The Martian Atmospheric Boundary Layer
dc.contributor.author | Petrosyan, A. | en_US |
dc.contributor.author | Galperin, B. | en_US |
dc.contributor.author | Larsen, S. E. | en_US |
dc.contributor.author | Lewis, S. R. | en_US |
dc.contributor.author | Määttänen, A. | en_US |
dc.contributor.author | Read, P. L. | en_US |
dc.contributor.author | Renno, N. | en_US |
dc.contributor.author | Rogberg, L. P. H. T. | en_US |
dc.contributor.author | Savijärvi, H. | en_US |
dc.contributor.author | Siili, T. | en_US |
dc.contributor.author | Spiga, A. | en_US |
dc.contributor.author | Toigo, A. | en_US |
dc.contributor.author | Vázquez, L. | en_US |
dc.date.accessioned | 2013-01-03T19:38:52Z | |
dc.date.available | 2013-01-03T19:38:52Z | |
dc.date.issued | 2011-09 | en_US |
dc.identifier.citation | Petrosyan, A.; Galperin, B.; Larsen, S. E.; Lewis, S. R.; Määttänen, A. ; Read, P. L.; Renno, N.; Rogberg, L. P. H. T.; Savijärvi, H. ; Siili, T.; Spiga, A.; Toigo, A.; Vázquez, L. (2011). "The Martian Atmospheric Boundary Layer." Reviews of Geophysics 49(3): n/a-n/a. <http://hdl.handle.net/2027.42/94893> | en_US |
dc.identifier.issn | 8755-1209 | en_US |
dc.identifier.issn | 1944-9208 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/94893 | |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.publisher | Methuen | en_US |
dc.subject.other | Atmosphere | en_US |
dc.subject.other | Mars | en_US |
dc.subject.other | Boundary Layer | en_US |
dc.title | The Martian Atmospheric Boundary Layer | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Geological Sciences | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/94893/1/rog1720.pdf | |
dc.identifier.doi | 10.1029/2010RG000351 | en_US |
dc.identifier.source | Reviews of Geophysics | en_US |
dc.identifier.citedreference | Savijärvi, H. ( 1999 ), A model study of the atmospheric boundary layer in the Mars Pathfinder lander conditions, Q. J. R. Meteorol. Soc., 125, 483 – 493. | en_US |
dc.identifier.citedreference | Tyler, G. L., et al. ( 1992 ), Radio science investigations with Mars Observer, J. Geophys. Res., 97, 7759 – 7780. | en_US |
dc.identifier.citedreference | Umlauf, L., and H. Burchard ( 2003 ), A generic length‐scale equation for geophysical turbulence models, J. Mar. Res., 61, 235 – 265. | en_US |
dc.identifier.citedreference | Umlauf, L., and H. Burchard ( 2005 ), Second‐order turbulence closure models for geophysical boundary layers. A review of recent work, Cont. Shelf Res., 25, 795 – 827. | en_US |
dc.identifier.citedreference | Umlauf, L., H. Burchard, and K. Hutter ( 2003 ), Extending the k − ω turbulence model towards oceanic applications, Ocean Modell., 5, 195 – 218. | en_US |
dc.identifier.citedreference | VanZandt, T. E. ( 1982 ), A universal spectrum of buoyancy waves in the atmosphere, Geophys. Res. Lett., 9, 575 – 578. | en_US |
dc.identifier.citedreference | Villalobos, F. J. ( 1997 ), Correction of eddy covariance water vapor flux using additional measurements of temperature, Agric. For. Meteorol., 88, 77 – 83. | en_US |
dc.identifier.citedreference | Vincendon, M., Y. Langevin, F. Poulet, J.‐P. Bibring, and B. Gondet ( 2007 ), Recovery of surface reflectance spectra and evaluation of the optical depth of aerosols in the near‐IR using a Monte Carlo approach: Application to the OMEGA observations of high‐latitude regions of Mars, J. Geophys. Res., 112, E08S13, doi: 10.1029/2006JE002845. | en_US |
dc.identifier.citedreference | Violeau, D. ( 2009 ), Explicit algebraic Reynolds stresses and scalar fluxes for density‐stratified shear flows, Phys. Fluids, 21, 035103. | en_US |
dc.identifier.citedreference | Webster, P. J. ( 1977 ), The low latitude circulation of Mars, Icarus, 30, 626 – 649. | en_US |
dc.identifier.citedreference | Weng, W., et al. ( 2006 ), Modelling the Martian boundary layer, paper presented at Second Workshop on Mars Atmosphere Modelling and Observations, Cent. Natl. d'Etud. Spat., Granada, Spain, 27 Feb. to 3 March. [Available at http://www-mars.lmd.jussieu.fr/granada2006/abstracts/Weng_Granada2006.pdf.] | en_US |
dc.identifier.citedreference | Whiteway, J., M. Daly, A. Carswell, T. Duck, C. Dickinson, L. Komguem, and C. Cook ( 2008 ), Lidar on the Phoenix mission to Mars, J. Geophys. Res., 113, E00A08, doi: 10.1029/2007JE003002. [Printed 114( E3 ), 2009.] | en_US |
dc.identifier.citedreference | Whiteway, J., et al. ( 2009 a), Phoenix lidar observations of dust, clouds, and precipitation on Mars, in Lunar Planet. Sci., XL, Abstract 2202. | en_US |
dc.identifier.citedreference | Whiteway, J. A., et al. ( 2009 b), Mars water‐ice clouds and precipitation, Science, 325, 68 – 70. | en_US |
dc.identifier.citedreference | Wilcox, D. ( 1988 ), Reassessment of the scale‐determining equation for advanced turbulence models, AIAA J., 26, 1299 – 1310. | en_US |
dc.identifier.citedreference | Wilson, R. J. ( 1997 ), A general circulation model of the Martian polar warming, Geophys. Res. Lett., 24, 123 – 126. | en_US |
dc.identifier.citedreference | Wing, D. R., and G. L. Austin ( 2006 ), Description of the University of Auckland global Mars mesoscale meteorological model, Icarus, 185, 370 – 382. | en_US |
dc.identifier.citedreference | Wolff, M. J., et al. ( 2006 ), Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini‐TES, J. Geophys. Res., 111, E12S17, doi: 10.1029/2006JE002786. | en_US |
dc.identifier.citedreference | Wolff, M. J., M. D. Smith, R. T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, and H. Savijärvi ( 2009 ), Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer, J. Geophys. Res., 114, E00D04, doi: 10.1029/2009JE003350. | en_US |
dc.identifier.citedreference | Wolff, M. J., R. T. Clancy, J. D. Goguen, M. C. Malin, and B. A. Cantor ( 2010 ), Ultraviolet dust aerosol properties as observed by MARCI, Icarus, 208, 143 – 155. | en_US |
dc.identifier.citedreference | Wolkenberg, P., D. Grassi, V. Formisano, G. Rinaldi, M. D'Amore, and M. Smith ( 2009 ), Simultaneous observations of the Martian atmosphere by Planetary Fourier Spectrometer on Mars Express and Miniature Thermal Emission Spectrometer on Mars Exploration Rover, J. Geophys. Res., 114, E04012, doi: 10.1029/2008JE003216. | en_US |
dc.identifier.citedreference | Wyngaard, J. ( 2010 ), Turbulence in the Atmosphere, Cambridge Univ. Press, Cambridge, U. K. | en_US |
dc.identifier.citedreference | Wyngaard, J., and J. Weil ( 1991 ), Transport asymmetry in skewed turbulence, Phys. Fluids, A3, 155 – 162. | en_US |
dc.identifier.citedreference | Ye, Z. J., M. Segal, and R. A. Pielke ( 1990 ), A comparative study of daytime thermally induced upslope flow on Mars and Earth, J. Atmos. Sci., 47, 612 – 628. | en_US |
dc.identifier.citedreference | Zeman, O., and J. Lumley ( 1979 ), Buoyancy effects in entraining turbulent boundary layers: A second‐order closure study, in Turbulent Shear Flows, vol. 1, pp. 295 – 302, Springer, Berlin. | en_US |
dc.identifier.citedreference | Zent, A. P., M. H. Hecht, D. R. Cobos, G. S. Campbell, C. S. Campbell, G. Cardell, M. C. Foote, S. E. Wood, and M. Mehta ( 2009 ), Thermal and Electrical Conductivity Probe (TECP) for Phoenix, J. Geophys. Res., 114, E00A27, doi: 10.1029/2007JE003052. | en_US |
dc.identifier.citedreference | Zent, A. P., M. H. Hecht, D. R. Cobos, S. E. Wood, T. L. Hudson, S. M. Milkovich, L. P. DeFlores, and M. T. Mellon ( 2010 ), Initial results from the Thermal and Electrical Conductivity Probe (TECP) on Phoenix, J. Geophys. Res., 115, E00E14, doi: 10.1029/2009JE003420. | en_US |
dc.identifier.citedreference | Zilitinkevich, S., V. Gryanik, V. Lykossov, and D. Mironov ( 1999 ), Third‐order transport and nonlocal turbulence closures for convective boundary layers, J. Atmos. Sci., 56, 3463 – 3477. | en_US |
dc.identifier.citedreference | Zilitinkevich, S., T. Elperin, N. Kleeorin, and I. Rogachevskii ( 2007 ), Energy‐ and flux‐budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady‐state, homogeneous regimes, Boundary Layer Meteorol., 125, 167 – 191. | en_US |
dc.identifier.citedreference | Zurek, R. W., and S. E. Smrekar ( 2007 ), An overview of the Mars Reconnaissance Orbiter (MRO) science mission, J. Geophys. Res., 112, E05S01, doi: 10.1029/2006JE002701. | en_US |
dc.identifier.citedreference | Alexakis, A. ( 2009 ), Stratified shear flow instabilities at large Richardson numbers, Phys. Fluids, 21, 054108, doi: 10.1063/1.3147934. | en_US |
dc.identifier.citedreference | Alfonsi, G. ( 2009 ), Reynolds‐averaged Navier‐Stokes equations for turbulence modeling, Rev. Mech. Appl., 62, 040802. | en_US |
dc.identifier.citedreference | Allison, M., J. D. Ross, and N. Solomon ( 1999 ), Mapping the Martian meteorology, in Fifth International Conference on Mars, July 18–23, 1999, Pasadena CA [CD‐ROM], LPI Contrib., 972, Abstract 6102. | en_US |
dc.identifier.citedreference | André, J., and P. Lacarrére ( 1980 ), Simulation numérique détaillée de la couche limite atmosphérique: Comparaison avec la situation des 2 et 3 Juillet 1977 á Voves, La Météorol., 6 ( 22 ), 5 – 49. | en_US |
dc.identifier.citedreference | André, J., G. De Moor, P. Lacarrére, G. Therry, and R. du Vachat ( 1978 ), Modeling 24‐hour evolution of mean and turbulent structures of planetary boundary layer, J. Atmos. Sci., 35, 1861 – 1883. | en_US |
dc.identifier.citedreference | Atreya, S. K., et al. ( 2006 ), Oxidant enhancement in Martian dust devils and storms: Implications for life and habitability, Astrobiology, 6, 439 – 450. | en_US |
dc.identifier.citedreference | Bagnold, R. A. ( 1941 ), The Physics of Blown Sand and Desert Dunes, Methuen, New York. | en_US |
dc.identifier.citedreference | Banerdt, B., et al. ( 1996 ), INTERMARSNET phase–A study report, Eur. Space Agency Sci. Tech. Rep., ESA STR (96)2, 158 pp. | en_US |
dc.identifier.citedreference | Basu, S., J.‐F. Vinuesa, and A. Swift ( 2008 ), Dynamic LES modeling of a diurnal cycle, J. Appl. Meteorol. Climatol., 47, 1156 – 1174. | en_US |
dc.identifier.citedreference | Bertaux, J.‐L., et al. ( 2006 ), SPICAM on Mars express: Observing modes and overview of UV spectrometer data and scientific results, J. Geophys. Res., 111, E10S90, doi: 10.1029/2006JE002690. | en_US |
dc.identifier.citedreference | Blackadar, A. ( 1957 ), Boundary‐layer wind maxima and their significance for the growth of nocturnal inversion, Bull. Am. Meteorol. Soc., 38, 283 – 290. | en_US |
dc.identifier.citedreference | Blackadar, A. ( 1962 ), The vertical distribution of wind and turbulent exchange in a neutral atmosphere, J. Geophys. Res., 67, 3095 – 3102. | en_US |
dc.identifier.citedreference | Blumsack, S. L., P. J. Gierasch, and S. R. Wessel ( 1973 ), An analytical and numerical study of the Martian planetary boundary layer over slopes, J. Atmos. Sci., 30, 66 – 80. | en_US |
dc.identifier.citedreference | Bougeault, P., and J. André ( 1986 ), On the stability of the third‐order turbulence closure for the modeling of the stratocumulus‐topped boundary layer, J. Atmos. Sci., 43, 1574 – 1581. | en_US |
dc.identifier.citedreference | Bougeault, P., and P. Lacarrére ( 1989 ), Parameterization of orography‐induced turbulence in a mesobeta‐scale model, Mon. Weather Rev., 117, 1872 – 1890. | en_US |
dc.identifier.citedreference | Bougher, S., G. Keating, R. Zurek, J. Murphy, R. Haberle, J. Hollingsworth, and R. T. Clancy ( 1999 ), Mars Global Surveyor aerobraking: Atmospheric trends and model interpretation, Adv. Space Res., 23, 1887 – 1897. | en_US |
dc.identifier.citedreference | Boynton, W. V., et al. ( 2004 ), The Mars Odyssey Gamma Ray Spectrometer instrument suite, Space Sci. Rev., 110, 37 – 83. | en_US |
dc.identifier.citedreference | Brutsaert, W. H. ( 1982 ), Exchange processes at the Earth‐atmosphere interface, in Engineering Meteorology, edited by E. Plate, pp. 319 – 369, Elsevier, Amsterdam. | en_US |
dc.identifier.citedreference | Burchard, H. ( 2001 ), On the q 2 l equation by Mellor and Yamada (1982), J. Phys. Oceanogr., 31, 1377 – 1387. | en_US |
dc.identifier.citedreference | Cantor, B. A., P. B. James, M. Caplinger, and M. J. Wolff ( 2001 ), Martian dust storms: 1999 Mars Orbiter Camera observations, J. Geophys. Res., 106, 23,653 – 23,687. | en_US |
dc.identifier.citedreference | Cantor, B., M. Malin, and K. S. Edgett ( 2002 ), Multiyear Mars Orbiter Camera (MOC) observations of repeated Martian weather phenomena during the northern summer season, J. Geophys. Res., 107 ( E3 ), 5014, doi: 10.1029/2001JE001588. | en_US |
dc.identifier.citedreference | Canuto, V. ( 1992 ), Turbulent convection with overshootings: Reynolds stress approach, J. Astrophys., 392, 218 – 232. | en_US |
dc.identifier.citedreference | Canuto, V., A. Howard, Y. Cheng, and M. Dubovikov ( 2001 ), Ocean turbulence. Part I: One‐point closure model‐momentum and heat vertical diffusivities, J. Phys. Oceanogr., 31, 1413 – 1426. | en_US |
dc.identifier.citedreference | Canuto, V., Y. Cheng, and A. Howard ( 2005 ), What causes divergences in local second‐order models? J. Atmos. Sci., 62, 1645 – 1651. | en_US |
dc.identifier.citedreference | Canuto, V., Y. Cheng, A. Howard, and I. Esau ( 2008 ), Stably stratified flows: A model with no Ri(cr), J. Atmos. Sci., 65, 2437 – 2447. | en_US |
dc.identifier.citedreference | Chamberlain, T. E., H. L. Cole, R. G. Dutton, G. C. Greene, and J. E. Tillman ( 1976 ), Atmospheric measurements on Mars: The Viking meteorology experiment, Bull. Am. Meteor. Soc., 57, 1094 – 1104. | en_US |
dc.identifier.citedreference | Chassefière, E., J. E. Blamont, V. A. Krasnopolsky, O. I. Korablev, S. K. Atreya, and R. A. West ( 1992 ), Vertical structure and size distributions of Martian aerosols from solar occultation measurements, Icarus, 97, 46 – 69. | en_US |
dc.identifier.citedreference | Chassefière, E., P. Drossart, and O. Korablev ( 1995 ), Post‐Phobos model for the altitude and size distribution of dust in the low Martian atmosphere, J. Geophys. Res., 100, 5525 – 5539. | en_US |
dc.identifier.citedreference | Cheng, Y., and V. Canuto ( 1994 ), Stably stratified shear turbulence: A new model for the energy dissipation length scale, J. Atmos. Sci., 51, 2384 – 2396. | en_US |
dc.identifier.citedreference | Cheng, Y., V. M. Canuto, and A. Howard ( 2002 ), An improved model for the turbulent PBL, J. Atmos. Sci., 59, 1550 – 1565. | en_US |
dc.identifier.citedreference | Cheng, Y., V. Canuto, and A. Howard ( 2005 ), Nonlocal convective PBL model based on new third‐ and fourth‐order moments, J. Atmos. Sci., 62, 2189 – 2204. | en_US |
dc.identifier.citedreference | Chicarro, A. F., et al. ( 1993 ), Marsnet phase–A study report, Eur. Space Agency Sci. Tech. Rep., ESA STR (93)2, 120 pp. | en_US |
dc.identifier.citedreference | Christensen, P. R., et al. ( 2001 ), Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results, J. Geophys. Res., 106, 23,823 – 23,872. | en_US |
dc.identifier.citedreference | Christensen, P. R., et al. ( 2003 ), Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers, J. Geophys. Res., 108 ( E12 ), 8064, doi: 10.1029/2003JE002117. | en_US |
dc.identifier.citedreference | Clancy, R. T., B. J. Sandor, M. J. Wolff, P. R. Christensen, M. D. Smith, J. C. Pearl, B. J. Conrath, and R. J. Wilson ( 2000 ), An intercomparison of ground‐based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere, J. Geophys. Res., 105, 9553 – 9572. | en_US |
dc.identifier.citedreference | Clancy, R. T., M. J. Wolff, and P. R. Christensen ( 2003 ), Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude, J. Geophys. Res., 108 ( E9 ), 5098, doi: 10.1029/2003JE002058. | en_US |
dc.identifier.citedreference | Conrath, B. J. ( 1975 ), Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971, Icarus, 24, 36 – 46. | en_US |
dc.identifier.citedreference | Conrath, B. J., J. C. Pearl, M. D. Smith, W. C. Maguire, S. Dason, and M. S. Kaelberer ( 2000 ), Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: Atmospheric temperatures during aerobraking and science phasing, J. Geophys. Res., 105, 9509 – 9519. | en_US |
dc.identifier.citedreference | Cot, C. ( 2001 ), Equatorial mesoscale wind and temperature fluctuations in the lower atmosphere, J. Geophys. Res., 106, 1523 – 1532. | en_US |
dc.identifier.citedreference | Crozier, W. D. ( 1964 ), The electric field of a New Mexico dust devil, J. Geophys. Res., 69, 5427 – 5429. | en_US |
dc.identifier.citedreference | Cuxart, J., P. Bougeault, and J.‐L. Redelsperger ( 2000 ), A turbulence scheme allowing for meso‐scale and large‐eddy simulations, Q. J. R. Meteorol. Soc., 126, 1 – 30. | en_US |
dc.identifier.citedreference | Davy, R., P. A. Taylor, W. Weng, and P. Li ( 2009 ), A model of dust in the Martian lower atmosphere, J. Geophys. Res., 114, D04108, doi: 10.1029/2008JD010481. | en_US |
dc.identifier.citedreference | Davy, R., J. A. Davis, P. A. Taylor, C. F. Lange, W. Weng, J. Whiteway, and H. P. Gunnlaugson ( 2010 ), Initial analysis of air temperature and related data from the Phoenix MET station and their use in estimating turbulent heat fluxes, J. Geophys. Res., 115, E00E13, doi: 10.1029/2009JE003444. | en_US |
dc.identifier.citedreference | Deardorff, J. ( 1972 ), Theoretical expression for the countergradient vertical heat flux, J. Geophys. Res., 77, 5900 – 5904. | en_US |
dc.identifier.citedreference | Deardorff, J. ( 1976 ), Clear and cloud‐capped mixed layers–Their numerical simulation, structure and growth and parameterization, in Seminars on the Treatment of the Boundary Layer in Numerical Weather Prediction, pp. 234 – 284, Eur. Cent. for Medium Range Weather Forecasts, Reading, U. K. | en_US |
dc.identifier.citedreference | Deleersnijder, E., and H. Burchard ( 2003 ), Reply to Mellor's comments on “Stability of algebraic non‐equilibrium second‐order closure models” (Ocean Modelling 3 (2001) 33–50), Ocean Modell., 5, 291 – 293. | en_US |
dc.identifier.citedreference | Deleersnijder, E., and P. Luyten ( 1994 ), On the practical advantages of the quasi‐equilibrium version of the Mellor and Yamada level 2.5 turbulence closure applied to marine modeling, Appl. Math. Modell., 18, 281 – 287. | en_US |
dc.identifier.citedreference | Deleersnijder, E., E. Hanert, H. Burchard, and H. Dijkstra ( 2008 ), On the mathematical stability of stratified flow models with local turbulence closure schemes, Ocean Dyn., 58, 237 – 246. | en_US |
dc.identifier.citedreference | Dellar, P., and R. Salmon ( 2005 ), Shallow water equations with a complete Coriolis force and topography, Phys. Fluids, 17, 106601, doi: 10.1063/1.2116747. | en_US |
dc.identifier.citedreference | Delory, G. T., W. M. Farrell, S. K. Atreya, N. O. Renno, A.‐S. Wong, S. A. Cummer, D. D. Sentman, J. R. Marshall, S. C. R. Rafkin, and D. C. Catling ( 2006 ), Oxidant enhancement in Martian dust devils and storms: Storm electric fields and electron dissociative attachment, Astrobiology, 6 ( 3 ), 451 – 462. | en_US |
dc.identifier.citedreference | Dewan, E. M. ( 1979 ), Stratospheric wave spectra resembling turbulence, Science, 204, 832 – 835. | en_US |
dc.identifier.citedreference | Dewan, E. M., and R. E. Good ( 1986 ), Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere, J. Geophys. Res., 91, 2742 – 2748. | en_US |
dc.identifier.citedreference | Douté, S., B. Schmitt, Y. Langevin, J.‐P. Bibring, F. Altieri, G. Bellucci, B. Gondet, F. Poulet, and the MEX OMEGA Team ( 2007 ), South Pole of Mars: Nature and composition of the icy terrains from Mars Express OMEGA observations, Planet. Space Sci., 55, 113 – 133. | en_US |
dc.identifier.citedreference | Drake, N. B., L. K. Tamppari, R. D. Baker, B. A. Cantor, and A. S. Hale ( 2006 ), Dust devil tracks and wind streaks in the North Polar region of Mars: A study of the 2007 Phoenix Mars lander sites, Geophys. Res. Lett., 33, L19S02, doi: 10.1029/2006GL026270. | en_US |
dc.identifier.citedreference | Ellehoj, M. D., et al. ( 2010 ), Convective vortices and dust devils at the Phoenix Mars mission landing site, J. Geophys. Res., 115, E00E16, doi: 10.1029/2009JE003413. | en_US |
dc.identifier.citedreference | Emanuel, K. A. ( 1994 ), Atmospheric Convection, Oxford Univ. Press, Oxford, U. K. | en_US |
dc.identifier.citedreference | Encrenaz, T. ( 2004 ), Minor species in the Martian atmosphere from ground‐based and PFS Mars Express spectroscopy, paper presented at Semaine de l'Astrophysique Francaise, Soc. Fr. d'Astronomie and d'Astrophysique Paris, 14–18 June. | en_US |
dc.identifier.citedreference | Farrell, W. M., G. T. Delory, and S. K. Atreya ( 2006 ), Martian dust storms as a possible sink of atmospheric methane, Geophys. Res. Lett., 33, L21203, doi: 10.1029/2006GL027210. | en_US |
dc.identifier.citedreference | Fedorova, A. A., O. I. Korablev, J.‐L. Bertaux, A. V. Rodin, F. Montmessin, D. A. Belyaev, and A. Reberac ( 2009 ), Solar infrared occultation observations by SPICAM experiment on Mars Express: Simultaneous measurements of the vertical distributions of H 2 O, CO 2 and aerosols, Icarus, 200, 96 – 117. | en_US |
dc.identifier.citedreference | Fergason, R. L., P. R. Christensen, and H. H. Kieffer ( 2006 ), High‐resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications, J. Geophys. Res., 111, E12004, doi: 10.1029/2006JE002735. | en_US |
dc.identifier.citedreference | Ferrero, E., and N. Colonna ( 2006 ), Nonlocal treatment of the buoyancy‐shear‐driven boundary layer, J. Atmos. Sci., 63, 2653 – 2662. | en_US |
dc.identifier.citedreference | Ferrero, E., and M. Racca ( 2004 ), The role of the nonlocal transport in modeling the shear‐driven atmospheric boundary layer, J. Atmos. Sci., 61, 1434 – 1445. | en_US |
dc.identifier.citedreference | Ferri, F., P. H. Smith, M. Lemmon, and N. O. Rennó ( 2003 ), Dust devils as observed by Mars Pathfinder, J. Geophys. Res., 108 ( E12 ), 5133, doi: 10.1029/2000JE001421. | en_US |
dc.identifier.citedreference | Forget, F., F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S. R. Lewis, and P. L. Read ( 1999 ), Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res., 104, 24,155 – 24,176. | en_US |
dc.identifier.citedreference | Forget, F., et al. ( 2007 ), Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method, J. Geophys. Res., 112, E08S15, doi: 10.1029/2006JE002871. | en_US |
dc.identifier.citedreference | Formisano, V., D. Grassi, N. I. Ignatiev, and L. Zasova ( 2001 ), IRIS mariner 9 data revisited: Water and dust daily cycles, Planet. Space Sci., 49, 1331 – 1346. | en_US |
dc.identifier.citedreference | Fouchet, T., et al. ( 2007 ), Martian water vapor: Mars Express PFS/LW observations, Icarus, 190, 32 – 49. | en_US |
dc.identifier.citedreference | Fritts, D. C., and M. J. Alexander ( 2003 ), Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41 ( 1 ), 1003, doi: 10.1029/2001RG000106. | en_US |
dc.identifier.citedreference | Galperin, B., and S. Sukoriansky ( 2010 ), Geophysical flows with anisotropic turbulence and dispersive waves: Flows with stable stratification, Ocean Dyn., 60, 1319 – 1337. | en_US |
dc.identifier.citedreference | Galperin, B., L. Kantha, S. Hassid, and A. Rosati ( 1988 ), A quasi‐equilibrium turbulent energy model for geophysical flows, J. Atmos. Sci., 45, 55 – 62. | en_US |
dc.identifier.citedreference | Galperin, B., L. Kantha, G. Mellor, and A. Rosati ( 1989 ), Modeling rotating stratified turbulent flows with application to oceanic mixed layers, J. Phys. Oceanogr., 7, 901 – 916. | en_US |
dc.identifier.citedreference | Galperin, B., S. Sukoriansky, and P. Anderson ( 2007 ), On the critical Richardson number in stably stratified turbulence, Atmos. Sci. Let., 8, 65 – 69. | en_US |
dc.identifier.citedreference | Garratt, J. R. ( 1992 ), The Atmospheric Boundary Layer, Cambridge Univ. Press., Cambridge, U. K. | en_US |
dc.identifier.citedreference | Gerkema, T., J. Zimmerman, L. Maas, and H. van Haren ( 2008 ), Geophysical and astrophysical fluid dynamics beyond the traditional approximation, Rev. Geophys., 46, RG2004, doi: 10.1029/2006RG000220. | en_US |
dc.identifier.citedreference | Gierasch, P. J., and R. M. Goody ( 1968 ), A study of the thermal and dynamical structure of the lower Martian atmosphere, Planet Space Sci., 16, 615 – 646. | en_US |
dc.identifier.citedreference | Girimaji, S. ( 2000 ), Pressure‐strain correlation modeling of complex turbulent flows, J. Fluid Mech., 422, 91 – 123. | en_US |
dc.identifier.citedreference | Golombek, M. P., et al. ( 1997 ), Overview of the Mars pathfinder mission and assessment of landing site predictions, Science, 278, 1743 – 1748. | en_US |
dc.identifier.citedreference | Gómez‐Elvira, J., and REMS Team ( 2008 ), Environmental monitoring station for Mars Science Laboratory, LPI Contrib., 1447, Abstract 9052. | en_US |
dc.identifier.citedreference | Grassi, D., M. D. Smith, M. J. Wolff, R. E. Arvidson, V. Formisano, and N. I. Ignatiev ( 2006 ), Simultaneous observations of Martian atmosphere by PFS‐MEx and MiniTES‐MER, paper presented at European Planetary Science Congress, Europlanet, Berlin. | en_US |
dc.identifier.citedreference | Greeley, R., and J. D. Iversen ( 1985 ), Wind as a Geological Process on Earth, Mars, Venus and Titan, Cambridge Univ. Press, New York. | en_US |
dc.identifier.citedreference | Gryanik, V., J. Hartmann, S. Raasch, and M. Schoroter ( 2005 ), A refinement of the Millionschikov quasi‐normality hypothesis for convective boundary layer turbulence, J. Atmos. Sci., 62, 2632 – 2638. | en_US |
dc.identifier.citedreference | Gunnlaugsson, H. P., et al. ( 2008 ), Telltale wind indicator for the Mars Phoenix lander, J. Geophys. Res., 113, E00A04, doi: 10.1029/2007JE003008. [Printed 114( E3 ), 2009.] | en_US |
dc.identifier.citedreference | Haberle, R., H. Houben, R. Hertenstein, and T. Herdtle ( 1993 a), A boundary layer model for Mars: Comparison with Viking lander and entry data, J. Atmos. Sci., 50, 1544 – 1559. | en_US |
dc.identifier.citedreference | Haberle, R. M., J. B. Pollack, J. R. Barnes, R. W. Zurek, C. B. Leovy, J. R. Murphy, J. Schaeffer, and H. Lee ( 1993 b), Mars atmospheric dynamics as simulated by the NASA/Ames general circulation model, J. Geophys. Res., 102, 13,301 – 13,311. | en_US |
dc.identifier.citedreference | Harri, A.‐M., et al. ( 1998 ), Meteorological observations on Martian surface: Met‐packages of Mars‐96 small stations and penetrators, Planet. Space Sci., 46, 779 – 793. | en_US |
dc.identifier.citedreference | Harri, A.‐M., et al. ( 1999 ), Network science landers for Mars, Adv. Space Res., 23, 1915 – 1924. | en_US |
dc.identifier.citedreference | Harri, A.‐M., W. Schmidt, H. Guerrero, L. Vazquez, and the MetNet Team ( 2010 ), Metnet network precursor mission, EPSC Abstracts, 5, EPSC2010‐739. | en_US |
dc.identifier.citedreference | Hassid, S., and B. Galperin ( 1983 ), A turbulent energy model for geophysical flows, Boundary Layer Meteorol., 26, 397 – 412. | en_US |
dc.identifier.citedreference | Hassid, S., and B. Galperin ( 1994 ), Modeling rotating flows with neutral and unstable stratification, J. Geophys. Res., 99, 12,533 – 12,548. | en_US |
dc.identifier.citedreference | Heavens, N. G., M. I. Richardson, and A. D. Toigo ( 2008 ), Two aerodynamic roughness maps derived from Mars Orbiter Laser Altimeter (MOLA) data and their effects on boundary layer properties in a Mars general circulation model (GCM), J. Geophys. Res., 113, E02014, doi: 10.1029/2007JE002991. | en_US |
dc.identifier.citedreference | Nieuwstadt, F. T. M. ( 1984 ), The turbulent structure of the stable nocturnal boundary layer, J. Atmos. Sci., 41, 2202 – 2216. | en_US |
dc.identifier.citedreference | Hébrard, E., P. Coll, B. Marticorena, G. Bergametti, F. Montmessin, and F. Forget ( 2008 ), An aerodynamic roughness map derived from Martian rock abundance data and its effects on aeolian erosion thresholds in a MGCM, LPI Contrib., 1447, Abstract 9057. | en_US |
dc.identifier.citedreference | Hess, S. L., R. M. Henry, J. Kuettner, C. B. Leovy, and J. A. Ryan ( 1972 ), Meteorology experiments: The Viking Mars lander, Icarus, 16, 196 – 204. | en_US |
dc.identifier.citedreference | Hess, S. L., et al. ( 1976 ), Preliminary meteorological results on Mars from the Viking 1 lander, Science, 193, 788 – 791. | en_US |
dc.identifier.citedreference | Hess, S. L., R. M. Henry, C. B. Leovy, J. A. Ryan, and J. E. Tillman ( 1977 ), Meteorological results from the surface of Mars: Viking 1 and 2, J. Geophys. Res., 82, 4559 – 4574. | en_US |
dc.identifier.citedreference | Hinson, D. P., and R. J. Wilson ( 2002 ), Transient eddies in the southern hemisphere of Mars, Geophys. Res. Lett., 29 ( 7 ), 1154, doi: 10.1029/2001GL014103. | en_US |
dc.identifier.citedreference | Hinson, D. P., and R. J. Wilson ( 2004 ), Temperature inversions, thermal tides, and water ice clouds in the Martian tropics, J. Geophys. Res., 109, E01002, doi: 10.1029/2003JE002129. | en_US |
dc.identifier.citedreference | Hinson, D. P., R. A. Simpson, J. D. Twicken, G. L. Tyler, and F. M. Flasar ( 1999 ), Initial results from radio occultation measurements with Mars Global Surveyor, J. Geophys. Res., 104, 26,997 – 27,012. | en_US |
dc.identifier.citedreference | Hinson, D. P., G. L. Tyler, J. L. Hollingsworth, and R. J. Wilson ( 2001 ), Radio occultation measurements of forced atmospheric waves on Mars, J. Geophys. Res., 106, 463 – 1480. | en_US |
dc.identifier.citedreference | Hinson, D. P., R. J. Wilson, M. D. Smith, and B. J. Conrath ( 2003 ), Stationary planetary waves in the atmosphere of Mars during southern winter, J. Geophys. Res., 108 ( E1 ), 5004, doi: 10.1029/2002JE001949. | en_US |
dc.identifier.citedreference | Hinson, D. P., M. D. Smith, and B. J. Conrath ( 2004 ), Comparison of atmospheric temperatures obtained through infrared sounding and radio occulation by Mars Global Surveyor, J. Geophys. Res., 109, E12002, doi: 10.1029/2004JE002344. | en_US |
dc.identifier.citedreference | Hinson, D. P., M. Pätzold, S. Tellmann, B. Häusler, and G. L. Tyler ( 2008 ), The depth of the convective boundary layer on Mars, Icarus, 198, 57 – 66. | en_US |
dc.identifier.citedreference | Holstein‐Rathlou, C., et al. ( 2010 ), Winds at the Phoenix landing site, J. Geophys. Res., 115, E00E18, doi: 10.1029/2009JE003411. | en_US |
dc.identifier.citedreference | Holtslag, A., and B. Boville ( 1993 ), Local versus non‐local boundary layer diffusion in a global climate model, J. Clim., 6, 1825 – 1842. | en_US |
dc.identifier.citedreference | Holtslag, A., and C. Moeng ( 1991 ), Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer, J. Atmos. Sci., 48, 1690 – 1700. | en_US |
dc.identifier.citedreference | Hunt, G. E., A. O. Pickersgill, P. B. James, and N. Evans ( 1981 ), Daily and seasonal Viking observations of Martian bore wave systems, Nature, 293, 630 – 633. | en_US |
dc.identifier.citedreference | Inada, A., et al. ( 2008 ), Dust haze in Valles Marineris observed by HRSC and OMEGA on board Mars Express, J. Geophys. Res., 113, E02004, doi: 10.1029/2007JE002893. | en_US |
dc.identifier.citedreference | Ivanov, A. B., and D. O. Muhleman ( 2001 ), Cloud reflection observations: Results from the Mars Orbiter Laser Altimeter, Icarus, 154, 190 – 206. | en_US |
dc.identifier.citedreference | Jakosky, B. M. ( 1985 ), The seasonal cycle of water on Mars, Space Sci. Rev., 41, 131 – 200. | en_US |
dc.identifier.citedreference | Jakosky, B. M., and C. B. Farmer ( 1982 ), The seasonal and global behavior of water vapor in the Martian atmosphere: Complete results of the viking atmospheric water detector on Mars, J. Geophys. Res., 87, 2999 – 3019. | en_US |
dc.identifier.citedreference | Jakosky, B. M., M. T. Mellon, E. S. Varnes, W. C. Feldman, W. V. Boynton, and R. M. Haberle ( 2005 ), Mars low‐latitude neutron distribution: Possible remnant near‐surface water ice and a mechanism for its recent emplacement, Icarus, 175, 58 – 67. | en_US |
dc.identifier.citedreference | James, P. B., and B. A. Cantor ( 2001 ), Martian north polar cap recession: 2000 Mars Orbiter Camera observations, Icarus, 154, 131 – 144. | en_US |
dc.identifier.citedreference | Joshi, M. M., B. N. Lawrence, and S. R. Lewis ( 1996 ), The effect of spatial variations in unresolved topography on gravity wave drag in the Martian atmosphere, Geophys. Res. Lett., 23, 2927 – 2930. | en_US |
dc.identifier.citedreference | Kanak, K. M., D. K. Lilly, and J. T. Snow ( 2000 ), The formation of vertical Vortices in the convective boundary layer, Q. J. R. Meteorol. Soc., 126, 2789 – 2810. | en_US |
dc.identifier.citedreference | Kantha, L., and S. Carniel ( 2009 ), A note on modeling mixing in stably stratified flows, J. Atmos. Sci., 66, 2501 – 2505. | en_US |
dc.identifier.citedreference | Kantha, L., and C. Clayson ( 1994 ), An improved mixed‐layer model for geophysical applications, J. Geophys. Res., 99, 25,235 – 25,266. | en_US |
dc.identifier.citedreference | Karelsky, K. V., and A. S. Petrosyan ( 1995 ), Numerical simulations of the near surface phenomena on Mars, Adv. Space Res., 11 ( 6 ), 45 – 48. | en_US |
dc.identifier.citedreference | Karelsky, K., A. Petrosyan, and I. Smirnov ( 2007 ), A new model for boundary layer flows interacting with particulates in land surface on complex terrain, Q. J. Hung. Meteorol. Serv., 111 ( 2–3 ), 149 – 159. | en_US |
dc.identifier.citedreference | Kasahara, A. ( 2003 ), The roles of the horizontal component of the Earth's angular velocity in nonhydrostatic linear models, J. Atmos. Sci., 60, 1085 – 1095. | en_US |
dc.identifier.citedreference | Kass, D. M., J. T. Schofield, T. I. Michaels, S. C. R. Rafkin, M. I. Richardson, and A. D. Toigo ( 2003 ), Analysis of atmospheric mesoscale models for entry, descent, and landing, J. Geophys. Res., 108 ( E12 ), 8090, doi: 10.1029/2003JE002065. | en_US |
dc.identifier.citedreference | Kauhanen, J., T. Siili, S. Järvenoja, and H. Savijärvi ( 2008 ), The Mars limited area model and simulations of atmospheric circulations for the Phoenix landing area and season of operation, J. Geophys. Res., 113, E00A14, doi: 10.1029/2007JE003011. | en_US |
dc.identifier.citedreference | Kieffer, H. H., and T. N. Titus ( 2001 ), TES mapping of Mars' north seasonal cap, Icarus, 154, 162 – 180. | en_US |
dc.identifier.citedreference | Kieffer, H. H., S. C. Chase, T. Z. Martin, E. D. Miner, and F. D. Palluconi ( 1976 ), Martian north pole summer temperatures: Dirty water ice, Science, 194, 1341 – 1344. | en_US |
dc.identifier.citedreference | Kieffer, H. H., T. Z. Martin, A. R. Peterfreund, B. M. Jakosky, E. D. Miner, and F. D. Palluconi ( 1977 ), Thermal and albedo mapping of Mars during the Viking primary mission, J. Geophys. Res., 82, 4249 – 4291. | en_US |
dc.identifier.citedreference | Kitamura, Y. ( 2010 ), Modifications to the Mellor‐Yamada‐Nakanishi‐Niino (MYNN) model for the stable stratification case, J. Meteorol. Soc. Jpn., 88, 857 – 864. | en_US |
dc.identifier.citedreference | Kleinböhl, A., et al. ( 2009 ), Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity, J. Geophys. Res., 114, E10006, doi: 10.1029/2009JE003358. | en_US |
dc.identifier.citedreference | Kok, J. F., and N. O. Renno ( 2008 ), Electrostatics in wind‐blown sand, Phys. Rev. Lett., 100, 014501, doi: 10.1103/PhysRevLett.100.014501. | en_US |
dc.identifier.citedreference | Kok, J. F., and N. O. Renno ( 2009 ), Electrification of wind‐blown sand on Mars and its implications for atmospheric chemistry, Geophys. Res. Lett., 36, L05202, doi: 10.1029/2008GL036691. | en_US |
dc.identifier.citedreference | Korablev, O. I. ( 2002 ), Solar occultation measurements of the Martian atmosphere on the Phobos spacecraft: Water vapor profile, aerosol parameters, and other results, Sol. Syst. Res., 36, 12 – 34. | en_US |
dc.identifier.citedreference | Krasnopolsky, V. A., J. P. Maillard, and T. C. Owen ( 2004 ), Detection of methane in the Martian atmosphere: Evidence for life, Geophys. Res. Abstr., 6, 06169. | en_US |
dc.identifier.citedreference | Kurbatskiy, A., and L. Kurbatskaya ( 2006 ), Three‐parameter model of turbulence for the atmospheric boundary layer over an urbanized surface, Izvestiya Atmos. Oceanic Phys., 42, 439 – 455. | en_US |
dc.identifier.citedreference | Kurbatskiy, A., and L. Kurbatskaya ( 2009 ), E − ε − 〈θ 2 〉 turbulence closure model for an atmospheric boundary layer including the urban canopy, Meteorol. Atmos. Phys., 104, 63 – 81. | en_US |
dc.identifier.citedreference | Kursinski, E. R., et al. ( 2004 ), The Mars Atmospheric Constellation Observatory (MACO) concept, in Occultations for Probing Atmosphere and Climate, edited by G. Kirchengast, U. Foelsche, and A. Steiner, pp. 393 – 405, Springer, Berlin. | en_US |
dc.identifier.citedreference | Kursinski, E., J. Lyons, M. Richardson, W. Folkner, A. Otarola, and D. Ward ( 2008 ), The Mars Astrobiology and Climate Observatory (MACO), paper presented at 37th COSPAR Scientific Assembly, Montreal, Que., Canada. | en_US |
dc.identifier.citedreference | Kursinski, E. R., J. Lyons, C. Newman, M. I. Richardson, D. Ward, and A. C. Otarola ( 2009 ), A global observing system for Mars: The dual satellite Mars Astrobiology and Climate Observatory (MACO), Eos Trans. AGU, 90 ( 52 ), Fall Meet. Suppl., Abstract P54B‐11. | en_US |
dc.identifier.citedreference | Kuzmin, R. O., E. V. Zabalueva, I. G. Mitrofanov, M. L. Litvak, A. V. Rodin, W. V. Boynton, and R. S. Saunders ( 2007 ), Seasonal redistribution of water in the surficial Martian regolith: Results from the Mars Odyssey high‐energy neutron detector (HEND), Sol. Syst. Res., 41, 89 – 102. | en_US |
dc.identifier.citedreference | Langevin, Y., F. Poulet, J.‐P. Bibring, B. Schmidtt, S. Douté, and B. Gondet ( 2005 ), Summer evolution of the north polar cap of Mars as observed by OMEGA/Mars Express, Science, 307, 1581 – 1584. | en_US |
dc.identifier.citedreference | Larsen, S. E., H. E. Jørgensen, L. Landberg, and J. E. Tillman ( 2002 ), Aspects of the atmospheric surface layers on Mars and Earth, Boundary Layer Meteorol., 105, 451 – 470. | en_US |
dc.identifier.citedreference | Laubach, J., and K. G. McNaughton ( 1998 ), A spectrum‐independent procedure for correcting eddy fluxes measured with separated sensors, Boundary Layer Meteorol., 89, 445 – 467. | en_US |
dc.identifier.citedreference | Launder, B., G. Reece, and W. Rodi ( 1975 ), Progress in development of a Reynolds‐stress turbulence closure, J. Fluid Mech., 68, 537 – 566. | en_US |
dc.identifier.citedreference | Lefevre, F., and F. Forget ( 2009 ), Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics, Nature, 460, 720 – 723. | en_US |
dc.identifier.citedreference | Lemmon, M., et al. ( 2004 ), Atmospheric imaging results from the Mars Exploration Rovers: Spirit and Opportunity, Science, 306, 1753 – 1756. | en_US |
dc.identifier.citedreference | Leovy, C. B., and Y. Mintz ( 1969 ), Numerical simulation of the atmospheric circulation and climate of Mars, J. Atmos. Sci., 26, 1167 – 1190. | en_US |
dc.identifier.citedreference | Lewellen, W. ( 1977 ), Use of invariant modeling, in Handbook of Turbulence, vol. 1, Fundamentals and Applications, pp. 237 – 280, Plenum, New York. | en_US |
dc.identifier.citedreference | Lilly, D. K. ( 1962 ), On the numerical simulation of buoyant convection, Tellus, 14, 148 – 172. | en_US |
dc.identifier.citedreference | Listowski, C., et al. ( 2011 ), Solar occultation with SPICAM/UV on board Mars Express: Retrieving aerosol and ozone profiles, paper presented at Fourth International Workshop on Mars Atmosphere Modelling and Observations, Cent. Natl. d'Etud. Spat., Paris, 8–11 Feb.. | en_US |
dc.identifier.citedreference | Määttänen, A., and H. Savijärvi ( 2004 ), Sensitivity tests with a 1‐dimensional boundary layer Mars model, Boundary Layer Meteorol., 113, 305 – 320. | en_US |
dc.identifier.citedreference | Määttänen, A., et al. ( 2009 ), A study of the properties of a local dust storm with Mars Express OMEGA and PFS data, Icarus, 201, 504 – 516. | en_US |
dc.identifier.citedreference | Malin, M. C., and K. S. Edgett ( 2001 ), Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission, J. Geophys. Res., 106, 23,429 – 23,570. | en_US |
dc.identifier.citedreference | Malin, M. C., et al. ( 1999 ), Early views of the Martian surface from the Mars Orbiter Camera of Mars Global Surveyor, Science, 279, 1681 – 1685. | en_US |
dc.identifier.citedreference | Martin, P. ( 1985 ), Simulation of the mixed layer at OWS November and Papa with several models, J. Geophys. Res., 90, 903 – 916. | en_US |
dc.identifier.citedreference | Martínez, G., F. Valero, and L. Vázquez ( 2009 ), Characterization of the Martian Convective Boundary Layer, J. Atmos. Sci., 66, 2044 – 2058. | en_US |
dc.identifier.citedreference | McCleese, D. J., et al. ( 2007 ), Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions, J. Geophys. Res., 112, E05S06, doi: 10.1029/2006JE002790. | en_US |
dc.identifier.citedreference | Mellon, M. T., B. M. Jakosky, H. H. Kieffer, and P. R. Christensen ( 2000 ), High‐resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission spectrometer, Icarus, 148, 437 – 455. | en_US |
dc.identifier.citedreference | Mellor, G. ( 1973 ), Analytic prediction of properties of stratified planetary surface layers, J. Atmos. Sci., 30, 1061 – 1069. | en_US |
dc.identifier.citedreference | Mellor, G. ( 1975 ), A comparative study of curved flow and density‐stratified flow, J. Atmos. Sci., 32, 1278 – 128. | en_US |
dc.identifier.citedreference | Mellor, G. ( 2003 ), Comments on “Stability of algebraic non‐equilibrium second‐order closure models” by H. Burchard and E. Deleersnjder [Ocean Modelling 3 (2001) 33–50], Ocean Modell., 5, 193 – 194. | en_US |
dc.identifier.citedreference | Mellor, G., and H. Herring ( 1973 ), Survey of mean turbulent field closure models, AIAA J., 11, 590 – 599. | en_US |
dc.identifier.citedreference | Mellor, G., and T. Yamada ( 1974 ), A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., 31, 1791 – 1806. | en_US |
dc.identifier.citedreference | Mellor, G., and T. Yamada ( 1982 ), Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851 – 875. | en_US |
dc.identifier.citedreference | Melnik, O., and M. Parrot ( 1998 ), Electrostatic discharge in Martian dust storms, J. Geophys. Res., 103, 29,107 – 29,117. | en_US |
dc.identifier.citedreference | Metzger, S. M., J. R. Carr, J. R. Johnson, T. J. Parker, and M. Lemmon ( 1999 ), Dust devil vortices seen by the Mars Pathfinder camera, Geophys. Res. Lett., 26, 2781 – 2784. | en_US |
dc.identifier.citedreference | Michael, W. H. Jr., D. L. Cain, G. Fjeldbo, G. S. Levy, J. G. Davies, M. D. Grossi, I. I. Shapiro, and G. L. Tyler ( 1972 ), Radio science experiments: The Viking Mars orbiter and lander, Icarus, 16, 57 – 73. | en_US |
dc.identifier.citedreference | Michaels, T. I. ( 2006 ), Numerical modeling of Mars dust devils: Albedo track generation, Geophys. Res. Lett., 33, L19S08, doi: 10.1029/2006GL026268. | en_US |
dc.identifier.citedreference | Michaels, T. I., and S. C. R. Rafkin ( 2004 ), Large eddy simulation of atmospheric convection on Mars, Q. J. R. Meteorol. Soc., 130, 1251 – 1274. | en_US |
dc.identifier.citedreference | Michaels, T. I., and S. C. R. Rafkin ( 2008 ), Meteorological predictions for candidate 2007 Phoenix Mars lander sites using the Mars Regional Atmospheric Modeling System (MRAMS), J. Geophys. Res., 113, E00A07, doi: 10.1029/2007JE003013. | en_US |
dc.identifier.citedreference | Mitrofanov, I. G., et al. ( 2003 ), Search for water in Martian soil using global neutron mapping by the Russian HEND instrument onboard the US 2001 Mars Odyssey spacecraft, Sol. Syst. Res., 37, 366 – 377. | en_US |
dc.identifier.citedreference | Moeng, C., and J. Wyngaard ( 1989 ), Evaluation of turbulent transport and dissipation closures in second‐order modeling, J. Atmos. Sci., 46, 2311 – 2330. | en_US |
dc.identifier.citedreference | Moeng, C., J. Dudhia, J. Klemp, and P. Sullivan ( 2007 ), Examining two‐way grid nesting for large eddy simulation of the PBL using the WRF Model, Mon. Weather Rev., 135, 2295 – 2311. | en_US |
dc.identifier.citedreference | Monin, A. S., and A. M. Obukhov ( 1954 ), Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnon sloe atmosfery [Basic laws of turbulent mixing in the atmosphere near the ground], Trudy Geofiz. inst. AN SSSR, 24, 163 – 187. | en_US |
dc.identifier.citedreference | Monin, A., and A. Yaglom ( 1975 ), Statistical Fluid Mechanics, MIT Press, Cambridge, Mass. | en_US |
dc.identifier.citedreference | Moores, J. E., M. T. Lemmon, P. H. Smith, L. Komguem, and J. A. Whiteway ( 2010 ), Atmospheric dynamics at the Phoenix landing site as seen by the Surface Stereo Imager, J. Geophys. Res., 115, E00E08, doi: 10.1029/2009JE003409. | en_US |
dc.identifier.citedreference | Moudden, Y., and J. McConnell ( 2005 ), A new model for multiscale modeling of the Martian atmosphere, GM3, J. Geophys. Res., 110, E04001, doi: 10.1029/2004JE002354. | en_US |
dc.identifier.citedreference | Murphy, J. R., and S. Nelli ( 2002 ), Mars Pathfinder convective vortices: Frequency of occurrence, Geophys. Res. Lett., 29 ( 23 ), 2103, doi: 10.1029/2002GL015214. | en_US |
dc.identifier.citedreference | Nayvelt, L., P. J. Gierasch and K. H. Cook ( 1997 ), Modeling and observations of Martian stationary waves, J. Atmos. Sci., 54, 986 – 1013. | en_US |
dc.identifier.citedreference | Newman, C. E., S. R. Lewis, P. L. Read, and F. Forget ( 2002 a), Modeling the Martian dust cycle: 1. Representations of dust transport processes, J. Geophys. Res., 107 ( E12 ), 5123, doi: 10.1029/2002JE001910. | en_US |
dc.identifier.citedreference | Newman, C. E., S. R. Lewis, P. L. Read, and F. Forget ( 2002 b), Modeling the Martian dust cycle: 2. Multiannual radiatively active dust transport simulations, J. Geophys. Res., 107 ( E12 ), 5124, doi: 10.1029/2002JE001920. | en_US |
dc.identifier.citedreference | Odaka, M. ( 2001 ), A numerical simulation of Martian atmospheric convection with a two‐dimensional anelastic model: A case of dust‐free Mars, Geophys. Res. Lett., 28, 895 – 898. | en_US |
dc.identifier.citedreference | Odaka, M., K. Nakajima, S. Takehiro, M. Ishiwatari, and Y. Hayashi ( 1998 ), A numerical study of the Martian atmospheric convection with a two‐dimensional anelastic model, Earth Planets Space, 50, 431 – 437. | en_US |
dc.identifier.citedreference | Oyama, V., B. Berdahl, and G. Carle ( 1977 ), Preliminary findings of Viking gas‐exchange experiment and a model for Martian surface chemistry, Nature, 265, 110 – 114. | en_US |
dc.identifier.citedreference | Pallman, A. J. ( 1983 ), The thermal structure of the atmospheric surface layer on Mars as modified by the radiative effect of Aeolian dust, J. Geophys. Res., 88, 5483 – 5493. | en_US |
dc.identifier.citedreference | Pettengill, G. H., and P. G. Ford ( 2000 ), Winter clouds over the north Martian polar cap, Geophys. Res. Lett., 27, 609 – 612. | en_US |
dc.identifier.citedreference | Pollack, J. B., C. B. Leovy, Y. Mintz, and W. Van Kamp ( 1976 ), Winds on Mars during the Viking season: Predictions based on a general circulation model with topography, Geophys. Res. Lett., 3, 479 – 482. | en_US |
dc.identifier.citedreference | Pollack, J. B., D. Colburn, R. Kahn, J. Hunter, W. Van Camp, C. Carlston, and M. Wolf ( 1977 ), Properties of aerosols in the Martian atmosphere, as inferred from Viking lander imaging data, J. Geophys. Res., 82, 4479 – 4496. | en_US |
dc.identifier.citedreference | Pollack, J. B., C. B. Leovy, P. W. Greiman, and Y. Mintz ( 1981 ), A Martian general circulation experiment with large topography, J. Atmos. Sci., 38, 3 – 29. | en_US |
dc.identifier.citedreference | Pope, S. ( 2005 ), Turbulent Flows, Cambridge Univ. Press, Cambridge, U. K. | en_US |
dc.identifier.citedreference | Putzig, N. E., and M. T. Mellon ( 2007 ), Apparent thermal inertia and the surface heterogeneity of Mars, Icarus, 191, 68 – 94. | en_US |
dc.identifier.citedreference | Rafkin, S. C. R. ( 2003 ), The effect of convective adjustment on the global circulation of Mars as simulated by a general circulation model, in Sixth International Conference on Mars, July 20–25, 2003, Pasadena CA [CD‐ROM], LPI Contrib. 1164, Abstract 3059. | en_US |
dc.identifier.citedreference | Rafkin, S. C. R., and T. I. Michaels ( 2003 ), Meteorological predictions for 2003 Mars Exploration Rover high‐priority landing sites, J. Geophys. Res., 108 ( E12 ), 8091, doi: 10.1029/2002JE002027. | en_US |
dc.identifier.citedreference | Rafkin, S. C. R., R. M. Haberle, and T. I. Michaels ( 2001 ), The Mars regional atmospheric modeling system: Model description and selected simulations, Icarus, 151, 228 – 256. | en_US |
dc.identifier.citedreference | Rafkin, S. C. R., T. I. Michaels, and R. M. Haberle ( 2004 ), Meteorological predictions for the Beagle 2 mission to Mars, Geophys. Res. Lett., 31, L01703, doi: 10.1029/2003GL018966. | en_US |
dc.identifier.citedreference | Rannou, P., S. Perrier, J.‐L. Bertaux, F. Montmessin, O. Korablev, and A. Reberac ( 2006 ), Dust and cloud detection at the Mars limb with UV scattered sunlight with SPICAM, J. Geophys. Res., 111, E09S10, doi: 10.1029/2006JE002693. | en_US |
dc.identifier.citedreference | Renno, N. O. ( 2008 ), A general theory for convective plumes and vortices, Tellus, 60A, 688 – 699. | en_US |
dc.identifier.citedreference | Renno, N. O., and J. F. Kok ( 2008 ), Electrical activity and dust lifting on Earth, Mars and beyond, Space Sci. Rev., 137, 419 – 434. | en_US |
dc.identifier.citedreference | Renno, N. O., M. L. Burkett, and M. P. Larkin ( 1998 ), A simple thermodynamical theory for dust devils, J. Atmos. Sci., 55, 3244 – 3252. | en_US |
dc.identifier.citedreference | Renno, N. O., A. A. Nash, J. Lunine, and J. Murphy ( 2000 ), Martian and terrestrial dust devils: Test of a scaling theory using Pathfinder data, J. Geophys. Res., 105, 1859 – 1865. | en_US |
dc.identifier.citedreference | Renno, N. O., A.‐S. Wong, S. K. Atreya, I. de Pater, and M. Roos‐Serote ( 2003 ), Electrical discharges and broadband radio emission by Martian dust devils and dust storms, Geophys. Res. Lett., 30 ( 22 ), 2140, doi: 10.1029/2003GL017879. | en_US |
dc.identifier.citedreference | Renno, N. O., et al. ( 2004 ), MATADOR 2002: A pilot field experiment on convective plumes and dust devils, J. Geophys. Res., 109, E07001, doi: 10.1029/2003JE002219. | en_US |
dc.identifier.citedreference | Renno, N. O., et al. ( 2009 ), Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site, J. Geophys. Res., 114, E00E03, doi: 10.1029/2009JE003362. [Printed 115( E1 ), 2010.] | en_US |
dc.identifier.citedreference | Richardson, M. I., A. D. Toigo, and C. E. Newman ( 2007 ), PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics, J. Geophys. Res., 112, E09001, doi: 10.1029/2006JE002825. | en_US |
dc.identifier.citedreference | Ringrose, T. J., M. C. Towner, and J. C. Zarnecki ( 2003 ), Convective vortices on Mars: A reanalysis of Viking Lander 2 meteorological data, sols 1–60, Icarus, 163, 78 – 87. | en_US |
dc.identifier.citedreference | Rippeth, T. ( 2005 ), Mixing in seasonally stratified shelf seas: A shifting paradigm, Philos. Trans. R. Soc. A, 363, 2837 – 2854. | en_US |
dc.identifier.citedreference | Ristorcelli, J. ( 1997 ), Toward a turbulence constitutive relation for geophysical flows, Theor. Comput. Fluid Dyn., 9, 207 – 221. | en_US |
dc.identifier.citedreference | Rodi, W. ( 1987 ), Examples of calculation methods for flow and mixing in stratified fluids, J. Geophys. Res., 92, 5305 – 5328. | en_US |
dc.identifier.citedreference | Rodin, A. V., O. I. Korablev, and V. I. Moroz ( 1997 ), Vertical distribution of water in the near‐equatorial troposphere of Mars: Water vapor and clouds, Icarus, 125, 212 – 229. | en_US |
dc.identifier.citedreference | Ruf, C., N. O. Renno, J. F. Kok, E. Bandelier, M. J. Sander, S. Gross, L. Skjerve, and B. Cantor ( 2009 ), The emission of non‐thermal microwave radiation by a Martian dust storm, Geophys. Res. Lett., 36, L13202, doi: 10.1029/2009GL038715. | en_US |
dc.identifier.citedreference | Ryan, J., and R. Lucich ( 1983 ), Possible dust devils, vortices on Mars, J. Geophys. Res., 88, 11,005 – 11,011. | en_US |
dc.identifier.citedreference | Savijärvi, H. ( 1991 a), Radiative fluxes on a dustfree Mars, Contrib. Atmos. Phys., 64, 103 – 111. | en_US |
dc.identifier.citedreference | Savijärvi, H. ( 1991 b), A model study of the PBL structure on Mars and the Earth, Contrib. Atmos. Phys., 64, 219 – 229. | en_US |
dc.identifier.citedreference | Savijärvi, H., and J. Kauhanen ( 2008 ), Surface and boundary layer modeling for the Mars Exploration Rover sites, Q. J. R. Meteorol. Soc., 134, 635 – 641. | en_US |
dc.identifier.citedreference | Savijärvi, H., and A. Määttänen ( 2010 ), Boundary layer simulations for the Mars Phoenix lander site, Q. J. R. Meteorol. Soc., 136, 1497 – 1505. | en_US |
dc.identifier.citedreference | Savijärvi, H., and T. Siili ( 1993 ), The Martian slope winds and the nocturnal PBL jet, J. Atmos. Sci., 50, 77 – 88. | en_US |
dc.identifier.citedreference | Savijärvi, H., A. Määttänen, J. Kauhanen, and A.‐M. Harri ( 2004 ), Mars Pathfinder: New data and new model simulations, Q. J. R. Meteorol. Soc., 130, 669 – 683. | en_US |
dc.identifier.citedreference | Schmidt, D. S., R. A. Schmidt, and J. D. Dent ( 1998 ), Electrostatic force on saltating sand, J. Geophys. Res., 103, 8997 – 9001. | en_US |
dc.identifier.citedreference | Schofield, J. T., J. R. Barnes, D. Crisp, R. M. Haberle, S. Larsen, J. A. Magalhaes, J. R. Murphy, A. Seiff, and G. Wilson ( 1997 ), The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) experiment, Science, 278, 1752 – 1758. | en_US |
dc.identifier.citedreference | Segschneider, J., B. Grieger, H. U. Keller, F. Lunkeit, E. Kirk, K. Fraedrich, A. Rodin, and R. Greve ( 2005 ), Response of the intermediate complexity Mars Climate Simulator to different obliquity angles, Planet. Space Sci., 53, 659 – 670. | en_US |
dc.identifier.citedreference | Seiff, A., and D. B. Kirk ( 1977 ), Structure of the atmosphere of Mars in summer at mid‐latitude, J. Geophys. Res., 82, 4364 – 4388. | en_US |
dc.identifier.citedreference | Seiff, A., et al. ( 1997 ), The atmosphere structure and meteorology instrument on the Mars Pathfinder lander, J. Geophys. Res., 102, 4045 – 4056. | en_US |
dc.identifier.citedreference | Simpson, J., W. Crawford, T. Rippeth, A. Campbell, and J. Cheok ( 1996 ), The vertical structure of turbulent dissipation in shelf seas, J. Phys. Oceanogr., 26, 1579 – 1590. | en_US |
dc.identifier.citedreference | Sinclair, P. C. ( 1973 ), The lower structure of dust devils, J. Atmos. Sci., 30, 1599 – 1619. | en_US |
dc.identifier.citedreference | Smith, D. E., et al. ( 2001 ), Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars, J. Geophys. Res., 106, 23,689 – 23,722. | en_US |
dc.identifier.citedreference | Smith, M. D., J. C. Pearl, B. J. Conrath, and P. R. Christensen ( 2001 a), Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution, J. Geophys. Res., 106, 23,929 – 23,945. | en_US |
dc.identifier.citedreference | Smith, M. D., J. C. Pearl, B. J. Conrath, and P. R. Christensen ( 2001 b), One Martian year of atmospheric observations by the Thermal Emission Spectrometer, Geophys. Res. Lett., 28, 4263 – 4266. | en_US |
dc.identifier.citedreference | Smith, M. D., et al. ( 2004 ), First atmospheric science results from the Mars Exploration Rovers Mini‐TES, Science, 306, 1750 – 1753. | en_US |
dc.identifier.citedreference | Smith, M. D., M. J. Wolff, N. Spanovich, A. Ghosh, D. Banfield, P. R. Christensen, G. A. Landis, and S. W. Squyres ( 2006 ), One Martian year of atmospheric observations using MER Mini‐TES, J. Geophys. Res., 111, E12S13, doi: 10.1029/2006JE002770. | en_US |
dc.identifier.citedreference | Smith, P., et al. ( 1997 ), The Imager for Mars Pathfinder experiment, J. Geophys. Res., 102, 4003 – 4025. | en_US |
dc.identifier.citedreference | Sorbjan, Z. ( 2007 ), Statistics of shallow convection on Mars based on large‐eddy simulations. Part 1: Shearless conditions, Boundary Layer Meteorol., 123, 121 – 142. | en_US |
dc.identifier.citedreference | Souza, E. P., N. Renno, and M. A. F. S. Dias ( 2000 ), Convective circulations induced by surface heterogeneities, J. Atmos. Sci., 57, 2915 – 2922. | en_US |
dc.identifier.citedreference | Spiga, A. ( 2011 ), Elements of comparison between Martian and terrestrial mesoscale meteorological phenomena: Katabatic winds and boundary layer convection, Planet. Space Sci., in press. | en_US |
dc.identifier.citedreference | Spiga, A., and F. Forget ( 2009 ), A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first results, J. Geophys. Res., 114, E02009, doi: 10.1029/2008JE003242. | en_US |
dc.identifier.citedreference | Spiga, A., et al. ( 2007 ), Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 2. Meteorological maps, J. Geophys. Res., 112, E08S16, doi: 10.1029/2006JE002870. | en_US |
dc.identifier.citedreference | Spiga, A., F. Forget, S. R. Lewis, and D. P. Hinson ( 2010 ), Structure and dynamics of the convective boundary layer on Mars as inferred from large‐eddy simulations and remote‐sensing measurements, Q. J. R. Meteorol. Soc., 136, 414 – 428. | en_US |
dc.identifier.citedreference | Squyres, S., et al. ( 2003 ), Athena Mars rover science investigation, J. Geophys. Res., 108 ( E12 ), 8062, doi: 10.1029/2003JE002121. | en_US |
dc.identifier.citedreference | Sreenivasan, K. ( 1995 ), On the universality of the kolmogorov constant, Phys. Fluids, 7, 2778 – 2784. | en_US |
dc.identifier.citedreference | Stow, C. D. ( 1969 ), Dust and storm electrification, Weather, 24, 134 – 137. | en_US |
dc.identifier.citedreference | Stull, R. B. ( 1976 ), Internal gravity waves generated by penetrative convection, J. Atmos. Sci., 33, 1279 – 1286. | en_US |
dc.identifier.citedreference | Stull, R. B. ( 1988 ), An Introduction to Boundary Layer Meteorology, Springer, Dordrecht, Netherlands. | en_US |
dc.identifier.citedreference | Sukoriansky, S., and B. Galperin ( 2008 ), Anisotropic turbulence and internal waves in stably stratified flows (QNSE theory), Phys. Scr., T132, 014036. | en_US |
dc.identifier.citedreference | Sukoriansky, S., B. Galperin, and V. Perov ( 2005 a), Application of a new spectral theory of stably stratified turbulence to atmospheric boundary layers over sea ice, Boundary Layer Meteorol., 117, 231 – 257. | en_US |
dc.identifier.citedreference | Sukoriansky, S., B. Galperin, and I. Staroselsky ( 2005 b), A quasinormal scale elimination model of turbulent flows with stable stratification, Phys. Fluids, 17, 085107. | en_US |
dc.identifier.citedreference | Sukoriansky, S., B. Galperin, and V. Perov ( 2006 ), A quasi‐normal scale elimination model of turbulence and its application to stably stratified flows, Nonlinear Proc. Geophys., 13, 9 – 22. | en_US |
dc.identifier.citedreference | Sutton, J. L., C. B. Leovy, and J. E. Tillman ( 1978 ), Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking lander sites, J. Atmos. Sci., 35, 2346 – 2355. | en_US |
dc.identifier.citedreference | Takahashi, Y. O., H. Fujiwara, H. Fukunishi, M. Odaka, Y.‐Y. Hayashi, and S. Watanabe ( 2003 ), Topographically induced north‐south asymmetry of the meridional circulation in the Martian atmosphere, J. Geophys. Res., 108 ( E3 ), 5018, doi: 10.1029/2001JE001638. | en_US |
dc.identifier.citedreference | Takahashi, Y. O., H. Fujiwara, and H. Fukunishi ( 2006 ), Vertical and latitudinal structure of the migrating diurnal tide in the Martian atmosphere: Numerical investigations, J. Geophys. Res., 111, E01003, doi: 10.1029/2005JE002543. | en_US |
dc.identifier.citedreference | Taylor, P. A., D. C. Catling, M. Daly, C. S. Dickinson, H. P. Gunnlaugsson, A.‐M. Harri, and C. F. Lange ( 2008 ), Temperature, pressure, and wind instrumentation in the Phoenix meteorological package, J. Geophys. Res., 113, E00A10, doi: 10.1029/2007JE003015. | en_US |
dc.identifier.citedreference | Taylor, P. A., et al. ( 2010 ), On pressure measurement and seasonal pressure variations during the Phoenix mission, J. Geophys. Res., 115, E00E15, doi: 10.1029/2009JE003422. | en_US |
dc.identifier.citedreference | Tennekes, H., and J. Lumley ( 1972 ), A First Course in Turbulence, MIT Press, Cambridge, Mass. | en_US |
dc.identifier.citedreference | Thomas, P., and P. J. Gierasch ( 1985 ), Dust devils on Mars, Science, 230, 175 – 177. | en_US |
dc.identifier.citedreference | Tillman, J. E., L. Landberg, and S. E. Larsen ( 1994 ), The boundary layer of Mars: Fluxes, stability, turbulent spectra, and growth of the mixed layer, J. Atmos. Sci., 51, 1709 – 1727. | en_US |
dc.identifier.citedreference | Toigo, A. D., and M. I. Richardson ( 2002 ), A mesoscale model for the Martian atmosphere, J. Geophys. Res., 107 ( E7 ), 5049, doi: 10.1029/2000JE001489. | en_US |
dc.identifier.citedreference | Toigo, A. D., and M. I. Richardson ( 2003 ), Meteorology of proposed Mars Exploration Rover landing sites, J. Geophys. Res., 108 ( E12 ), 8092, doi: 10.1029/2003JE002064. | en_US |
dc.identifier.citedreference | Toigo, A. D., M. I. Richardson, S. P. Ewald, and P. J. Gierasch ( 2003 ), Numerical simulation of Martian dust devils, J. Geophys. Res., 108 ( E6 ), 5047, doi: 10.1029/2002JE002002. | en_US |
dc.identifier.citedreference | Tyler, D., J. R. Barnes, and R. M. Haberle ( 2002 ), Simulation of surface meteorology at the Pathfinder and VL1 sites using a Mars mesoscale model, J. Geophys. Res., 107 ( E4 ), 5018, doi: 10.1029/2001JE001618. | en_US |
dc.identifier.citedreference | Tyler, D., J. R. Barnes, and E. D. Skyllingstad ( 2008 ), Mesoscale and large‐eddy simulation model studies of the Martian atmosphere in support of Phoenix, J. Geophys. Res., 113, E00A12, doi: 10.1029/2007JE003012. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.