 ) Litter accumulation promotes dominance of invasive species of cattails ( Typha spp.) in Lake Ontario wetlands. Wetlands, 29, 1036 – 1048.en_US
dc.identifier.citedreferenceWaters, I. & Shay, J.M. ( 1990 ) A field study of the morphometric response of Typha glauca shoots to a water depth gradient. Canadian Journal of Botany, 68, 2339 – 2343.en_US
dc.identifier.citedreferenceWilcox, D.A. & Nichols, J. ( 2008 ) The effects of water‐level fluctuations on vegetation in a Lake Huron wetland. Wetlands, 28, 487 – 501.en_US
dc.identifier.citedreferenceWilcox, D.A., Apfelbaum, S.I. & Hiebert, R.D. ( 1985 ) Cattail invasion of sedge meadows following hydrologic disturbance in the Cowles Bog wetland complex, Indiana Dunes National Lakeshore. Wetlands, 4, 115 – 128.en_US
dc.identifier.citedreferenceWilcox, D.A., Kowalski, K.P., Hoare, H.L., Carlson, M.L. & Morgan, H.N. ( 2008 ) Cattail invasion of sedge/grass meadows in Lake Ontario: photointerpretation analysis of sixteen wetlands over five decades. Journal of Great Lakes Research, 34, 301 – 323.en_US
dc.identifier.citedreferenceWilliams, J.W. & Jackson, S.T. ( 2003 ) Palynological and AVHRR observations of modern vegetational gradients in eastern North America. The Holocene, 13, 485 – 497.en_US
dc.identifier.citedreferenceWitkowski, E.T.F. & Wilson, M. ( 2001 ) Changes in density, biomass, seed production and soil seed banks of the non‐native invasive plant, Chromolaena odorata, along a 15 year chronosequence. Plant Ecology, 152, 13 – 27.en_US
dc.identifier.citedreferenceWoo, I. & Zedler, J.B. ( 2002 ) Can nutrients alone shift a sedge meadow towards dominance by the invasive Typha x glauca ? Wetlands, 22, 509 – 521.en_US
dc.identifier.citedreferenceZavaleta, E.S. & Kettley, L.S. ( 2006 ) Ecosystem change along a woody invasion chronosequence in a California grassland. Journal of Arid Environments, 66, 290 – 306.en_US
dc.identifier.citedreferenceZedler, J.B. & Kercher, S. ( 2004 ) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Critical Reviews in Plant Sciences, 23, 431 – 452.en_US
dc.identifier.citedreferenceFreyman, M. ( 2008 ) The effect of litter accumulation of the invasive cattail Typha x glauca on a great lakes coastal marsh. Masters Thesis, Loyola University Chicago, Chicago.en_US
dc.identifier.citedreferenceAlbert, D.A., Wilcox, D.A., Ingram, J.W. & Thompson, T.A. ( 2005 ) Hydrogeomorphic classification for Great Lakes coastal wetlands. Journal of Great Lakes Research, 31, 129 – 146.en_US
dc.identifier.citedreferenceAPHA ( 2005 ) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, D.C.en_US
dc.identifier.citedreferenceAngel, J.R. & Kunkel, K.E. ( 2009 ) The response of Great Lakes water levels to future climate scenarios with an emphasis on Lake Michigan‐Huron. Journal of Great Lakes Research, 36, 51 – 58.en_US
dc.identifier.citedreferenceAngeloni, N.L., Jankowski, K.J., Tuchman, N.C. & Kelly, J.J. ( 2006 ) Effects of an invasive cattail species ( Typha x glauca ) on sediment nitrogen and microbial community composition in a freshwater wetland. F.E.M.S. Microbiology Letters, 263, 86 – 92.en_US
dc.identifier.citedreferenceAppleby, P.G. & Oldfield, F. ( 1978 ) The calculation of 210 Pb dates assuming a constant rate of supply of unsupported 210 Pb to the sediment. Catena, 5, 1 – 8.en_US
dc.identifier.citedreferenceBlossey, B. ( 1999 ) Before, during and after: the need for long‐term monitoring in invasive plant species management. Biological Invasions, 1, 301 – 311.en_US
dc.identifier.citedreferenceBoers, A.M. & Zedler, J.B. ( 2008 ) Stabilized water levels and Typha invasiveness. Wetlands, 28, 676 – 685.en_US
dc.identifier.citedreferenceBroström, A., Gaillard, M.J., Ihse, M. & Odgaard, B. ( 1998 ) Pollen‐landscape relationships in modern analogues of ancient cultural landscapes in southern Sweden ‐ a first step towards quantification of vegetation openness in the past. Vegetation History and Archaeobotany, 7, 189 – 201.en_US
dc.identifier.citedreferenceBunting, J.M., Duthie, H.C., Campbell, D.R., Warner, B.G. & Turner, L.J. ( 1997 ) A palaeoecological record of recent environmental change at Big Creek Marsh, Long Point, Lake Erie. Journal of Great Lakes Research, 23, 349 – 368.en_US
dc.identifier.citedreferenceCallahan, J.T. ( 1984 ) Long‐term ecological research. BioScience, 34, 363 – 367.en_US
dc.identifier.citedreferenceCarlsson, N.O.L., Jeschke, J.M., Holmqvist, N. & Kindberg, J. ( 2010 ) Long‐term data on invaders: when the fox is away, the mink will play. Biological Invasions, 12, 633 – 641.en_US
dc.identifier.citedreferenceChun, Y.M. & Choi, Y.D. ( 2009 ) Expansion of Phragmites australis (Cav.) Trin. ex Steud. (common reed) into Typha spp. (cattail) wetlands in northwestern Indiana, USA. Journal of Plant Biology, 52, 220 – 228.en_US
dc.identifier.citedreferenceClark, J. & Patterson, W. III ( 1985 ) The development of a tidal marsh: upland and oceanic influences. Ecological Monographs, 55, 189 – 217.en_US
dc.identifier.citedreferenceCrosbie, B. & Chow‐Fraser, P. ( 1999 ) Percentage land use in the watershed determines the water and sediment quality of 22 marshes in the Great Lakes basin. Canadian Journal of Fisheries and Aquatic Sciences, 56, 1781 – 1791.en_US
dc.identifier.citedreferenceCwynar, L.C., Burden, E. & McAndrews, J.H. ( 1979 ) An inexpensive sieving method for concentrating pollen and spores from fine‐grained sediments. Canadian Journal of Earth Sciences, 16, 1115 – 1120.en_US
dc.identifier.citedreferenceDavis, C.B. & Van der Valk, A.G. ( 1978 ) The decomposition of standing and fallen litter of Typha glauca and Scirpus fluviatilis. Canadian Journal of Botany, 56, 662 – 675.en_US
dc.identifier.citedreferenceDidham, R.K., Tylianakis, J.M., Hutchison, M.A., Ewers, R.M. & Gemmell, N.J. ( 2005 ) Are invasive species the drivers of ecological change? Trends in Ecology & Evolution, 20, 470 – 474.en_US
dc.identifier.citedreferenceEpstein, E., Spencer, E., Feldkirchner, D.C. & Anderson, C. ( 2002 ) A Data Compilation and Assessment of Coastal Wetlands of Wisconsin's Great Lakes: Final Report: Natural Heritage Inventory Program, Bureau of Endangered Resources, Wisconsin Dept. of Natural Resources, Madison.en_US
dc.identifier.citedreferenceFægri, K. & Iversen, J. ( 1989 ) Finding the grain: Laboratory technique. Textbook of pollen analysis, 4th edn. (ed. by K. Fægri, P.E. Kaland and K. Krzywinski ), pp. 69 – 89. Wiley, Chichester.en_US
dc.identifier.citedreferenceFarney, R.A. & Bookhout, T.A. ( 1982 ) Vegetation changes in a Lake Erie marsh (Winous Point, Ottawa County, Ohio) during high water years. Ohio Journal of Science, 82, 103 – 107.en_US
dc.identifier.citedreferenceFarrell, J.M., Murry, B.A., Leopold, D.J., Halpern, A., Rippke, M.B., Godwin, K.S. & Hafner, S.D. ( 2010 ) Water‐level regulation and coastal wetland vegetation in the upper St. Lawrence River: inferences from historical aerial imagery, seed banks, and Typha dynamics. Hydrobiologia, 647, 127 – 144.en_US
dc.identifier.citedreferenceFarrer, E.C. & Goldberg, D.E. ( 2009 ) Litter drives ecosystem and plant community changes in cattail invasion. Ecological Applications, 19, 398 – 412.en_US
dc.identifier.citedreferenceFinkelstein, S.A. ( 2003 ) Identifying pollen grains of Typha latifolia, Typha angustifolia, and Typha × glauca. Botany, 81, 985 – 990.en_US
dc.identifier.citedreferenceFinkelstein, S.A. & Davis, A.M. ( 2005 ) Modern pollen rain and diatom assemblages in a Lake Erie coastal marsh. Wetlands, 25, 551 – 563.en_US
dc.identifier.citedreferenceFinkelstein, S.A. & Davis, A.M. ( 2006 ) Paleoenvironmental records of water level and climatic changes from the middle to late Holocene at a Lake Erie coastal wetland, Ontario, Canada. Quaternary Research, 65, 33 – 43.en_US
dc.identifier.citedreferenceFoster, B.L. & Tilman, D. ( 2000 ) Dynamic and static views of succession: testing the descriptive power of the chronosequence approach. Plant Ecology, 146, 1 – 10.en_US
dc.identifier.citedreferenceFrieswyk, C.B. & Zedler, J.B. ( 2007 ) Vegetation change in great lakes coastal wetlands: deviation from the historical cycle. Journal of Great Lakes Research, 33, 366 – 380.en_US
dc.identifier.citedreferenceGalatowitsch, S.M., Anderson, N.O. & Ascher, P.D. ( 1999 ) Invasiveness in wetland plants in temperate North America. Wetlands, 19, 733 – 755.en_US
dc.identifier.citedreferenceGoldberg, E.D. ( 1963 ) Geochronology with Pb‐210. Radioactive dating, International Atomic Energy Agency Symposium Proceedings Vienna 1962, pp. 121 – 131. Vienna, Austria.en_US
dc.identifier.citedreferenceHarris, S.W. & Marshall, W.H. ( 1963 ) Ecology of water‐level manipulations on a northern marsh. Ecology, 44, 331 – 343.en_US
dc.identifier.citedreferenceHe, K.S., Rocchini, D., Neteler, M. & Nagendra, H. ( 2011 ) Benefits of hyperspectral remote sensing for tracking plant invasions. Diversity and Distributions, 17, 381 – 392.en_US
dc.identifier.citedreferenceter Heerdt, G.N.J. & Drost, H.J. ( 1994 ) Potential for the development of marsh vegetation from the seed bank after a drawdown. Biological Conservation, 67, 1 – 11.en_US
dc.identifier.citedreferenceHestir, E.L., Khanna, S., Andrew, M.E., Santos, M.J., Viers, J.H., Greenberg, J.A., Rajapakse, S.S. & Ustin, S.L. ( 2008 ) Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sensing of Environment, 112, 4034 – 4047.en_US
dc.identifier.citedreferenceHobbie, J.E., Carpenter, S.R., Grimm, N.B., Gosz, J.R. & Seastedt, T.R. ( 2003 ) The US long term ecological research program. BioScience, 53, 21 – 32.en_US
dc.identifier.citedreferenceHuang, C. & Asner, G.P. ( 2009 ) Applications of remote sensing to alien invasive plant studies. Sensors, 9, 4869 – 4889.en_US
dc.identifier.citedreferenceJackson, S.T. ( 1997 ) Documenting natural and human‐caused plant invasions using paleoecological methods assessment and management of plant invasions. Assessment and management of plant invasions (ed. by J.O. Luken and J.W. Thieret ), pp. 37 – 55. Springer, New York.en_US
dc.identifier.citedreferenceJakubowski, A.R., Casler, M.D. & Jackson, R.D. ( 2010 ) Landscape context predicts reed canarygrass invasion: implications for management. Wetlands, 30, 685 – 692.en_US
dc.identifier.citedreferenceJanssen, C.R. ( 1984 ) Modern pollen assemblages and vegetation in the Myrtle Lake Peatland, Minnesota. Ecological Monographs, 54, 213 – 252.en_US
dc.identifier.citedreferenceJensen, J.R., Christensen, E.J. & Sharitz, R. ( 1984 ) Nontidal wetland mapping in South Carolina using airborne multispectral scanner data. Remote Sensing of Environment, 16, 1 – 12.en_US
dc.identifier.citedreferenceJensen, J.R., Hodgson, M.E., Christensen, E.J., Mackey, H.E., Tinney, L.R. & Sharitz, R.R. ( 1986 ) Remote sensing inland wetlands: a multispectral approach. Photogrammetric Engineering Remote Sensing, 52, 87 – 100.en_US
dc.identifier.citedreferenceKeddy, P.A. & Reznicek, A.A. ( 1986 ) Great Lakes vegetation dynamics: the role of fluctuating water levels and buried seeds. Journal of Great Lakes Research, 12, 25 – 36.en_US
dc.identifier.citedreferenceLarkin, D.J., Freyman, M.J., Lishawa, S.C., Geddes, P. & Tuchman, N.C. ( 2012 ) Mechanisms of dominance by the invasive hybrid cattail Typha × glauca. Biological Invasions, 14, 65 – 77.en_US
dc.identifier.citedreferenceLillesand, T.M., Kiefer, R.W. & Chipman, J.W. ( 2008 ) Remote sensing and image interpretation, 6th edn. Wiley, New York.en_US
dc.identifier.citedreferenceLishawa, S.L., Albert, D.A. & Tuchman, N.C. ( 2010 ) Water level decline promotes Typha X glauca establishment and vegetation change in Great Lakes coastal wetlands. Wetlands, 30, 1085 – 1096.en_US
dc.identifier.citedreferenceLockwood, J.L., Cassey, P. & Blackburn, T. ( 2005 ) The role of propagule pressure in explaining species invasions. Trends in Ecology & Evolution, 20, 223 – 228.en_US
dc.identifier.citedreferenceLofgren, B.M., Quinn, F.H., Clites, A.H., Assel, R.A., Eberhardt, A.J. & Luukkonen, C.L. ( 2002 ) Evaluation of potential impacts on Great Lakes water resources based on climate scenarios of two GCMs. Journal of Great Lakes Research, 28, 537 – 554.en_US
dc.identifier.citedreferenceLovett, G.M., Canham, C.D., Arthur, M.A., Weathers, K.C. & Fitzhugh, R.D. ( 2006 ) Forest ecosystem responses to exotic pests and pathogens in eastern North America. BioScience, 56, 395 – 405.en_US
dc.identifier.citedreferenceMacDougall, A.S. & Turkington, R. ( 2005 ) Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology, 86, 42 – 55.en_US
dc.identifier.citedreferenceMarchante, E., Kjøller, A., Struwe, S. & Freitas, H. ( 2008 ) Short‐and long‐term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Applied Soil Ecology, 40, 210 – 217.en_US
dc.identifier.citedreferenceMcDonald, M.E. ( 1955 ) Cause and effects of a die‐off of emergent vegetation. Journal of Wildlife Management, 19, 24 – 35.en_US
dc.identifier.citedreferenceMcLauchlan, K.K., Elmore, A.J., Oswald, W.W. & Sugita, S. ( 2007 ) Detecting open vegetation in a forested landscape: pollen and remote sensing data from New England, USA. The Holocene, 17, 1233.en_US
dc.identifier.citedreferenceMeiners, S.J., Pickett, S.T.A. & Cadenasso, M.L. ( 2001 ) Effects of plant invasions on the species richness of abandoned agricultural land. Ecography, 24, 633 – 644.en_US
dc.identifier.citedreferenceMeiners, S.J., Pickett, S.T.A. & Cadenasso, M.L. ( 2002 ) Exotic plant invasions over 40 years of old field successions: community patterns and associations. Ecography, 25, 215 – 223.en_US
dc.identifier.citedreferenceMichigan State University ( 2008 ) Remote Sensing & GIS Research and Outreach Services (RS&GIS) Aerial photography 1938, 1952, 1963. Available at: http://www.rsgis.msu.edu/aerial_archive/index.php (accessed 16 June 2008).en_US
dc.identifier.citedreferenceMiller, J.B. ( 1973 ) Vegetation changes in shallow marsh wetlands under improving moisture regime. Canadian Journal of Botany, 51, 1443 – 1457.en_US
dc.identifier.citedreferenceMills, E.L., Leach, J.H., Carlton, J.T. & Secor, C.L. ( 1993 ) Exotic species in the Great Lakes: a history of biotic crises and anthropogenic introductions. Journal of Great Lakes Research, 19, 1 – 54.en_US
dc.identifier.citedreferenceMitchell, M.E., Lishawa, S.C., Geddes, P., Larkin, D.J., Treering, D. & Tuchman, N.C. ( 2011 ) Time‐dependent impacts of cattail invasion in a Great Lakes coastal wetland complex. Wetlands, 6, 1143 – 1149.en_US
dc.identifier.citedreferenceMoore, P.D. ( 1991 ) Pollen analysis, 2nd edn. Blackwell, Oxford.en_US
dc.identifier.citedreferenceMorrice, J.A., Danz, N.P., Regal, R.R., Kelly, J.R., Niemi, G.J., Reavie, E.D., Hollenhorst, T., Axler, R.P., Trebitz, A.S. & Cotter, A.M. ( 2008 ) Human influences on water quality in Great Lakes coastal wetlands. Environmental Management, 41, 347 – 357.en_US
dc.identifier.citedreferenceMortsch, L.D. & Quinn, F.H. ( 1996 ) Climate change scenarios for Great Lakes Basin ecosystem studies. Limnology and Oceanography, 41, 903 – 911.en_US
dc.identifier.citedreferenceR Development Core Team ( 2010 ) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org (accessed 16 December 2010).en_US
dc.identifier.citedreferenceRice, D., Rooth, J. & Stevenson, J. ( 2000 ) Colonization and expansion of Phragmites australis in upper Chesapeake Bay tidal marshes. Wetlands, 20, 280 – 299.en_US
dc.identifier.citedreferenceRitchie, J.C. & McHenry, J.R. ( 1990 ) Application of radioactive fallout cesium‐137 for measuring soil erosion and sediment accumulation rates and patterns: a review. Journal of Environmental Quality, 19, 215 – 233.en_US
dc.identifier.citedreferenceRobbins, J.A. ( 1978 ) Geochemical and geophysical applications of radioactive lead. The biogeochemistry of lead in the environment (ed. by J.O. Nriago ), pp. 285 – 337. Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceRobbins, B.D. ( 1997 ) Quantifying temporal change in seagrass areal coverage: the use of GIS and low resolution aerial photography. Aquatic Botany, 58, 259 – 267.en_US
dc.identifier.citedreferenceShay, J.M. & Shay, C.T. ( 1986 ) Prairie marshes in western Canada, with specific reference to the ecology of five emergent macrophytes. Canadian Journal of Botany, 64, 443 – 454.en_US
dc.identifier.citedreferenceSmith, S.G. ( 1987 ) Typha: Its taxonomy and the ecological significance of hybrids. Archiv für Hydrobiologie, 27, 129 – 138.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.