Show simple item record

The Martian Atmospheric Boundary Layer

dc.contributor.authorPetrosyan, A.en_US
dc.contributor.authorGalperin, B.en_US
dc.contributor.authorLarsen, S. E.en_US
dc.contributor.authorLewis, S. R.en_US
dc.contributor.authorMäättänen, A.en_US
dc.contributor.authorRead, P. L.en_US
dc.contributor.authorRenno, N.en_US
dc.contributor.authorRogberg, L. P. H. T.en_US
dc.contributor.authorSavijärvi, H.en_US
dc.contributor.authorSiili, T.en_US
dc.contributor.authorSpiga, A.en_US
dc.contributor.authorToigo, A.en_US
dc.contributor.authorVázquez, L.en_US
dc.date.accessioned2013-01-03T19:38:52Z
dc.date.available2013-01-03T19:38:52Z
dc.date.issued2011-09en_US
dc.identifier.citationPetrosyan, A.; Galperin, B.; Larsen, S. E.; Lewis, S. R.; Määttänen, A. ; Read, P. L.; Renno, N.; Rogberg, L. P. H. T.; Savijärvi, H. ; Siili, T.; Spiga, A.; Toigo, A.; Vázquez, L. (2011). "The Martian Atmospheric Boundary Layer." Reviews of Geophysics 49(3): n/a-n/a. <http://hdl.handle.net/2027.42/94893>en_US
dc.identifier.issn8755-1209en_US
dc.identifier.issn1944-9208en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94893
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherMethuenen_US
dc.subject.otherAtmosphereen_US
dc.subject.otherMarsen_US
dc.subject.otherBoundary Layeren_US
dc.titleThe Martian Atmospheric Boundary Layeren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94893/1/rog1720.pdf
dc.identifier.doi10.1029/2010RG000351en_US
dc.identifier.sourceReviews of Geophysicsen_US
dc.identifier.citedreferenceSavijärvi, H. ( 1999 ), A model study of the atmospheric boundary layer in the Mars Pathfinder lander conditions, Q. J. R. Meteorol. Soc., 125, 483 – 493.en_US
dc.identifier.citedreferenceTyler, G. L., et al. ( 1992 ), Radio science investigations with Mars Observer, J. Geophys. Res., 97, 7759 – 7780.en_US
dc.identifier.citedreferenceUmlauf, L., and H. Burchard ( 2003 ), A generic length‐scale equation for geophysical turbulence models, J. Mar. Res., 61, 235 – 265.en_US
dc.identifier.citedreferenceUmlauf, L., and H. Burchard ( 2005 ), Second‐order turbulence closure models for geophysical boundary layers. A review of recent work, Cont. Shelf Res., 25, 795 – 827.en_US
dc.identifier.citedreferenceUmlauf, L., H. Burchard, and K. Hutter ( 2003 ), Extending the k − ω turbulence model towards oceanic applications, Ocean Modell., 5, 195 – 218.en_US
dc.identifier.citedreferenceVanZandt, T. E. ( 1982 ), A universal spectrum of buoyancy waves in the atmosphere, Geophys. Res. Lett., 9, 575 – 578.en_US
dc.identifier.citedreferenceVillalobos, F. J. ( 1997 ), Correction of eddy covariance water vapor flux using additional measurements of temperature, Agric. For. Meteorol., 88, 77 – 83.en_US
dc.identifier.citedreferenceVincendon, M., Y. Langevin, F. Poulet, J.‐P. Bibring, and B. Gondet ( 2007 ), Recovery of surface reflectance spectra and evaluation of the optical depth of aerosols in the near‐IR using a Monte Carlo approach: Application to the OMEGA observations of high‐latitude regions of Mars, J. Geophys. Res., 112, E08S13, doi: 10.1029/2006JE002845.en_US
dc.identifier.citedreferenceVioleau, D. ( 2009 ), Explicit algebraic Reynolds stresses and scalar fluxes for density‐stratified shear flows, Phys. Fluids, 21, 035103.en_US
dc.identifier.citedreferenceWebster, P. J. ( 1977 ), The low latitude circulation of Mars, Icarus, 30, 626 – 649.en_US
dc.identifier.citedreferenceWeng, W., et al. ( 2006 ), Modelling the Martian boundary layer, paper presented at Second Workshop on Mars Atmosphere Modelling and Observations, Cent. Natl. d'Etud. Spat., Granada, Spain, 27 Feb. to 3 March. [Available at http://www-mars.lmd.jussieu.fr/granada2006/abstracts/Weng_Granada2006.pdf.]en_US
dc.identifier.citedreferenceWhiteway, J., M. Daly, A. Carswell, T. Duck, C. Dickinson, L. Komguem, and C. Cook ( 2008 ), Lidar on the Phoenix mission to Mars, J. Geophys. Res., 113, E00A08, doi: 10.1029/2007JE003002. [Printed 114( E3 ), 2009.]en_US
dc.identifier.citedreferenceWhiteway, J., et al. ( 2009 a), Phoenix lidar observations of dust, clouds, and precipitation on Mars, in Lunar Planet. Sci., XL, Abstract 2202.en_US
dc.identifier.citedreferenceWhiteway, J. A., et al. ( 2009 b), Mars water‐ice clouds and precipitation, Science, 325, 68 – 70.en_US
dc.identifier.citedreferenceWilcox, D. ( 1988 ), Reassessment of the scale‐determining equation for advanced turbulence models, AIAA J., 26, 1299 – 1310.en_US
dc.identifier.citedreferenceWilson, R. J. ( 1997 ), A general circulation model of the Martian polar warming, Geophys. Res. Lett., 24, 123 – 126.en_US
dc.identifier.citedreferenceWing, D. R., and G. L. Austin ( 2006 ), Description of the University of Auckland global Mars mesoscale meteorological model, Icarus, 185, 370 – 382.en_US
dc.identifier.citedreferenceWolff, M. J., et al. ( 2006 ), Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini‐TES, J. Geophys. Res., 111, E12S17, doi: 10.1029/2006JE002786.en_US
dc.identifier.citedreferenceWolff, M. J., M. D. Smith, R. T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, and H. Savijärvi ( 2009 ), Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer, J. Geophys. Res., 114, E00D04, doi: 10.1029/2009JE003350.en_US
dc.identifier.citedreferenceWolff, M. J., R. T. Clancy, J. D. Goguen, M. C. Malin, and B. A. Cantor ( 2010 ), Ultraviolet dust aerosol properties as observed by MARCI, Icarus, 208, 143 – 155.en_US
dc.identifier.citedreferenceWolkenberg, P., D. Grassi, V. Formisano, G. Rinaldi, M. D'Amore, and M. Smith ( 2009 ), Simultaneous observations of the Martian atmosphere by Planetary Fourier Spectrometer on Mars Express and Miniature Thermal Emission Spectrometer on Mars Exploration Rover, J. Geophys. Res., 114, E04012, doi: 10.1029/2008JE003216.en_US
dc.identifier.citedreferenceWyngaard, J. ( 2010 ), Turbulence in the Atmosphere, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceWyngaard, J., and J. Weil ( 1991 ), Transport asymmetry in skewed turbulence, Phys. Fluids, A3, 155 – 162.en_US
dc.identifier.citedreferenceYe, Z. J., M. Segal, and R. A. Pielke ( 1990 ), A comparative study of daytime thermally induced upslope flow on Mars and Earth, J. Atmos. Sci., 47, 612 – 628.en_US
dc.identifier.citedreferenceZeman, O., and J. Lumley ( 1979 ), Buoyancy effects in entraining turbulent boundary layers: A second‐order closure study, in Turbulent Shear Flows, vol. 1, pp. 295 – 302, Springer, Berlin.en_US
dc.identifier.citedreferenceZent, A. P., M. H. Hecht, D. R. Cobos, G. S. Campbell, C. S. Campbell, G. Cardell, M. C. Foote, S. E. Wood, and M. Mehta ( 2009 ), Thermal and Electrical Conductivity Probe (TECP) for Phoenix, J. Geophys. Res., 114, E00A27, doi: 10.1029/2007JE003052.en_US
dc.identifier.citedreferenceZent, A. P., M. H. Hecht, D. R. Cobos, S. E. Wood, T. L. Hudson, S. M. Milkovich, L. P. DeFlores, and M. T. Mellon ( 2010 ), Initial results from the Thermal and Electrical Conductivity Probe (TECP) on Phoenix, J. Geophys. Res., 115, E00E14, doi: 10.1029/2009JE003420.en_US
dc.identifier.citedreferenceZilitinkevich, S., V. Gryanik, V. Lykossov, and D. Mironov ( 1999 ), Third‐order transport and nonlocal turbulence closures for convective boundary layers, J. Atmos. Sci., 56, 3463 – 3477.en_US
dc.identifier.citedreferenceZilitinkevich, S., T. Elperin, N. Kleeorin, and I. Rogachevskii ( 2007 ), Energy‐ and flux‐budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady‐state, homogeneous regimes, Boundary Layer Meteorol., 125, 167 – 191.en_US
dc.identifier.citedreferenceZurek, R. W., and S. E. Smrekar ( 2007 ), An overview of the Mars Reconnaissance Orbiter (MRO) science mission, J. Geophys. Res., 112, E05S01, doi: 10.1029/2006JE002701.en_US
dc.identifier.citedreferenceAlexakis, A. ( 2009 ), Stratified shear flow instabilities at large Richardson numbers, Phys. Fluids, 21, 054108, doi: 10.1063/1.3147934.en_US
dc.identifier.citedreferenceAlfonsi, G. ( 2009 ), Reynolds‐averaged Navier‐Stokes equations for turbulence modeling, Rev. Mech. Appl., 62, 040802.en_US
dc.identifier.citedreferenceAllison, M., J. D. Ross, and N. Solomon ( 1999 ), Mapping the Martian meteorology, in Fifth International Conference on Mars, July 18–23, 1999, Pasadena CA [CD‐ROM], LPI Contrib., 972, Abstract 6102.en_US
dc.identifier.citedreferenceAndré, J., and P. Lacarrére ( 1980 ), Simulation numérique détaillée de la couche limite atmosphérique: Comparaison avec la situation des 2 et 3 Juillet 1977 á Voves, La Météorol., 6 ( 22 ), 5 – 49.en_US
dc.identifier.citedreferenceAndré, J., G. De Moor, P. Lacarrére, G. Therry, and R. du Vachat ( 1978 ), Modeling 24‐hour evolution of mean and turbulent structures of planetary boundary layer, J. Atmos. Sci., 35, 1861 – 1883.en_US
dc.identifier.citedreferenceAtreya, S. K., et al. ( 2006 ), Oxidant enhancement in Martian dust devils and storms: Implications for life and habitability, Astrobiology, 6, 439 – 450.en_US
dc.identifier.citedreferenceBagnold, R. A. ( 1941 ), The Physics of Blown Sand and Desert Dunes, Methuen, New York.en_US
dc.identifier.citedreferenceBanerdt, B., et al. ( 1996 ), INTERMARSNET phase–A study report, Eur. Space Agency Sci. Tech. Rep., ESA STR (96)2, 158 pp.en_US
dc.identifier.citedreferenceBasu, S., J.‐F. Vinuesa, and A. Swift ( 2008 ), Dynamic LES modeling of a diurnal cycle, J. Appl. Meteorol. Climatol., 47, 1156 – 1174.en_US
dc.identifier.citedreferenceBertaux, J.‐L., et al. ( 2006 ), SPICAM on Mars express: Observing modes and overview of UV spectrometer data and scientific results, J. Geophys. Res., 111, E10S90, doi: 10.1029/2006JE002690.en_US
dc.identifier.citedreferenceBlackadar, A. ( 1957 ), Boundary‐layer wind maxima and their significance for the growth of nocturnal inversion, Bull. Am. Meteorol. Soc., 38, 283 – 290.en_US
dc.identifier.citedreferenceBlackadar, A. ( 1962 ), The vertical distribution of wind and turbulent exchange in a neutral atmosphere, J. Geophys. Res., 67, 3095 – 3102.en_US
dc.identifier.citedreferenceBlumsack, S. L., P. J. Gierasch, and S. R. Wessel ( 1973 ), An analytical and numerical study of the Martian planetary boundary layer over slopes, J. Atmos. Sci., 30, 66 – 80.en_US
dc.identifier.citedreferenceBougeault, P., and J. André ( 1986 ), On the stability of the third‐order turbulence closure for the modeling of the stratocumulus‐topped boundary layer, J. Atmos. Sci., 43, 1574 – 1581.en_US
dc.identifier.citedreferenceBougeault, P., and P. Lacarrére ( 1989 ), Parameterization of orography‐induced turbulence in a mesobeta‐scale model, Mon. Weather Rev., 117, 1872 – 1890.en_US
dc.identifier.citedreferenceBougher, S., G. Keating, R. Zurek, J. Murphy, R. Haberle, J. Hollingsworth, and R. T. Clancy ( 1999 ), Mars Global Surveyor aerobraking: Atmospheric trends and model interpretation, Adv. Space Res., 23, 1887 – 1897.en_US
dc.identifier.citedreferenceBoynton, W. V., et al. ( 2004 ), The Mars Odyssey Gamma Ray Spectrometer instrument suite, Space Sci. Rev., 110, 37 – 83.en_US
dc.identifier.citedreferenceBrutsaert, W. H. ( 1982 ), Exchange processes at the Earth‐atmosphere interface, in Engineering Meteorology, edited by E. Plate, pp. 319 – 369, Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceBurchard, H. ( 2001 ), On the q 2 l equation by Mellor and Yamada (1982), J. Phys. Oceanogr., 31, 1377 – 1387.en_US
dc.identifier.citedreferenceCantor, B. A., P. B. James, M. Caplinger, and M. J. Wolff ( 2001 ), Martian dust storms: 1999 Mars Orbiter Camera observations, J. Geophys. Res., 106, 23,653 – 23,687.en_US
dc.identifier.citedreferenceCantor, B., M. Malin, and K. S. Edgett ( 2002 ), Multiyear Mars Orbiter Camera (MOC) observations of repeated Martian weather phenomena during the northern summer season, J. Geophys. Res., 107 ( E3 ), 5014, doi: 10.1029/2001JE001588.en_US
dc.identifier.citedreferenceCanuto, V. ( 1992 ), Turbulent convection with overshootings: Reynolds stress approach, J. Astrophys., 392, 218 – 232.en_US
dc.identifier.citedreferenceCanuto, V., A. Howard, Y. Cheng, and M. Dubovikov ( 2001 ), Ocean turbulence. Part I: One‐point closure model‐momentum and heat vertical diffusivities, J. Phys. Oceanogr., 31, 1413 – 1426.en_US
dc.identifier.citedreferenceCanuto, V., Y. Cheng, and A. Howard ( 2005 ), What causes divergences in local second‐order models? J. Atmos. Sci., 62, 1645 – 1651.en_US
dc.identifier.citedreferenceCanuto, V., Y. Cheng, A. Howard, and I. Esau ( 2008 ), Stably stratified flows: A model with no Ri(cr), J. Atmos. Sci., 65, 2437 – 2447.en_US
dc.identifier.citedreferenceChamberlain, T. E., H. L. Cole, R. G. Dutton, G. C. Greene, and J. E. Tillman ( 1976 ), Atmospheric measurements on Mars: The Viking meteorology experiment, Bull. Am. Meteor. Soc., 57, 1094 – 1104.en_US
dc.identifier.citedreferenceChassefière, E., J. E. Blamont, V. A. Krasnopolsky, O. I. Korablev, S. K. Atreya, and R. A. West ( 1992 ), Vertical structure and size distributions of Martian aerosols from solar occultation measurements, Icarus, 97, 46 – 69.en_US
dc.identifier.citedreferenceChassefière, E., P. Drossart, and O. Korablev ( 1995 ), Post‐Phobos model for the altitude and size distribution of dust in the low Martian atmosphere, J. Geophys. Res., 100, 5525 – 5539.en_US
dc.identifier.citedreferenceCheng, Y., and V. Canuto ( 1994 ), Stably stratified shear turbulence: A new model for the energy dissipation length scale, J. Atmos. Sci., 51, 2384 – 2396.en_US
dc.identifier.citedreferenceCheng, Y., V. M. Canuto, and A. Howard ( 2002 ), An improved model for the turbulent PBL, J. Atmos. Sci., 59, 1550 – 1565.en_US
dc.identifier.citedreferenceCheng, Y., V. Canuto, and A. Howard ( 2005 ), Nonlocal convective PBL model based on new third‐ and fourth‐order moments, J. Atmos. Sci., 62, 2189 – 2204.en_US
dc.identifier.citedreferenceChicarro, A. F., et al. ( 1993 ), Marsnet phase–A study report, Eur. Space Agency Sci. Tech. Rep., ESA STR (93)2, 120 pp.en_US
dc.identifier.citedreferenceChristensen, P. R., et al. ( 2001 ), Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results, J. Geophys. Res., 106, 23,823 – 23,872.en_US
dc.identifier.citedreferenceChristensen, P. R., et al. ( 2003 ), Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers, J. Geophys. Res., 108 ( E12 ), 8064, doi: 10.1029/2003JE002117.en_US
dc.identifier.citedreferenceClancy, R. T., B. J. Sandor, M. J. Wolff, P. R. Christensen, M. D. Smith, J. C. Pearl, B. J. Conrath, and R. J. Wilson ( 2000 ), An intercomparison of ground‐based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere, J. Geophys. Res., 105, 9553 – 9572.en_US
dc.identifier.citedreferenceClancy, R. T., M. J. Wolff, and P. R. Christensen ( 2003 ), Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude, J. Geophys. Res., 108 ( E9 ), 5098, doi: 10.1029/2003JE002058.en_US
dc.identifier.citedreferenceConrath, B. J. ( 1975 ), Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971, Icarus, 24, 36 – 46.en_US
dc.identifier.citedreferenceConrath, B. J., J. C. Pearl, M. D. Smith, W. C. Maguire, S. Dason, and M. S. Kaelberer ( 2000 ), Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: Atmospheric temperatures during aerobraking and science phasing, J. Geophys. Res., 105, 9509 – 9519.en_US
dc.identifier.citedreferenceCot, C. ( 2001 ), Equatorial mesoscale wind and temperature fluctuations in the lower atmosphere, J. Geophys. Res., 106, 1523 – 1532.en_US
dc.identifier.citedreferenceCrozier, W. D. ( 1964 ), The electric field of a New Mexico dust devil, J. Geophys. Res., 69, 5427 – 5429.en_US
dc.identifier.citedreferenceCuxart, J., P. Bougeault, and J.‐L. Redelsperger ( 2000 ), A turbulence scheme allowing for meso‐scale and large‐eddy simulations, Q. J. R. Meteorol. Soc., 126, 1 – 30.en_US
dc.identifier.citedreferenceDavy, R., P. A. Taylor, W. Weng, and P. Li ( 2009 ), A model of dust in the Martian lower atmosphere, J. Geophys. Res., 114, D04108, doi: 10.1029/2008JD010481.en_US
dc.identifier.citedreferenceDavy, R., J. A. Davis, P. A. Taylor, C. F. Lange, W. Weng, J. Whiteway, and H. P. Gunnlaugson ( 2010 ), Initial analysis of air temperature and related data from the Phoenix MET station and their use in estimating turbulent heat fluxes, J. Geophys. Res., 115, E00E13, doi: 10.1029/2009JE003444.en_US
dc.identifier.citedreferenceDeardorff, J. ( 1972 ), Theoretical expression for the countergradient vertical heat flux, J. Geophys. Res., 77, 5900 – 5904.en_US
dc.identifier.citedreferenceDeardorff, J. ( 1976 ), Clear and cloud‐capped mixed layers–Their numerical simulation, structure and growth and parameterization, in Seminars on the Treatment of the Boundary Layer in Numerical Weather Prediction, pp. 234 – 284, Eur. Cent. for Medium Range Weather Forecasts, Reading, U. K.en_US
dc.identifier.citedreferenceDeleersnijder, E., and H. Burchard ( 2003 ), Reply to Mellor's comments on “Stability of algebraic non‐equilibrium second‐order closure models” (Ocean Modelling 3 (2001) 33–50), Ocean Modell., 5, 291 – 293.en_US
dc.identifier.citedreferenceDeleersnijder, E., and P. Luyten ( 1994 ), On the practical advantages of the quasi‐equilibrium version of the Mellor and Yamada level 2.5 turbulence closure applied to marine modeling, Appl. Math. Modell., 18, 281 – 287.en_US
dc.identifier.citedreferenceDeleersnijder, E., E. Hanert, H. Burchard, and H. Dijkstra ( 2008 ), On the mathematical stability of stratified flow models with local turbulence closure schemes, Ocean Dyn., 58, 237 – 246.en_US
dc.identifier.citedreferenceDellar, P., and R. Salmon ( 2005 ), Shallow water equations with a complete Coriolis force and topography, Phys. Fluids, 17, 106601, doi: 10.1063/1.2116747.en_US
dc.identifier.citedreferenceDelory, G. T., W. M. Farrell, S. K. Atreya, N. O. Renno, A.‐S. Wong, S. A. Cummer, D. D. Sentman, J. R. Marshall, S. C. R. Rafkin, and D. C. Catling ( 2006 ), Oxidant enhancement in Martian dust devils and storms: Storm electric fields and electron dissociative attachment, Astrobiology, 6 ( 3 ), 451 – 462.en_US
dc.identifier.citedreferenceDewan, E. M. ( 1979 ), Stratospheric wave spectra resembling turbulence, Science, 204, 832 – 835.en_US
dc.identifier.citedreferenceDewan, E. M., and R. E. Good ( 1986 ), Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere, J. Geophys. Res., 91, 2742 – 2748.en_US
dc.identifier.citedreferenceDouté, S., B. Schmitt, Y. Langevin, J.‐P. Bibring, F. Altieri, G. Bellucci, B. Gondet, F. Poulet, and the MEX OMEGA Team ( 2007 ), South Pole of Mars: Nature and composition of the icy terrains from Mars Express OMEGA observations, Planet. Space Sci., 55, 113 – 133.en_US
dc.identifier.citedreferenceDrake, N. B., L. K. Tamppari, R. D. Baker, B. A. Cantor, and A. S. Hale ( 2006 ), Dust devil tracks and wind streaks in the North Polar region of Mars: A study of the 2007 Phoenix Mars lander sites, Geophys. Res. Lett., 33, L19S02, doi: 10.1029/2006GL026270.en_US
dc.identifier.citedreferenceEllehoj, M. D., et al. ( 2010 ), Convective vortices and dust devils at the Phoenix Mars mission landing site, J. Geophys. Res., 115, E00E16, doi: 10.1029/2009JE003413.en_US
dc.identifier.citedreferenceEmanuel, K. A. ( 1994 ), Atmospheric Convection, Oxford Univ. Press, Oxford, U. K.en_US
dc.identifier.citedreferenceEncrenaz, T. ( 2004 ), Minor species in the Martian atmosphere from ground‐based and PFS Mars Express spectroscopy, paper presented at Semaine de l'Astrophysique Francaise, Soc. Fr. d'Astronomie and d'Astrophysique Paris, 14–18 June.en_US
dc.identifier.citedreferenceFarrell, W. M., G. T. Delory, and S. K. Atreya ( 2006 ), Martian dust storms as a possible sink of atmospheric methane, Geophys. Res. Lett., 33, L21203, doi: 10.1029/2006GL027210.en_US
dc.identifier.citedreferenceFedorova, A. A., O. I. Korablev, J.‐L. Bertaux, A. V. Rodin, F. Montmessin, D. A. Belyaev, and A. Reberac ( 2009 ), Solar infrared occultation observations by SPICAM experiment on Mars Express: Simultaneous measurements of the vertical distributions of H 2 O, CO 2 and aerosols, Icarus, 200, 96 – 117.en_US
dc.identifier.citedreferenceFergason, R. L., P. R. Christensen, and H. H. Kieffer ( 2006 ), High‐resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications, J. Geophys. Res., 111, E12004, doi: 10.1029/2006JE002735.en_US
dc.identifier.citedreferenceFerrero, E., and N. Colonna ( 2006 ), Nonlocal treatment of the buoyancy‐shear‐driven boundary layer, J. Atmos. Sci., 63, 2653 – 2662.en_US
dc.identifier.citedreferenceFerrero, E., and M. Racca ( 2004 ), The role of the nonlocal transport in modeling the shear‐driven atmospheric boundary layer, J. Atmos. Sci., 61, 1434 – 1445.en_US
dc.identifier.citedreferenceFerri, F., P. H. Smith, M. Lemmon, and N. O. Rennó ( 2003 ), Dust devils as observed by Mars Pathfinder, J. Geophys. Res., 108 ( E12 ), 5133, doi: 10.1029/2000JE001421.en_US
dc.identifier.citedreferenceForget, F., F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S. R. Lewis, and P. L. Read ( 1999 ), Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res., 104, 24,155 – 24,176.en_US
dc.identifier.citedreferenceForget, F., et al. ( 2007 ), Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method, J. Geophys. Res., 112, E08S15, doi: 10.1029/2006JE002871.en_US
dc.identifier.citedreferenceFormisano, V., D. Grassi, N. I. Ignatiev, and L. Zasova ( 2001 ), IRIS mariner 9 data revisited: Water and dust daily cycles, Planet. Space Sci., 49, 1331 – 1346.en_US
dc.identifier.citedreferenceFouchet, T., et al. ( 2007 ), Martian water vapor: Mars Express PFS/LW observations, Icarus, 190, 32 – 49.en_US
dc.identifier.citedreferenceFritts, D. C., and M. J. Alexander ( 2003 ), Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41 ( 1 ), 1003, doi: 10.1029/2001RG000106.en_US
dc.identifier.citedreferenceGalperin, B., and S. Sukoriansky ( 2010 ), Geophysical flows with anisotropic turbulence and dispersive waves: Flows with stable stratification, Ocean Dyn., 60, 1319 – 1337.en_US
dc.identifier.citedreferenceGalperin, B., L. Kantha, S. Hassid, and A. Rosati ( 1988 ), A quasi‐equilibrium turbulent energy model for geophysical flows, J. Atmos. Sci., 45, 55 – 62.en_US
dc.identifier.citedreferenceGalperin, B., L. Kantha, G. Mellor, and A. Rosati ( 1989 ), Modeling rotating stratified turbulent flows with application to oceanic mixed layers, J. Phys. Oceanogr., 7, 901 – 916.en_US
dc.identifier.citedreferenceGalperin, B., S. Sukoriansky, and P. Anderson ( 2007 ), On the critical Richardson number in stably stratified turbulence, Atmos. Sci. Let., 8, 65 – 69.en_US
dc.identifier.citedreferenceGarratt, J. R. ( 1992 ), The Atmospheric Boundary Layer, Cambridge Univ. Press., Cambridge, U. K.en_US
dc.identifier.citedreferenceGerkema, T., J. Zimmerman, L. Maas, and H. van Haren ( 2008 ), Geophysical and astrophysical fluid dynamics beyond the traditional approximation, Rev. Geophys., 46, RG2004, doi: 10.1029/2006RG000220.en_US
dc.identifier.citedreferenceGierasch, P. J., and R. M. Goody ( 1968 ), A study of the thermal and dynamical structure of the lower Martian atmosphere, Planet Space Sci., 16, 615 – 646.en_US
dc.identifier.citedreferenceGirimaji, S. ( 2000 ), Pressure‐strain correlation modeling of complex turbulent flows, J. Fluid Mech., 422, 91 – 123.en_US
dc.identifier.citedreferenceGolombek, M. P., et al. ( 1997 ), Overview of the Mars pathfinder mission and assessment of landing site predictions, Science, 278, 1743 – 1748.en_US
dc.identifier.citedreferenceGómez‐Elvira, J., and REMS Team ( 2008 ), Environmental monitoring station for Mars Science Laboratory, LPI Contrib., 1447, Abstract 9052.en_US
dc.identifier.citedreferenceGrassi, D., M. D. Smith, M. J. Wolff, R. E. Arvidson, V. Formisano, and N. I. Ignatiev ( 2006 ), Simultaneous observations of Martian atmosphere by PFS‐MEx and MiniTES‐MER, paper presented at European Planetary Science Congress, Europlanet, Berlin.en_US
dc.identifier.citedreferenceGreeley, R., and J. D. Iversen ( 1985 ), Wind as a Geological Process on Earth, Mars, Venus and Titan, Cambridge Univ. Press, New York.en_US
dc.identifier.citedreferenceGryanik, V., J. Hartmann, S. Raasch, and M. Schoroter ( 2005 ), A refinement of the Millionschikov quasi‐normality hypothesis for convective boundary layer turbulence, J. Atmos. Sci., 62, 2632 – 2638.en_US
dc.identifier.citedreferenceGunnlaugsson, H. P., et al. ( 2008 ), Telltale wind indicator for the Mars Phoenix lander, J. Geophys. Res., 113, E00A04, doi: 10.1029/2007JE003008. [Printed 114( E3 ), 2009.]en_US
dc.identifier.citedreferenceHaberle, R., H. Houben, R. Hertenstein, and T. Herdtle ( 1993 a), A boundary layer model for Mars: Comparison with Viking lander and entry data, J. Atmos. Sci., 50, 1544 – 1559.en_US
dc.identifier.citedreferenceHaberle, R. M., J. B. Pollack, J. R. Barnes, R. W. Zurek, C. B. Leovy, J. R. Murphy, J. Schaeffer, and H. Lee ( 1993 b), Mars atmospheric dynamics as simulated by the NASA/Ames general circulation model, J. Geophys. Res., 102, 13,301 – 13,311.en_US
dc.identifier.citedreferenceHarri, A.‐M., et al. ( 1998 ), Meteorological observations on Martian surface: Met‐packages of Mars‐96 small stations and penetrators, Planet. Space Sci., 46, 779 – 793.en_US
dc.identifier.citedreferenceHarri, A.‐M., et al. ( 1999 ), Network science landers for Mars, Adv. Space Res., 23, 1915 – 1924.en_US
dc.identifier.citedreferenceHarri, A.‐M., W. Schmidt, H. Guerrero, L. Vazquez, and the MetNet Team ( 2010 ), Metnet network precursor mission, EPSC Abstracts, 5, EPSC2010‐739.en_US
dc.identifier.citedreferenceHassid, S., and B. Galperin ( 1983 ), A turbulent energy model for geophysical flows, Boundary Layer Meteorol., 26, 397 – 412.en_US
dc.identifier.citedreferenceHassid, S., and B. Galperin ( 1994 ), Modeling rotating flows with neutral and unstable stratification, J. Geophys. Res., 99, 12,533 – 12,548.en_US
dc.identifier.citedreferenceHeavens, N. G., M. I. Richardson, and A. D. Toigo ( 2008 ), Two aerodynamic roughness maps derived from Mars Orbiter Laser Altimeter (MOLA) data and their effects on boundary layer properties in a Mars general circulation model (GCM), J. Geophys. Res., 113, E02014, doi: 10.1029/2007JE002991.en_US
dc.identifier.citedreferenceNieuwstadt, F. T. M. ( 1984 ), The turbulent structure of the stable nocturnal boundary layer, J. Atmos. Sci., 41, 2202 – 2216.en_US
dc.identifier.citedreferenceHébrard, E., P. Coll, B. Marticorena, G. Bergametti, F. Montmessin, and F. Forget ( 2008 ), An aerodynamic roughness map derived from Martian rock abundance data and its effects on aeolian erosion thresholds in a MGCM, LPI Contrib., 1447, Abstract 9057.en_US
dc.identifier.citedreferenceHess, S. L., R. M. Henry, J. Kuettner, C. B. Leovy, and J. A. Ryan ( 1972 ), Meteorology experiments: The Viking Mars lander, Icarus, 16, 196 – 204.en_US
dc.identifier.citedreferenceHess, S. L., et al. ( 1976 ), Preliminary meteorological results on Mars from the Viking 1 lander, Science, 193, 788 – 791.en_US
dc.identifier.citedreferenceHess, S. L., R. M. Henry, C. B. Leovy, J. A. Ryan, and J. E. Tillman ( 1977 ), Meteorological results from the surface of Mars: Viking 1 and 2, J. Geophys. Res., 82, 4559 – 4574.en_US
dc.identifier.citedreferenceHinson, D. P., and R. J. Wilson ( 2002 ), Transient eddies in the southern hemisphere of Mars, Geophys. Res. Lett., 29 ( 7 ), 1154, doi: 10.1029/2001GL014103.en_US
dc.identifier.citedreferenceHinson, D. P., and R. J. Wilson ( 2004 ), Temperature inversions, thermal tides, and water ice clouds in the Martian tropics, J. Geophys. Res., 109, E01002, doi: 10.1029/2003JE002129.en_US
dc.identifier.citedreferenceHinson, D. P., R. A. Simpson, J. D. Twicken, G. L. Tyler, and F. M. Flasar ( 1999 ), Initial results from radio occultation measurements with Mars Global Surveyor, J. Geophys. Res., 104, 26,997 – 27,012.en_US
dc.identifier.citedreferenceHinson, D. P., G. L. Tyler, J. L. Hollingsworth, and R. J. Wilson ( 2001 ), Radio occultation measurements of forced atmospheric waves on Mars, J. Geophys. Res., 106, 463 – 1480.en_US
dc.identifier.citedreferenceHinson, D. P., R. J. Wilson, M. D. Smith, and B. J. Conrath ( 2003 ), Stationary planetary waves in the atmosphere of Mars during southern winter, J. Geophys. Res., 108 ( E1 ), 5004, doi: 10.1029/2002JE001949.en_US
dc.identifier.citedreferenceHinson, D. P., M. D. Smith, and B. J. Conrath ( 2004 ), Comparison of atmospheric temperatures obtained through infrared sounding and radio occulation by Mars Global Surveyor, J. Geophys. Res., 109, E12002, doi: 10.1029/2004JE002344.en_US
dc.identifier.citedreferenceHinson, D. P., M. Pätzold, S. Tellmann, B. Häusler, and G. L. Tyler ( 2008 ), The depth of the convective boundary layer on Mars, Icarus, 198, 57 – 66.en_US
dc.identifier.citedreferenceHolstein‐Rathlou, C., et al. ( 2010 ), Winds at the Phoenix landing site, J. Geophys. Res., 115, E00E18, doi: 10.1029/2009JE003411.en_US
dc.identifier.citedreferenceHoltslag, A., and B. Boville ( 1993 ), Local versus non‐local boundary layer diffusion in a global climate model, J. Clim., 6, 1825 – 1842.en_US
dc.identifier.citedreferenceHoltslag, A., and C. Moeng ( 1991 ), Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer, J. Atmos. Sci., 48, 1690 – 1700.en_US
dc.identifier.citedreferenceHunt, G. E., A. O. Pickersgill, P. B. James, and N. Evans ( 1981 ), Daily and seasonal Viking observations of Martian bore wave systems, Nature, 293, 630 – 633.en_US
dc.identifier.citedreferenceInada, A., et al. ( 2008 ), Dust haze in Valles Marineris observed by HRSC and OMEGA on board Mars Express, J. Geophys. Res., 113, E02004, doi: 10.1029/2007JE002893.en_US
dc.identifier.citedreferenceIvanov, A. B., and D. O. Muhleman ( 2001 ), Cloud reflection observations: Results from the Mars Orbiter Laser Altimeter, Icarus, 154, 190 – 206.en_US
dc.identifier.citedreferenceJakosky, B. M. ( 1985 ), The seasonal cycle of water on Mars, Space Sci. Rev., 41, 131 – 200.en_US
dc.identifier.citedreferenceJakosky, B. M., and C. B. Farmer ( 1982 ), The seasonal and global behavior of water vapor in the Martian atmosphere: Complete results of the viking atmospheric water detector on Mars, J. Geophys. Res., 87, 2999 – 3019.en_US
dc.identifier.citedreferenceJakosky, B. M., M. T. Mellon, E. S. Varnes, W. C. Feldman, W. V. Boynton, and R. M. Haberle ( 2005 ), Mars low‐latitude neutron distribution: Possible remnant near‐surface water ice and a mechanism for its recent emplacement, Icarus, 175, 58 – 67.en_US
dc.identifier.citedreferenceJames, P. B., and B. A. Cantor ( 2001 ), Martian north polar cap recession: 2000 Mars Orbiter Camera observations, Icarus, 154, 131 – 144.en_US
dc.identifier.citedreferenceJoshi, M. M., B. N. Lawrence, and S. R. Lewis ( 1996 ), The effect of spatial variations in unresolved topography on gravity wave drag in the Martian atmosphere, Geophys. Res. Lett., 23, 2927 – 2930.en_US
dc.identifier.citedreferenceKanak, K. M., D. K. Lilly, and J. T. Snow ( 2000 ), The formation of vertical Vortices in the convective boundary layer, Q. J. R. Meteorol. Soc., 126, 2789 – 2810.en_US
dc.identifier.citedreferenceKantha, L., and S. Carniel ( 2009 ), A note on modeling mixing in stably stratified flows, J. Atmos. Sci., 66, 2501 – 2505.en_US
dc.identifier.citedreferenceKantha, L., and C. Clayson ( 1994 ), An improved mixed‐layer model for geophysical applications, J. Geophys. Res., 99, 25,235 – 25,266.en_US
dc.identifier.citedreferenceKarelsky, K. V., and A. S. Petrosyan ( 1995 ), Numerical simulations of the near surface phenomena on Mars, Adv. Space Res., 11 ( 6 ), 45 – 48.en_US
dc.identifier.citedreferenceKarelsky, K., A. Petrosyan, and I. Smirnov ( 2007 ), A new model for boundary layer flows interacting with particulates in land surface on complex terrain, Q. J. Hung. Meteorol. Serv., 111 ( 2–3 ), 149 – 159.en_US
dc.identifier.citedreferenceKasahara, A. ( 2003 ), The roles of the horizontal component of the Earth's angular velocity in nonhydrostatic linear models, J. Atmos. Sci., 60, 1085 – 1095.en_US
dc.identifier.citedreferenceKass, D. M., J. T. Schofield, T. I. Michaels, S. C. R. Rafkin, M. I. Richardson, and A. D. Toigo ( 2003 ), Analysis of atmospheric mesoscale models for entry, descent, and landing, J. Geophys. Res., 108 ( E12 ), 8090, doi: 10.1029/2003JE002065.en_US
dc.identifier.citedreferenceKauhanen, J., T. Siili, S. Järvenoja, and H. Savijärvi ( 2008 ), The Mars limited area model and simulations of atmospheric circulations for the Phoenix landing area and season of operation, J. Geophys. Res., 113, E00A14, doi: 10.1029/2007JE003011.en_US
dc.identifier.citedreferenceKieffer, H. H., and T. N. Titus ( 2001 ), TES mapping of Mars' north seasonal cap, Icarus, 154, 162 – 180.en_US
dc.identifier.citedreferenceKieffer, H. H., S. C. Chase, T. Z. Martin, E. D. Miner, and F. D. Palluconi ( 1976 ), Martian north pole summer temperatures: Dirty water ice, Science, 194, 1341 – 1344.en_US
dc.identifier.citedreferenceKieffer, H. H., T. Z. Martin, A. R. Peterfreund, B. M. Jakosky, E. D. Miner, and F. D. Palluconi ( 1977 ), Thermal and albedo mapping of Mars during the Viking primary mission, J. Geophys. Res., 82, 4249 – 4291.en_US
dc.identifier.citedreferenceKitamura, Y. ( 2010 ), Modifications to the Mellor‐Yamada‐Nakanishi‐Niino (MYNN) model for the stable stratification case, J. Meteorol. Soc. Jpn., 88, 857 – 864.en_US
dc.identifier.citedreferenceKleinböhl, A., et al. ( 2009 ), Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity, J. Geophys. Res., 114, E10006, doi: 10.1029/2009JE003358.en_US
dc.identifier.citedreferenceKok, J. F., and N. O. Renno ( 2008 ), Electrostatics in wind‐blown sand, Phys. Rev. Lett., 100, 014501, doi: 10.1103/PhysRevLett.100.014501.en_US
dc.identifier.citedreferenceKok, J. F., and N. O. Renno ( 2009 ), Electrification of wind‐blown sand on Mars and its implications for atmospheric chemistry, Geophys. Res. Lett., 36, L05202, doi: 10.1029/2008GL036691.en_US
dc.identifier.citedreferenceKorablev, O. I. ( 2002 ), Solar occultation measurements of the Martian atmosphere on the Phobos spacecraft: Water vapor profile, aerosol parameters, and other results, Sol. Syst. Res., 36, 12 – 34.en_US
dc.identifier.citedreferenceKrasnopolsky, V. A., J. P. Maillard, and T. C. Owen ( 2004 ), Detection of methane in the Martian atmosphere: Evidence for life, Geophys. Res. Abstr., 6, 06169.en_US
dc.identifier.citedreferenceKurbatskiy, A., and L. Kurbatskaya ( 2006 ), Three‐parameter model of turbulence for the atmospheric boundary layer over an urbanized surface, Izvestiya Atmos. Oceanic Phys., 42, 439 – 455.en_US
dc.identifier.citedreferenceKurbatskiy, A., and L. Kurbatskaya ( 2009 ), E − ε − 〈θ 2 〉 turbulence closure model for an atmospheric boundary layer including the urban canopy, Meteorol. Atmos. Phys., 104, 63 – 81.en_US
dc.identifier.citedreferenceKursinski, E. R., et al. ( 2004 ), The Mars Atmospheric Constellation Observatory (MACO) concept, in Occultations for Probing Atmosphere and Climate, edited by G. Kirchengast, U. Foelsche, and A. Steiner, pp. 393 – 405, Springer, Berlin.en_US
dc.identifier.citedreferenceKursinski, E., J. Lyons, M. Richardson, W. Folkner, A. Otarola, and D. Ward ( 2008 ), The Mars Astrobiology and Climate Observatory (MACO), paper presented at 37th COSPAR Scientific Assembly, Montreal, Que., Canada.en_US
dc.identifier.citedreferenceKursinski, E. R., J. Lyons, C. Newman, M. I. Richardson, D. Ward, and A. C. Otarola ( 2009 ), A global observing system for Mars: The dual satellite Mars Astrobiology and Climate Observatory (MACO), Eos Trans. AGU, 90 ( 52 ), Fall Meet. Suppl., Abstract P54B‐11.en_US
dc.identifier.citedreferenceKuzmin, R. O., E. V. Zabalueva, I. G. Mitrofanov, M. L. Litvak, A. V. Rodin, W. V. Boynton, and R. S. Saunders ( 2007 ), Seasonal redistribution of water in the surficial Martian regolith: Results from the Mars Odyssey high‐energy neutron detector (HEND), Sol. Syst. Res., 41, 89 – 102.en_US
dc.identifier.citedreferenceLangevin, Y., F. Poulet, J.‐P. Bibring, B. Schmidtt, S. Douté, and B. Gondet ( 2005 ), Summer evolution of the north polar cap of Mars as observed by OMEGA/Mars Express, Science, 307, 1581 – 1584.en_US
dc.identifier.citedreferenceLarsen, S. E., H. E. Jørgensen, L. Landberg, and J. E. Tillman ( 2002 ), Aspects of the atmospheric surface layers on Mars and Earth, Boundary Layer Meteorol., 105, 451 – 470.en_US
dc.identifier.citedreferenceLaubach, J., and K. G. McNaughton ( 1998 ), A spectrum‐independent procedure for correcting eddy fluxes measured with separated sensors, Boundary Layer Meteorol., 89, 445 – 467.en_US
dc.identifier.citedreferenceLaunder, B., G. Reece, and W. Rodi ( 1975 ), Progress in development of a Reynolds‐stress turbulence closure, J. Fluid Mech., 68, 537 – 566.en_US
dc.identifier.citedreferenceLefevre, F., and F. Forget ( 2009 ), Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics, Nature, 460, 720 – 723.en_US
dc.identifier.citedreferenceLemmon, M., et al. ( 2004 ), Atmospheric imaging results from the Mars Exploration Rovers: Spirit and Opportunity, Science, 306, 1753 – 1756.en_US
dc.identifier.citedreferenceLeovy, C. B., and Y. Mintz ( 1969 ), Numerical simulation of the atmospheric circulation and climate of Mars, J. Atmos. Sci., 26, 1167 – 1190.en_US
dc.identifier.citedreferenceLewellen, W. ( 1977 ), Use of invariant modeling, in Handbook of Turbulence, vol. 1, Fundamentals and Applications, pp. 237 – 280, Plenum, New York.en_US
dc.identifier.citedreferenceLilly, D. K. ( 1962 ), On the numerical simulation of buoyant convection, Tellus, 14, 148 – 172.en_US
dc.identifier.citedreferenceListowski, C., et al. ( 2011 ), Solar occultation with SPICAM/UV on board Mars Express: Retrieving aerosol and ozone profiles, paper presented at Fourth International Workshop on Mars Atmosphere Modelling and Observations, Cent. Natl. d'Etud. Spat., Paris, 8–11 Feb..en_US
dc.identifier.citedreferenceMäättänen, A., and H. Savijärvi ( 2004 ), Sensitivity tests with a 1‐dimensional boundary layer Mars model, Boundary Layer Meteorol., 113, 305 – 320.en_US
dc.identifier.citedreferenceMäättänen, A., et al. ( 2009 ), A study of the properties of a local dust storm with Mars Express OMEGA and PFS data, Icarus, 201, 504 – 516.en_US
dc.identifier.citedreferenceMalin, M. C., and K. S. Edgett ( 2001 ), Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission, J. Geophys. Res., 106, 23,429 – 23,570.en_US
dc.identifier.citedreferenceMalin, M. C., et al. ( 1999 ), Early views of the Martian surface from the Mars Orbiter Camera of Mars Global Surveyor, Science, 279, 1681 – 1685.en_US
dc.identifier.citedreferenceMartin, P. ( 1985 ), Simulation of the mixed layer at OWS November and Papa with several models, J. Geophys. Res., 90, 903 – 916.en_US
dc.identifier.citedreferenceMartínez, G., F. Valero, and L. Vázquez ( 2009 ), Characterization of the Martian Convective Boundary Layer, J. Atmos. Sci., 66, 2044 – 2058.en_US
dc.identifier.citedreferenceMcCleese, D. J., et al. ( 2007 ), Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions, J. Geophys. Res., 112, E05S06, doi: 10.1029/2006JE002790.en_US
dc.identifier.citedreferenceMellon, M. T., B. M. Jakosky, H. H. Kieffer, and P. R. Christensen ( 2000 ), High‐resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission spectrometer, Icarus, 148, 437 – 455.en_US
dc.identifier.citedreferenceMellor, G. ( 1973 ), Analytic prediction of properties of stratified planetary surface layers, J. Atmos. Sci., 30, 1061 – 1069.en_US
dc.identifier.citedreferenceMellor, G. ( 1975 ), A comparative study of curved flow and density‐stratified flow, J. Atmos. Sci., 32, 1278 – 128.en_US
dc.identifier.citedreferenceMellor, G. ( 2003 ), Comments on “Stability of algebraic non‐equilibrium second‐order closure models” by H. Burchard and E. Deleersnjder [Ocean Modelling 3 (2001) 33–50], Ocean Modell., 5, 193 – 194.en_US
dc.identifier.citedreferenceMellor, G., and H. Herring ( 1973 ), Survey of mean turbulent field closure models, AIAA J., 11, 590 – 599.en_US
dc.identifier.citedreferenceMellor, G., and T. Yamada ( 1974 ), A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., 31, 1791 – 1806.en_US
dc.identifier.citedreferenceMellor, G., and T. Yamada ( 1982 ), Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851 – 875.en_US
dc.identifier.citedreferenceMelnik, O., and M. Parrot ( 1998 ), Electrostatic discharge in Martian dust storms, J. Geophys. Res., 103, 29,107 – 29,117.en_US
dc.identifier.citedreferenceMetzger, S. M., J. R. Carr, J. R. Johnson, T. J. Parker, and M. Lemmon ( 1999 ), Dust devil vortices seen by the Mars Pathfinder camera, Geophys. Res. Lett., 26, 2781 – 2784.en_US
dc.identifier.citedreferenceMichael, W. H. Jr., D. L. Cain, G. Fjeldbo, G. S. Levy, J. G. Davies, M. D. Grossi, I. I. Shapiro, and G. L. Tyler ( 1972 ), Radio science experiments: The Viking Mars orbiter and lander, Icarus, 16, 57 – 73.en_US
dc.identifier.citedreferenceMichaels, T. I. ( 2006 ), Numerical modeling of Mars dust devils: Albedo track generation, Geophys. Res. Lett., 33, L19S08, doi: 10.1029/2006GL026268.en_US
dc.identifier.citedreferenceMichaels, T. I., and S. C. R. Rafkin ( 2004 ), Large eddy simulation of atmospheric convection on Mars, Q. J. R. Meteorol. Soc., 130, 1251 – 1274.en_US
dc.identifier.citedreferenceMichaels, T. I., and S. C. R. Rafkin ( 2008 ), Meteorological predictions for candidate 2007 Phoenix Mars lander sites using the Mars Regional Atmospheric Modeling System (MRAMS), J. Geophys. Res., 113, E00A07, doi: 10.1029/2007JE003013.en_US
dc.identifier.citedreferenceMitrofanov, I. G., et al. ( 2003 ), Search for water in Martian soil using global neutron mapping by the Russian HEND instrument onboard the US 2001 Mars Odyssey spacecraft, Sol. Syst. Res., 37, 366 – 377.en_US
dc.identifier.citedreferenceMoeng, C., and J. Wyngaard ( 1989 ), Evaluation of turbulent transport and dissipation closures in second‐order modeling, J. Atmos. Sci., 46, 2311 – 2330.en_US
dc.identifier.citedreferenceMoeng, C., J. Dudhia, J. Klemp, and P. Sullivan ( 2007 ), Examining two‐way grid nesting for large eddy simulation of the PBL using the WRF Model, Mon. Weather Rev., 135, 2295 – 2311.en_US
dc.identifier.citedreferenceMonin, A. S., and A. M. Obukhov ( 1954 ), Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnon sloe atmosfery [Basic laws of turbulent mixing in the atmosphere near the ground], Trudy Geofiz. inst. AN SSSR, 24, 163 – 187.en_US
dc.identifier.citedreferenceMonin, A., and A. Yaglom ( 1975 ), Statistical Fluid Mechanics, MIT Press, Cambridge, Mass.en_US
dc.identifier.citedreferenceMoores, J. E., M. T. Lemmon, P. H. Smith, L. Komguem, and J. A. Whiteway ( 2010 ), Atmospheric dynamics at the Phoenix landing site as seen by the Surface Stereo Imager, J. Geophys. Res., 115, E00E08, doi: 10.1029/2009JE003409.en_US
dc.identifier.citedreferenceMoudden, Y., and J. McConnell ( 2005 ), A new model for multiscale modeling of the Martian atmosphere, GM3, J. Geophys. Res., 110, E04001, doi: 10.1029/2004JE002354.en_US
dc.identifier.citedreferenceMurphy, J. R., and S. Nelli ( 2002 ), Mars Pathfinder convective vortices: Frequency of occurrence, Geophys. Res. Lett., 29 ( 23 ), 2103, doi: 10.1029/2002GL015214.en_US
dc.identifier.citedreferenceNayvelt, L., P. J. Gierasch and K. H. Cook ( 1997 ), Modeling and observations of Martian stationary waves, J. Atmos. Sci., 54, 986 – 1013.en_US
dc.identifier.citedreferenceNewman, C. E., S. R. Lewis, P. L. Read, and F. Forget ( 2002 a), Modeling the Martian dust cycle: 1. Representations of dust transport processes, J. Geophys. Res., 107 ( E12 ), 5123, doi: 10.1029/2002JE001910.en_US
dc.identifier.citedreferenceNewman, C. E., S. R. Lewis, P. L. Read, and F. Forget ( 2002 b), Modeling the Martian dust cycle: 2. Multiannual radiatively active dust transport simulations, J. Geophys. Res., 107 ( E12 ), 5124, doi: 10.1029/2002JE001920.en_US
dc.identifier.citedreferenceOdaka, M. ( 2001 ), A numerical simulation of Martian atmospheric convection with a two‐dimensional anelastic model: A case of dust‐free Mars, Geophys. Res. Lett., 28, 895 – 898.en_US
dc.identifier.citedreferenceOdaka, M., K. Nakajima, S. Takehiro, M. Ishiwatari, and Y. Hayashi ( 1998 ), A numerical study of the Martian atmospheric convection with a two‐dimensional anelastic model, Earth Planets Space, 50, 431 – 437.en_US
dc.identifier.citedreferenceOyama, V., B. Berdahl, and G. Carle ( 1977 ), Preliminary findings of Viking gas‐exchange experiment and a model for Martian surface chemistry, Nature, 265, 110 – 114.en_US
dc.identifier.citedreferencePallman, A. J. ( 1983 ), The thermal structure of the atmospheric surface layer on Mars as modified by the radiative effect of Aeolian dust, J. Geophys. Res., 88, 5483 – 5493.en_US
dc.identifier.citedreferencePettengill, G. H., and P. G. Ford ( 2000 ), Winter clouds over the north Martian polar cap, Geophys. Res. Lett., 27, 609 – 612.en_US
dc.identifier.citedreferencePollack, J. B., C. B. Leovy, Y. Mintz, and W. Van Kamp ( 1976 ), Winds on Mars during the Viking season: Predictions based on a general circulation model with topography, Geophys. Res. Lett., 3, 479 – 482.en_US
dc.identifier.citedreferencePollack, J. B., D. Colburn, R. Kahn, J. Hunter, W. Van Camp, C. Carlston, and M. Wolf ( 1977 ), Properties of aerosols in the Martian atmosphere, as inferred from Viking lander imaging data, J. Geophys. Res., 82, 4479 – 4496.en_US
dc.identifier.citedreferencePollack, J. B., C. B. Leovy, P. W. Greiman, and Y. Mintz ( 1981 ), A Martian general circulation experiment with large topography, J. Atmos. Sci., 38, 3 – 29.en_US
dc.identifier.citedreferencePope, S. ( 2005 ), Turbulent Flows, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferencePutzig, N. E., and M. T. Mellon ( 2007 ), Apparent thermal inertia and the surface heterogeneity of Mars, Icarus, 191, 68 – 94.en_US
dc.identifier.citedreferenceRafkin, S. C. R. ( 2003 ), The effect of convective adjustment on the global circulation of Mars as simulated by a general circulation model, in Sixth International Conference on Mars, July 20–25, 2003, Pasadena CA [CD‐ROM], LPI Contrib. 1164, Abstract 3059.en_US
dc.identifier.citedreferenceRafkin, S. C. R., and T. I. Michaels ( 2003 ), Meteorological predictions for 2003 Mars Exploration Rover high‐priority landing sites, J. Geophys. Res., 108 ( E12 ), 8091, doi: 10.1029/2002JE002027.en_US
dc.identifier.citedreferenceRafkin, S. C. R., R. M. Haberle, and T. I. Michaels ( 2001 ), The Mars regional atmospheric modeling system: Model description and selected simulations, Icarus, 151, 228 – 256.en_US
dc.identifier.citedreferenceRafkin, S. C. R., T. I. Michaels, and R. M. Haberle ( 2004 ), Meteorological predictions for the Beagle 2 mission to Mars, Geophys. Res. Lett., 31, L01703, doi: 10.1029/2003GL018966.en_US
dc.identifier.citedreferenceRannou, P., S. Perrier, J.‐L. Bertaux, F. Montmessin, O. Korablev, and A. Reberac ( 2006 ), Dust and cloud detection at the Mars limb with UV scattered sunlight with SPICAM, J. Geophys. Res., 111, E09S10, doi: 10.1029/2006JE002693.en_US
dc.identifier.citedreferenceRenno, N. O. ( 2008 ), A general theory for convective plumes and vortices, Tellus, 60A, 688 – 699.en_US
dc.identifier.citedreferenceRenno, N. O., and J. F. Kok ( 2008 ), Electrical activity and dust lifting on Earth, Mars and beyond, Space Sci. Rev., 137, 419 – 434.en_US
dc.identifier.citedreferenceRenno, N. O., M. L. Burkett, and M. P. Larkin ( 1998 ), A simple thermodynamical theory for dust devils, J. Atmos. Sci., 55, 3244 – 3252.en_US
dc.identifier.citedreferenceRenno, N. O., A. A. Nash, J. Lunine, and J. Murphy ( 2000 ), Martian and terrestrial dust devils: Test of a scaling theory using Pathfinder data, J. Geophys. Res., 105, 1859 – 1865.en_US
dc.identifier.citedreferenceRenno, N. O., A.‐S. Wong, S. K. Atreya, I. de Pater, and M. Roos‐Serote ( 2003 ), Electrical discharges and broadband radio emission by Martian dust devils and dust storms, Geophys. Res. Lett., 30 ( 22 ), 2140, doi: 10.1029/2003GL017879.en_US
dc.identifier.citedreferenceRenno, N. O., et al. ( 2004 ), MATADOR 2002: A pilot field experiment on convective plumes and dust devils, J. Geophys. Res., 109, E07001, doi: 10.1029/2003JE002219.en_US
dc.identifier.citedreferenceRenno, N. O., et al. ( 2009 ), Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site, J. Geophys. Res., 114, E00E03, doi: 10.1029/2009JE003362. [Printed 115( E1 ), 2010.]en_US
dc.identifier.citedreferenceRichardson, M. I., A. D. Toigo, and C. E. Newman ( 2007 ), PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics, J. Geophys. Res., 112, E09001, doi: 10.1029/2006JE002825.en_US
dc.identifier.citedreferenceRingrose, T. J., M. C. Towner, and J. C. Zarnecki ( 2003 ), Convective vortices on Mars: A reanalysis of Viking Lander 2 meteorological data, sols 1–60, Icarus, 163, 78 – 87.en_US
dc.identifier.citedreferenceRippeth, T. ( 2005 ), Mixing in seasonally stratified shelf seas: A shifting paradigm, Philos. Trans. R. Soc. A, 363, 2837 – 2854.en_US
dc.identifier.citedreferenceRistorcelli, J. ( 1997 ), Toward a turbulence constitutive relation for geophysical flows, Theor. Comput. Fluid Dyn., 9, 207 – 221.en_US
dc.identifier.citedreferenceRodi, W. ( 1987 ), Examples of calculation methods for flow and mixing in stratified fluids, J. Geophys. Res., 92, 5305 – 5328.en_US
dc.identifier.citedreferenceRodin, A. V., O. I. Korablev, and V. I. Moroz ( 1997 ), Vertical distribution of water in the near‐equatorial troposphere of Mars: Water vapor and clouds, Icarus, 125, 212 – 229.en_US
dc.identifier.citedreferenceRuf, C., N. O. Renno, J. F. Kok, E. Bandelier, M. J. Sander, S. Gross, L. Skjerve, and B. Cantor ( 2009 ), The emission of non‐thermal microwave radiation by a Martian dust storm, Geophys. Res. Lett., 36, L13202, doi: 10.1029/2009GL038715.en_US
dc.identifier.citedreferenceRyan, J., and R. Lucich ( 1983 ), Possible dust devils, vortices on Mars, J. Geophys. Res., 88, 11,005 – 11,011.en_US
dc.identifier.citedreferenceSavijärvi, H. ( 1991 a), Radiative fluxes on a dustfree Mars, Contrib. Atmos. Phys., 64, 103 – 111.en_US
dc.identifier.citedreferenceSavijärvi, H. ( 1991 b), A model study of the PBL structure on Mars and the Earth, Contrib. Atmos. Phys., 64, 219 – 229.en_US
dc.identifier.citedreferenceSavijärvi, H., and J. Kauhanen ( 2008 ), Surface and boundary layer modeling for the Mars Exploration Rover sites, Q. J. R. Meteorol. Soc., 134, 635 – 641.en_US
dc.identifier.citedreferenceSavijärvi, H., and A. Määttänen ( 2010 ), Boundary layer simulations for the Mars Phoenix lander site, Q. J. R. Meteorol. Soc., 136, 1497 – 1505.en_US
dc.identifier.citedreferenceSavijärvi, H., and T. Siili ( 1993 ), The Martian slope winds and the nocturnal PBL jet, J. Atmos. Sci., 50, 77 – 88.en_US
dc.identifier.citedreferenceSavijärvi, H., A. Määttänen, J. Kauhanen, and A.‐M. Harri ( 2004 ), Mars Pathfinder: New data and new model simulations, Q. J. R. Meteorol. Soc., 130, 669 – 683.en_US
dc.identifier.citedreferenceSchmidt, D. S., R. A. Schmidt, and J. D. Dent ( 1998 ), Electrostatic force on saltating sand, J. Geophys. Res., 103, 8997 – 9001.en_US
dc.identifier.citedreferenceSchofield, J. T., J. R. Barnes, D. Crisp, R. M. Haberle, S. Larsen, J. A. Magalhaes, J. R. Murphy, A. Seiff, and G. Wilson ( 1997 ), The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) experiment, Science, 278, 1752 – 1758.en_US
dc.identifier.citedreferenceSegschneider, J., B. Grieger, H. U. Keller, F. Lunkeit, E. Kirk, K. Fraedrich, A. Rodin, and R. Greve ( 2005 ), Response of the intermediate complexity Mars Climate Simulator to different obliquity angles, Planet. Space Sci., 53, 659 – 670.en_US
dc.identifier.citedreferenceSeiff, A., and D. B. Kirk ( 1977 ), Structure of the atmosphere of Mars in summer at mid‐latitude, J. Geophys. Res., 82, 4364 – 4388.en_US
dc.identifier.citedreferenceSeiff, A., et al. ( 1997 ), The atmosphere structure and meteorology instrument on the Mars Pathfinder lander, J. Geophys. Res., 102, 4045 – 4056.en_US
dc.identifier.citedreferenceSimpson, J., W. Crawford, T. Rippeth, A. Campbell, and J. Cheok ( 1996 ), The vertical structure of turbulent dissipation in shelf seas, J. Phys. Oceanogr., 26, 1579 – 1590.en_US
dc.identifier.citedreferenceSinclair, P. C. ( 1973 ), The lower structure of dust devils, J. Atmos. Sci., 30, 1599 – 1619.en_US
dc.identifier.citedreferenceSmith, D. E., et al. ( 2001 ), Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars, J. Geophys. Res., 106, 23,689 – 23,722.en_US
dc.identifier.citedreferenceSmith, M. D., J. C. Pearl, B. J. Conrath, and P. R. Christensen ( 2001 a), Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution, J. Geophys. Res., 106, 23,929 – 23,945.en_US
dc.identifier.citedreferenceSmith, M. D., J. C. Pearl, B. J. Conrath, and P. R. Christensen ( 2001 b), One Martian year of atmospheric observations by the Thermal Emission Spectrometer, Geophys. Res. Lett., 28, 4263 – 4266.en_US
dc.identifier.citedreferenceSmith, M. D., et al. ( 2004 ), First atmospheric science results from the Mars Exploration Rovers Mini‐TES, Science, 306, 1750 – 1753.en_US
dc.identifier.citedreferenceSmith, M. D., M. J. Wolff, N. Spanovich, A. Ghosh, D. Banfield, P. R. Christensen, G. A. Landis, and S. W. Squyres ( 2006 ), One Martian year of atmospheric observations using MER Mini‐TES, J. Geophys. Res., 111, E12S13, doi: 10.1029/2006JE002770.en_US
dc.identifier.citedreferenceSmith, P., et al. ( 1997 ), The Imager for Mars Pathfinder experiment, J. Geophys. Res., 102, 4003 – 4025.en_US
dc.identifier.citedreferenceSorbjan, Z. ( 2007 ), Statistics of shallow convection on Mars based on large‐eddy simulations. Part 1: Shearless conditions, Boundary Layer Meteorol., 123, 121 – 142.en_US
dc.identifier.citedreferenceSouza, E. P., N. Renno, and M. A. F. S. Dias ( 2000 ), Convective circulations induced by surface heterogeneities, J. Atmos. Sci., 57, 2915 – 2922.en_US
dc.identifier.citedreferenceSpiga, A. ( 2011 ), Elements of comparison between Martian and terrestrial mesoscale meteorological phenomena: Katabatic winds and boundary layer convection, Planet. Space Sci., in press.en_US
dc.identifier.citedreferenceSpiga, A., and F. Forget ( 2009 ), A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first results, J. Geophys. Res., 114, E02009, doi: 10.1029/2008JE003242.en_US
dc.identifier.citedreferenceSpiga, A., et al. ( 2007 ), Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 2. Meteorological maps, J. Geophys. Res., 112, E08S16, doi: 10.1029/2006JE002870.en_US
dc.identifier.citedreferenceSpiga, A., F. Forget, S. R. Lewis, and D. P. Hinson ( 2010 ), Structure and dynamics of the convective boundary layer on Mars as inferred from large‐eddy simulations and remote‐sensing measurements, Q. J. R. Meteorol. Soc., 136, 414 – 428.en_US
dc.identifier.citedreferenceSquyres, S., et al. ( 2003 ), Athena Mars rover science investigation, J. Geophys. Res., 108 ( E12 ), 8062, doi: 10.1029/2003JE002121.en_US
dc.identifier.citedreferenceSreenivasan, K. ( 1995 ), On the universality of the kolmogorov constant, Phys. Fluids, 7, 2778 – 2784.en_US
dc.identifier.citedreferenceStow, C. D. ( 1969 ), Dust and storm electrification, Weather, 24, 134 – 137.en_US
dc.identifier.citedreferenceStull, R. B. ( 1976 ), Internal gravity waves generated by penetrative convection, J. Atmos. Sci., 33, 1279 – 1286.en_US
dc.identifier.citedreferenceStull, R. B. ( 1988 ), An Introduction to Boundary Layer Meteorology, Springer, Dordrecht, Netherlands.en_US
dc.identifier.citedreferenceSukoriansky, S., and B. Galperin ( 2008 ), Anisotropic turbulence and internal waves in stably stratified flows (QNSE theory), Phys. Scr., T132, 014036.en_US
dc.identifier.citedreferenceSukoriansky, S., B. Galperin, and V. Perov ( 2005 a), Application of a new spectral theory of stably stratified turbulence to atmospheric boundary layers over sea ice, Boundary Layer Meteorol., 117, 231 – 257.en_US
dc.identifier.citedreferenceSukoriansky, S., B. Galperin, and I. Staroselsky ( 2005 b), A quasinormal scale elimination model of turbulent flows with stable stratification, Phys. Fluids, 17, 085107.en_US
dc.identifier.citedreferenceSukoriansky, S., B. Galperin, and V. Perov ( 2006 ), A quasi‐normal scale elimination model of turbulence and its application to stably stratified flows, Nonlinear Proc. Geophys., 13, 9 – 22.en_US
dc.identifier.citedreferenceSutton, J. L., C. B. Leovy, and J. E. Tillman ( 1978 ), Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking lander sites, J. Atmos. Sci., 35, 2346 – 2355.en_US
dc.identifier.citedreferenceTakahashi, Y. O., H. Fujiwara, H. Fukunishi, M. Odaka, Y.‐Y. Hayashi, and S. Watanabe ( 2003 ), Topographically induced north‐south asymmetry of the meridional circulation in the Martian atmosphere, J. Geophys. Res., 108 ( E3 ), 5018, doi: 10.1029/2001JE001638.en_US
dc.identifier.citedreferenceTakahashi, Y. O., H. Fujiwara, and H. Fukunishi ( 2006 ), Vertical and latitudinal structure of the migrating diurnal tide in the Martian atmosphere: Numerical investigations, J. Geophys. Res., 111, E01003, doi: 10.1029/2005JE002543.en_US
dc.identifier.citedreferenceTaylor, P. A., D. C. Catling, M. Daly, C. S. Dickinson, H. P. Gunnlaugsson, A.‐M. Harri, and C. F. Lange ( 2008 ), Temperature, pressure, and wind instrumentation in the Phoenix meteorological package, J. Geophys. Res., 113, E00A10, doi: 10.1029/2007JE003015.en_US
dc.identifier.citedreferenceTaylor, P. A., et al. ( 2010 ), On pressure measurement and seasonal pressure variations during the Phoenix mission, J. Geophys. Res., 115, E00E15, doi: 10.1029/2009JE003422.en_US
dc.identifier.citedreferenceTennekes, H., and J. Lumley ( 1972 ), A First Course in Turbulence, MIT Press, Cambridge, Mass.en_US
dc.identifier.citedreferenceThomas, P., and P. J. Gierasch ( 1985 ), Dust devils on Mars, Science, 230, 175 – 177.en_US
dc.identifier.citedreferenceTillman, J. E., L. Landberg, and S. E. Larsen ( 1994 ), The boundary layer of Mars: Fluxes, stability, turbulent spectra, and growth of the mixed layer, J. Atmos. Sci., 51, 1709 – 1727.en_US
dc.identifier.citedreferenceToigo, A. D., and M. I. Richardson ( 2002 ), A mesoscale model for the Martian atmosphere, J. Geophys. Res., 107 ( E7 ), 5049, doi: 10.1029/2000JE001489.en_US
dc.identifier.citedreferenceToigo, A. D., and M. I. Richardson ( 2003 ), Meteorology of proposed Mars Exploration Rover landing sites, J. Geophys. Res., 108 ( E12 ), 8092, doi: 10.1029/2003JE002064.en_US
dc.identifier.citedreferenceToigo, A. D., M. I. Richardson, S. P. Ewald, and P. J. Gierasch ( 2003 ), Numerical simulation of Martian dust devils, J. Geophys. Res., 108 ( E6 ), 5047, doi: 10.1029/2002JE002002.en_US
dc.identifier.citedreferenceTyler, D., J. R. Barnes, and R. M. Haberle ( 2002 ), Simulation of surface meteorology at the Pathfinder and VL1 sites using a Mars mesoscale model, J. Geophys. Res., 107 ( E4 ), 5018, doi: 10.1029/2001JE001618.en_US
dc.identifier.citedreferenceTyler, D., J. R. Barnes, and E. D. Skyllingstad ( 2008 ), Mesoscale and large‐eddy simulation model studies of the Martian atmosphere in support of Phoenix, J. Geophys. Res., 113, E00A12, doi: 10.1029/2007JE003012.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.