Show simple item record

Role of variability in determining the vertical wind speeds and structure

dc.contributor.authorYiğit, Erdalen_US
dc.contributor.authorRidley, Aaron J.en_US
dc.date.accessioned2013-01-03T19:39:18Z
dc.date.available2013-01-03T19:39:18Z
dc.date.issued2011-12en_US
dc.identifier.citationYiğit, Erdal ; Ridley, Aaron J. (2011). "Role of variability in determining the vertical wind speeds and structure." Journal of Geophysical Research: Space Physics 116(A12): n/a-n/a. <http://hdl.handle.net/2027.42/94947>en_US
dc.identifier.issn0148-0227en_US
dc.identifier.issn2156-2202en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94947
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherVertical Winden_US
dc.subject.otherJoule Heatingen_US
dc.subject.otherThermosphereen_US
dc.subject.otherVariabilityen_US
dc.titleRole of variability in determining the vertical wind speeds and structureen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCenter for Space Environment Modeling, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94947/1/jgra21412.pdf
dc.identifier.doi10.1029/2011JA016714en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceSpencer, N. W., R. F. Theis, L. E. Wharton, and G. R. Carignan ( 1976 ), Local vertical motions and kinetic temperature from AE‐C as evidence for aurora‐induced gravity waves, Geophys. Res. Lett., 3, 313 – 316.en_US
dc.identifier.citedreferenceSmith, R. W. ( 1998 ), Vertical winds: A tutorial, J. Atmos. Sol. Terr. Phys., 60, 1425 – 1434, doi: 10.1016/S1364?6826(98)00058?3.en_US
dc.identifier.citedreferenceSmith, R. W. ( 2000 ), The global‐scale effect of small‐scale thermospheric disturbances, J. Atmos. Sol. Terr. Phys., 62, 1623 – 1628, doi: 10.1016/S1364?6826(00)00123?1.en_US
dc.identifier.citedreferenceSpencer, N. W., L. E. Wharton, G. R. Carignan, and J. C. Maurer ( 1982 ), Thermosphere zonal winds, vertical motions and temperature as measured from dynamics explorer, Geophys. Res. Lett., 9, 953 – 956.en_US
dc.identifier.citedreferenceSt.‐Maurice, J.‐P., and R. W. Schunk ( 1981 ), Ion‐neutral momentum coupling near discrete high‐latitude ionospheric features, J. Geophys. Res., 86 ( A13 ), 11,299 – 11,321.en_US
dc.identifier.citedreferenceThayer, J. P. ( 1998 ), Height‐resolved Joule heating rates in the high‐latitude E region and the influence of the neutral winds, J. Geophys. Res., 103 ( A1 ), 471 – 487.en_US
dc.identifier.citedreferenceThayer, J. P., and J. Semester ( 2004 ), The convergence of magnetospheric energy flux in the polar atmosphere, J. Atmos. Sol. Terr. Phys., 66, 807 – 824, doi: 10.1016/j.jastp.2004.01.035.en_US
dc.identifier.citedreferenceThayer, J. P., J. F. Vickrey, R. A. Heelis, and J. B. Gary ( 1995 ), Interpretation and modeling of the high‐latitude electromagnetic energy flux, J. Geophys. Res., 100 ( A10 ), 19,715 – 19,728.en_US
dc.identifier.citedreferenceVasyliūnas, V. M., and P. Song ( 2005 ), Meaning of ionospheric Joule heating, J. Geophys. Res., 110, A02301, doi: 10.1029/2004JA010615.en_US
dc.identifier.citedreferenceWardill, P., and F. Jacka ( 1986 ), Vertical motions in the thermosphere over Mawson, Antarctica, J. Atmos. Terr. Phys., 48, 289 – 292, doi: 10.1016/0021?9169(86)90104?2.en_US
dc.identifier.citedreferenceWeimer, D. R. ( 1995 ), Models of high‐latitude electric potentials derived with a least error fit of spherical harmonic coefficients, J. Geophys. Res., 100 ( A10 ), 19,595 – 19,607.en_US
dc.identifier.citedreferenceWeimer, D. ( 1996 ), A flexible, IMF dependent model of high‐latitude electric potentials having “space weather” applications, Geophys. Res. Lett., 23, 2549 – 2552.en_US
dc.identifier.citedreferenceWeimer, D. R. ( 2001 ), An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event, J. Geophys. Res., 106 ( A1 ), 407 – 416.en_US
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ), Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res., 110, A05306, doi: 10.1029/2004JA010884.en_US
dc.identifier.citedreferenceWilson, G. R., D. R. Weimer, J. O. Wise, and F. A. Marcos ( 2006 ), Response of the thermosphere to Joule heating and particle precipitation, J. Geophys. Res., 111, A10314, doi: 10.1029/2005JA011274.en_US
dc.identifier.citedreferenceYiğit, E., and A. S. Medvedev ( 2009 ), Heating and cooling of the thermosphere by internal gravity waves, Geophys. Res. Lett., 36, L14807, doi: 10.1029/2009GL038507.en_US
dc.identifier.citedreferenceYiğit, E., and A. J. Ridley ( 2011 ), Effects of high‐latitude thermosphere heating at various scale sizes simulated by a nonhydrostatic global thermosphere‐ionosphere model, J. Atmos. Sol. Terr. Phys., 73, 592 – 600, doi: 10.1016/j.jastp.2010.12.003.en_US
dc.identifier.citedreferenceYiğit, E., A. D. Aylward, and A. S. Medvedev ( 2008 ), Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study, J. Geophys. Res., 113, D19106, doi: 10.1029/2008JD010135.en_US
dc.identifier.citedreferenceYiğit, E., A. S. Medvedev, A. D. Aylward, P. Hartogh, and M. J. Harris ( 2009 ), Modeling the effects of gravity wave momentum deposition on the general circulation above the turbopause, J. Geophys. Res., 114, D07101, doi: 10.1029/2008JD011132.en_US
dc.identifier.citedreferenceBekerat, H. A., R. W. Schunk, and L. Scherliess ( 2003 ), Evaluation of statistical convection patterns for real‐time ionospheric specifications and forecasts, J. Geophys. Res., 108 ( A12 ), 1413, doi: 10.1029/2003JA009945.en_US
dc.identifier.citedreferenceBekerat, H. A., R. W. Schunk, L. Scherliess, and A. Ridley ( 2005 ), Comparison of satellite ion drift velocities with AMIE derived convection patterns, J. Atmos. Sol. Terr. Phys., 67, 1463 – 1479, doi: 10.1016/j.jastp.2005.08.013.en_US
dc.identifier.citedreferenceBiondi, M. A. ( 1984 ), Measured vertical motion and converging and diverging horizontal flow of the midlatitude thermosphere, Geophys. Res. Lett., 11, 84 – 87.en_US
dc.identifier.citedreferenceBristow, W. ( 2008 ), Statistics of velocity fluctuations observed by SuperDARN under steady interplanetary magnetic field conditions, J. Geophys. Res., 113, A11202, doi: 10.1029/2008JA013203.en_US
dc.identifier.citedreferenceClauer, C. R., and A. J. Ridley ( 1995 ), Ionospheric observations of magnetospheric low‐latitude boundary layer waves on August 4, 1991, J. Geophys. Res., 100 ( A11 ), 21,873 – 21,884.en_US
dc.identifier.citedreferenceCodrescu, M. V., T. J. Fuller‐Rowell, J. C. Foster, J. M. Holt, and S. J. Cariglia ( 2000 ), Electric field variability associated with the Millstone Hill electric field model, J. Geophys. Res., 105 ( A3 ), 5265 – 5273.en_US
dc.identifier.citedreferenceConde, M., and P. L. Dyson ( 1995 ), Thermospheric vertical winds above Mawson, Antarctica, J. Atmos. Terr. Phys., 57, 589 – 596.en_US
dc.identifier.citedreferenceCrickmore, R. I., J. R. Dudeney, and A. S. Rodger ( 1991 ), Vertical thermospheric winds at the equatorward edge of the auroral oval, J. Atmos. Terr. Phys., 53, 485 – 492.en_US
dc.identifier.citedreferenceDeng, Y., and A. J. Ridley ( 2007 ), Possible reasons for underestimating Joule heating in global models: E field variability, spatial resolution, and vertical velocity, J. Geophys. Res., 112, A09308, doi: 10.1029/2006JA012006.en_US
dc.identifier.citedreferenceDeng, Y., A. D. Richmond, A. J. Ridley, and H. Liu ( 2008 ), Assessment of the non‐hydrostatic effect on the upper atmosphere using a general circulation model (GCM), Geophys. Res. Lett., 35, L01104, doi: 10.1029/2007GL032182.en_US
dc.identifier.citedreferenceDickinson, R. E., E. C. Ridley, and R. G. Roble ( 1981 ), A three‐dimensional general circulation model of the thermosphere, J. Geophys. Res., 86 ( A3 ), 1499 – 1512.en_US
dc.identifier.citedreferenceFuller‐Rowell, T. J., and D. S. Evans ( 1987 ), Height‐integrated Pederson and Hall conductivity patterns inferred from TIROS‐NOAA satellite data, J. Geophys. Res., 92 ( A7 ), 7606 – 7618.en_US
dc.identifier.citedreferenceFuller‐Rowell, T. J., and D. Rees ( 1980 ), A three dimensional time‐dependent global model of the thermosphere, J. Atmos. Sci., 37, 2545 – 2567.en_US
dc.identifier.citedreferenceHedin, A. E. ( 1991 ), Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96 ( A2 ), 1159 – 1172.en_US
dc.identifier.citedreferenceHeelis, R. A. ( 1984 ), The effects of interplanetary magnetic field orientation on dayside high‐latitude ionospheric convection, J. Geophys. Res., 89 ( A5 ), 2873 – 2880, doi: 10.1029/JA089iA05p02873.en_US
dc.identifier.citedreferenceHeelis, R. A., and W. R. Coley ( 1988 ), Global and local joule heating effects seen by DE 2, J. Geophys. Res., 93 ( A7 ), 7551 – 7557.en_US
dc.identifier.citedreferenceHernandez, G. ( 1982 ), Vertical motions of the neutral thermosphere at midlatitude, Geophys. Res. Lett., 9, 555 – 557.en_US
dc.identifier.citedreferenceInnis, J. L., and M. Conde ( 2001 ), Thermospheric vertical wind activity maps derived from Dynamics Explorer‐2 WATS observations, Geophys. Res. Lett., 28, 3847 – 3850.en_US
dc.identifier.citedreferenceInnis, J. L., and M. Conde ( 2002 ), High‐latitude thermospheric vertical wind activity from Dynamics Explorer 2 Wind and Temperature Spectrometer observations: Indications of a source region for polar cap gravity waves, J. Geophys. Res., 107 ( A8 ), 1172, doi: 10.1029/2001JA009130.en_US
dc.identifier.citedreferenceInnis, J. L., P. A. Greet, D. J. Murphy, M. G. Conde, and P. L. Dyson ( 1999 ), A large vertical wind in the thermosphere at the auroral oval/polar cap boundary seen simultaneously from Mawson and Davis, Antarctica, J. Atmos. Sol. Terr. Phys., 61, 1047 – 1058, doi: 10.1016/S1364?6826(99)00060?7.en_US
dc.identifier.citedreferenceIshii, M., M. Conde, R. W. Smith, M. Krynicki, E. Sagawa, and S. Watari ( 2001 ), Vertical wind observations with two Fabry‐Perot interferometers at Poker Flat, Alaska, J. Geophys. Res., 106 ( A6 ), 10,537 – 10,551.en_US
dc.identifier.citedreferenceKihn, E. A., and A. J. Ridley ( 2005 ), A statistical analysis of the assimilative mapping of ionospheric electrodynamics auroral specification, J. Geophys. Res., 110, A07305, doi: 10.1029/2003JA010371.en_US
dc.identifier.citedreferenceKilleen, T. L., and R. G. Roble ( 1984 ), An analysis of the high‐latitude thermospheric wind pattern calculated by a thermospheric general circulation model: 1. Momentum forcing, J. Geophys. Res., 89 ( A9 ), 7509 – 7522.en_US
dc.identifier.citedreferenceKilleen, T. L., B. Hays, G. R. Carignan, R. A. Heelis, W. B. Hanson, N. W. Spencer, and L. H. Brace ( 1984 ), Ion‐neutral coupling in the high‐latitude F region: Evaluation of ion heating terms from Dynamics Explorer 2, J. Geophys. Res., 89 ( A9 ), 7495 – 7508.en_US
dc.identifier.citedreferenceKilleen, T. L., F. G. McCormac, A. G. Burns, J. P. Thayer, R. M. Johnson, and R. J. Niciejewski ( 1991 ), On the dynamics and composition of the high‐latitude thermosphere, J. Atmos. Terr. Phys., 53, 797 – 815, doi: 10.1016/0021?9169(91)90095?O.en_US
dc.identifier.citedreferenceKirchengast, G. ( 1997 ), Characteristics of high‐latitude TIDs from different causative mechanisms deduced by theoretical modeling, J. Geophys. Res., 102 ( A3 ), 4597 – 4612.en_US
dc.identifier.citedreferenceKivanç, Ö., and R. A. Heelis ( 1998 ), Spatial distribution of ionospheric plasma and field structures in the high‐latitude F region, J. Geophys. Res., 103 ( A4 ), 6955 – 6968.en_US
dc.identifier.citedreferenceKnipp, D. J., A. D. Richmond, B. Emery, N. U. Crooker, O. de la Beaujardiere, D. Evans, and H. Kroehl ( 1991 ), Ionospheric convection response to changing IMF direction, Geophys. Res. Lett., 18, 721 – 724.en_US
dc.identifier.citedreferenceLanzerotti, L. J., R. M. Konik, A. Wolfe, D. Venkatesan, and C. G. Maclennan ( 1991 ), Cusp latitude magnetic impulse events: 1. Occurrence statistics, J. Geophys. Res., 96 ( A8 ), 14,009 – 14,022.en_US
dc.identifier.citedreferenceMcHarg, M., F. Chun, D. Knipp, G. Lu, B. Emery, and A. Ridley ( 2005 ), High‐latitude Joule heating response to IMF inputs, J. Geophys. Res., 110, A08309, doi: 10.1029/2004JA010949.en_US
dc.identifier.citedreferencePrice, G. D., R. W. Smith, and G. Hernandez ( 1995 ), Simultaneous measurements of large vertical winds in the upper and lower thermosphere, J. Atmos. Terr. Phys., 57, 631 – 643.en_US
dc.identifier.citedreferenceRees, D., R. W. Smith, P. J. Charleton, F. G. McCormac, N. Lloyd, and A. Kesteen ( 1984 ), The generation of vertical thermospheric winds and gravity waves at auroral latitudes—I. Observations of vertical winds, Planet. Space Sci., 32, 667 – 684, doi: 10.1016/0032?0633(84)90092?8.en_US
dc.identifier.citedreferenceRichmond, A. D., and Y. Kamide ( 1988 ), Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Technique, J. Geophys. Res., 93 ( A6 ), 5741 – 5759.en_US
dc.identifier.citedreferenceRichmond, A. D., E. C. Ridley, and R. G. Roble ( 1992 ), A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett., 19, 601 – 604.en_US
dc.identifier.citedreferenceRidley, A. J., and C. R. Clauer ( 1996 ), Characterization of the dynamic variations of the dayside high‐latitude ionospheric convection reversal boundary and relationship to interplanetary magnetic field orientation, J. Geophys. Res., 101 ( A5 ), 10,919 – 10,938.en_US
dc.identifier.citedreferenceRidley, A. J., G. Lu, C. R. Clauer, and V. O. Papitashvili ( 1998 ), A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique, J. Geophys. Res., 103 ( A3 ), 4023 – 4039.en_US
dc.identifier.citedreferenceRidley, A. J., Y. Deng, and G. Tóth ( 2006 ), The global ionosphere–thermosphere model, J. Atmos. Sol. Terr. Phys., 68, 839 – 864, doi: 10.1016/j.jastp.2006.01.008.en_US
dc.identifier.citedreferenceRishbeth, H. ( 1998 ), How the thermospheric circulation effects the ionospheric F2‐layer, J. Atmos. Sol. Terr. Phys., 60, 1385 – 1402, doi: 10.1016/S1364?6826(98)00062?5.en_US
dc.identifier.citedreferenceRoble, R. G., E. C. Ridley, and A. D. Richmond ( 1988 ), A coupled thermosphere/ionosphere general circulation model, Geophys. Res. Lett., 15, 1325 – 1328.en_US
dc.identifier.citedreferenceSakanoi, T., and H. Fukunishi ( 1999 ), Observations of vertical winds in the thermosphere with a Fabry‐Perot Doppler imager at Syowa station, Adv. Space Res., 24, 1439 – 1442.en_US
dc.identifier.citedreferenceSchmidt, H., G. P. Brasseur, M. Charron, E. Manzini, M. A. Giorgetta, T. Diehl, V. I. Fomichev, D. Kinnison, D. Marsh, and S. Walters ( 2006 ), The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11‐year solar cycle and CO 2 doubling, J. Clim., 19, 3903 – 3931.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.