Show simple item record

The microbiome in wound repair and tissue fibrosis

dc.contributor.authorScales, Brittan Sen_US
dc.contributor.authorHuffnagle, Gary Ben_US
dc.date.accessioned2013-01-03T19:39:32Z
dc.date.available2014-03-03T15:09:24Zen_US
dc.date.issued2013-01en_US
dc.identifier.citationScales, Brittan S; Huffnagle, Gary B (2013). "The microbiome in wound repair and tissue fibrosis." The Journal of Pathology 229(2): 323-331. <http://hdl.handle.net/2027.42/95009>en_US
dc.identifier.issn0022-3417en_US
dc.identifier.issn1096-9896en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95009
dc.description.abstractBacterial colonization occurs in all wounds, chronic or acute, and the break in epithelium integrity that defines a wound impairs the forces that shape and constrain the microbiome at that site. This review highlights the interactions between bacterial communities in the wound and the ultimate resolution of the wound or development of fibrotic lesions. Chronic wounds support complex microbial communities comprising a wide variety of bacterial phyla, genera, and species, including some fastidious anaerobic bacteria not identified using culture‐based methods. Thus, the complexity of bacterial communities in wounds has historically been underestimated. There are a number of intriguing possibilities to explain these results that may also provide novel insights into changes and adaptation of bacterial metabolic networks in inflamed and wounded mucosa, including the critical role of biofilm formation. It is well accepted that the heightened state of activation of host cells in a wound that is driven by the microbiota can certainly lead to detrimental effects on wound regeneration, but the microbiota of the wound may also have beneficial effects on wound healing. Studies in experimental systems have clearly demonstrated a beneficial effect for members of the gut microbiota on regulation of systemic inflammation, which could also impact wound healing at sites outside the gastrointestinal tract. The utilization of culture‐independent microbiology to characterize the microbiome of wounds and surrounding mucosa has raised many intriguing questions regarding previously held notions about the cause and effect relationships between bacterial colonization and wound repair and mechanisms involved in this symbiotic relationship.en_US
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherGastrointestinal Tracten_US
dc.subject.otherBacteriaen_US
dc.subject.otherInflammationen_US
dc.subject.otherSkinen_US
dc.titleThe microbiome in wound repair and tissue fibrosisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPathologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23042513en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95009/1/path4118.pdf
dc.identifier.doi10.1002/path.4118en_US
dc.identifier.sourceThe Journal of Pathologyen_US
dc.identifier.citedreferenceLaato M, Niinikoski J, Lundberg C, et al. Inflammatory reaction and blood flow in experimental wounds inoculated with Staphylococcus aureus. Eur Surg Res 1988; 20: 33 – 38.en_US
dc.identifier.citedreferenceRakoff‐Nahoum S, Paglino J, Eslami‐Varzaneh F, et al. Recognition of commensal microflora by toll‐like receptors is required for intestinal homeostasis. Cell 2004; 118: 229 – 241.en_US
dc.identifier.citedreferenceSwanson PA 2nd, Kumar A, Samarin S, et al. Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species‐mediated inactivation of focal adhesion kinase phosphatases. Proc Natl Acad Sci U S A 2011; 108: 8803 – 8808.en_US
dc.identifier.citedreferenceSun J, Hobert ME, Rao AS, et al. Bacterial activation of beta‐catenin signaling in human epithelia. Am J Physiol Gastrointest Liver Physiol 2004; 287: G220 ‐ G227.en_US
dc.identifier.citedreferenceCollier‐Hyams LS, Sloane V, Batten BC, et al. Cutting edge: bacterial modulation of epithelial signaling via changes in neddylation of cullin‐1. J Immunol 2005; 175: 4194 – 4198.en_US
dc.identifier.citedreferenceKumar A, Wu H, Collier‐Hyams LS, et al. The bacterial fermentation product butyrate influences epithelial signaling via reactive oxygen species‐mediated changes in cullin‐1 neddylation. J Immunol 2009; 182: 538 – 546.en_US
dc.identifier.citedreferenceWentworth CC, Jones RM, Kwon YM, et al. Commensal‐epithelial signaling mediated via formyl peptide receptors. Am J Pathol 2010; 177: 2782 – 2790.en_US
dc.identifier.citedreferenceWentworth CC, Alam A, Jones RM, et al. Enteric commensal bacteria induce extracellular signal‐regulated kinase pathway signaling via formyl peptide receptor‐dependent redox modulation of dual specific phosphatase 3. J Biol Chem 2011; 286: 38448 – 38455.en_US
dc.identifier.citedreferenceSatoh H, Guth PH, Grossman MI. Role of bacteria in gastric ulceration produced by indomethacin in the rat: cytoprotective action of antibiotics. Gastroenterology 1983; 84: 483 – 489.en_US
dc.identifier.citedreferenceDalby AB, Frank DN, St Amand AL, et al. Culture‐independent analysis of indomethacin‐induced alterations in the rat gastrointestinal microbiota. Appl Environ Microbiol 2006; 72: 6707 – 6715.en_US
dc.identifier.citedreferenceLau HY, Huffnagle GB, Moore TA. Host and microbiota factors that control Klebsiella pneumoniae mucosal colonization in mice. Microbes Infect 2008; 10: 1283 – 1290.en_US
dc.identifier.citedreferenceLupp C, Robertson ML, Wickham ME, et al. Host‐mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2007; 2: 119 – 129.en_US
dc.identifier.citedreferenceGarrett WS, Gallini CA, Yatsunenko T, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 2010; 8: 292 – 300.en_US
dc.identifier.citedreferenceLooft T, Allen HK. Collateral effects of antibiotics on mammalian gut microbiomes. Gut Microbes 2012; 3: 463 – 467.en_US
dc.identifier.citedreferencePercival SL, Thomas JG, Williams DW. Biofilms and bacterial imbalances in chronic wounds: anti‐Koch. Int Wound J 2010; 7: 169 – 175.en_US
dc.identifier.citedreferenceHan MK, Huang YJ, Lipuma JJ, et al. Significance of the microbiome in obstructive lung disease. Thorax 2012; 67: 456 – 463.en_US
dc.identifier.citedreferenceArck P, Handjiski B, Hagen E, et al. Is there a ‘gut–brain–skin axis’? Exp Dermatol 2010; 19: 401 – 405.en_US
dc.identifier.citedreferenceSekirov I, Russell SL, Antunes LC, et al. Gut microbiota in health and disease. Physiol Rev 2010; 90: 859 – 904.en_US
dc.identifier.citedreferenceNoverr MC, Huffnagle GB. Does the microbiota regulate immune responses outside the gut? Trends Microbiol 2004; 12: 562 – 568.en_US
dc.identifier.citedreferenceO'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006; 7: 688 – 693.en_US
dc.identifier.citedreferenceGrice EA, Segre JA. The skin microbiome. Nature Rev Microbiol 2011; 9: 244 – 253.en_US
dc.identifier.citedreferenceLey RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124: 837 – 848.en_US
dc.identifier.citedreferenceMeneghin A, Hogaboam CM. Infectious disease, the innate immune response, and fibrosis. J Clin Invest 2007; 117: 530 – 538.en_US
dc.identifier.citedreferenceReinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res 2012; 49: 35 – 43.en_US
dc.identifier.citedreferenceWynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008; 214: 199 – 210.en_US
dc.identifier.citedreferencePeterson DA, Frank DN, Pace NR, et al. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 2008; 3: 417 – 427.en_US
dc.identifier.citedreferenceBogaert D, Keijser B, Huse S, et al. Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PLoS One 2011; 6: e17035.en_US
dc.identifier.citedreferenceCharlson ES, Chen J, Custers‐Allen R, et al. Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS One 2010; 5: e15216.en_US
dc.identifier.citedreferenceErb‐Downward J, Thompson D, Han M, et al. Analysis of the lung microbiome in the ‘healthy’ smoker and in COPD. PLoS One 2011; 6: e16384.en_US
dc.identifier.citedreferenceHuang YJ, Kim E, Cox MJ, et al. A persistent and diverse airway microbiota present during chronic obstructive pulmonary disease exacerbations. OMICS 2010; 14: 9 – 59.en_US
dc.identifier.citedreferenceHilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PLoS One 2010; 5: e8578.en_US
dc.identifier.citedreferenceDuerkop BA, Vaishnava S, Hooper LV. Immune responses to the microbiota at the intestinal mucosal surface. Immunity 2009; 31: 368 – 376.en_US
dc.identifier.citedreferencePeters BM, Jabra‐Rizk MA, O'May GA, et al. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev 2012; 25: 193 – 213.en_US
dc.identifier.citedreferenceElias S, Banin E. Multi‐species biofilms: living with friendly neighbors. FEMS Microbiol Rev 2012; 36: 990 – 1004.en_US
dc.identifier.citedreferencePrice LB, Liu CM, Melendez JH, et al. Community analysis of chronic wound bacteria using 16S rRNA gene‐based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS One 2009; 4: e6462.en_US
dc.identifier.citedreferenceDowd SE, Sun Y, Secor PR, et al. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 2008; 8: 43.en_US
dc.identifier.citedreferencePrice LB, Liu CM, Frankel YM, et al. Macroscale spatial variation in chronic wound microbiota: a cross‐sectional study. Wound Repair Regen 2011; 19: 80 – 88.en_US
dc.identifier.citedreferenceGrice EA, Kong HH, Conlan S, et al. Topographical and temporal diversity of the human skin microbiome. Science 2009; 324: 1190 – 1192.en_US
dc.identifier.citedreferenceYoung VB, Schmidt TM. Overview of the gastrointestinal microbiota. In GI Microbiota and Regulation of the Immune System, Huffnagle GB, Noverr MC (eds), Springer Series: Advances in Experimental Medicine and Biology. Springer‐Verlag: Berlin, 2008; 29 – 40.en_US
dc.identifier.citedreferenceAshelford KE, Chuzhanova NA, Fry JC, et al. At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 2005; 71: 7724 – 7736.en_US
dc.identifier.citedreferenceMargulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high‐density picolitre reactors. Nature 2005; 437: 376 – 380.en_US
dc.identifier.citedreferenceRonaghi M. Pyrosequencing sheds light on DNA sequencing. Genome Res 2001; 11: 3 – 11.en_US
dc.identifier.citedreferenceHamady M, Knight R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res 2009; 19: 1141 – 1152.en_US
dc.identifier.citedreferenceHall N. Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol 2007; 210: 1518 – 1525.en_US
dc.identifier.citedreferenceLiu Z, Lozupone C, Hamady M, et al. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 2007; 35: e120.en_US
dc.identifier.citedreferenceLozupone CA, Knight R. Global patterns in bacterial diversity. Proc Natl Acad Sci U S A 2007; 104: 11436 – 11440.en_US
dc.identifier.citedreferenceSogin ML, Morrison HG, Huber JA, et al. Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci U S A 2006; 103: 12115 – 12120.en_US
dc.identifier.citedreferenceAntonopoulos DA, Huse SM, Morrison HG, et al. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 2009; 77: 2367 – 2375.en_US
dc.identifier.citedreferenceSiddiqui AR, Bernstein JM. Chronic wound infection: facts and controversies. Clin Dermatol 2010; 28: 519 – 526.en_US
dc.identifier.citedreferenceBucknall TE. The effect of local infection upon wound healing: an experimental study. Br J Surg 1980; 67: 851 – 855.en_US
dc.identifier.citedreferenceFrank DN, Wysocki A, Specht‐Glick DD, et al. Microbial diversity in chronic open wounds. Wound Repair Regen 2009; 17: 163 – 172.en_US
dc.identifier.citedreferenceHan A, Zenilman JM, Melendez JH, et al. The importance of a multifaceted approach to characterizing the microbial flora of chronic wounds. Wound Repair Regen 2011; 19: 532 – 541.en_US
dc.identifier.citedreferenceBjarnsholt T, Kirketerp‐Moller K, Jensen PO, et al. Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 2008; 16: 2 – 10.en_US
dc.identifier.citedreferenceRickard AH, Colacino KR, Manton KM, et al. Production of cell–cell signalling molecules by bacteria isolated from human chronic wounds. J Appl Microbiol 2010; 108: 1509 – 1522.en_US
dc.identifier.citedreferenceDrenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 2003; 5: 1213 – 1219.en_US
dc.identifier.citedreferenceO'Meara S, Al‐Kurdi D, Ologun Y, et al. Antibiotics and antiseptics for venous leg ulcers. Cochrane Database Syst Rev 2010: CD003557.en_US
dc.identifier.citedreferenceHoffman LR, D'Argenio DA, MacCoss MJ, et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005; 436: 1171 – 1175.en_US
dc.identifier.citedreferenceDavies CE, Wilson MJ, Hill KE, et al. Use of molecular techniques to study microbial diversity in the skin: chronic wounds reevaluated. Wound Repair Regen 2001; 9: 332 – 340.en_US
dc.identifier.citedreferenceGjodsbol K, Skindersoe ME, Christensen JJ, et al. No need for biopsies: comparison of three sample techniques for wound microbiota determination. Int Wound J 2012; 9: 295 – 302.en_US
dc.identifier.citedreferenceGrice EA, Snitkin ES, Yockey LJ, et al. Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response. Proc Natl Acad Sci U S A 2010; 107: 14799 – 14804.en_US
dc.identifier.citedreferenceGardner SE, Frantz RA. Wound bioburden and infection‐related complications in diabetic foot ulcers. Biol Res Nurs 2008; 10: 44 – 53.en_US
dc.identifier.citedreferenceBowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 2001; 14: 244 – 269.en_US
dc.identifier.citedreferenceBowler PG, Davies BJ. The microbiology of infected and noninfected leg ulcers. Int J Dermatol 1999; 38: 573 – 578.en_US
dc.identifier.citedreferenceCitron DM, Goldstein EJ, Merriam CV, et al. Bacteriology of moderate‐to‐severe diabetic foot infections and in vitro activity of antimicrobial agents. J Clin Microbiol 2007; 45: 2819 – 2828.en_US
dc.identifier.citedreferenceSopata M, Luczak J, Ciupinska M. Effect of bacteriological status on pressure ulcer healing in patients with advanced cancer. J Wound Care 2002; 11: 107 – 110.en_US
dc.identifier.citedreferenceSchierle CF, De la Garza M, Mustoe TA, et al. Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair Regen 2009; 17: 354 – 359.en_US
dc.identifier.citedreferencePark S, Rich J, Hanses F, et al. Defects in innate immunity predispose C57BL/6J‐Leprdb/Leprdb mice to infection by Staphylococcus aureus. Infect Immun 2009; 77: 1008 – 1014.en_US
dc.identifier.citedreferenceHassett DJ, Cuppoletti J, Trapnell B, et al. Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev 2002; 54: 1425 – 1443.en_US
dc.identifier.citedreferenceHentzer M, Eberl L, Givskov M. Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms 2005; 2: 37 – 61.en_US
dc.identifier.citedreferenceMahenthiralingam E, Campbell ME, Speert DP. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 1994; 62: 596 – 605.en_US
dc.identifier.citedreferenceBarth AL, Pitt TL. Auxotrophic variants of Pseudomonas aeruginosa are selected from prototrophic wild‐type strains in respiratory infections in patients with cystic fibrosis. J Clin Microbiol 1995; 33: 37 – 40.en_US
dc.identifier.citedreferenceSpencer DH, Kas A, Smith EE, et al. Whole‐genome sequence variation among multiple isolates of Pseudomonas aeruginosa. J Bacteriol 2003; 185: 1316 – 1325.en_US
dc.identifier.citedreferenceSmith EE, Buckley DG, Wu Z, et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 2006; 103: 8487 – 8492.en_US
dc.identifier.citedreferenceOliver JD. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 2010; 34: 415 – 425.en_US
dc.identifier.citedreferenceHarrison F, Browning LE, Vos M, et al. Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biol 2006; 4: 21.en_US
dc.identifier.citedreferenceHarrison F, Paul J, Massey RC, et al. Interspecific competition and siderophore‐mediated cooperation in Pseudomonas aeruginosa. ISME J 2008; 2: 49 – 55.en_US
dc.identifier.citedreferenceRadtke AL, O'Riordan MX. Intracellular innate resistance to bacterial pathogens. Cell Microbiol 2006; 8: 1720 – 1729.en_US
dc.identifier.citedreferenceJohnson EE, Wessling‐Resnick M. Iron metabolism and the innate immune response to infection. Microbes Infect 2012; 14: 207 – 216.en_US
dc.identifier.citedreferenceMashburn LM, Jett AM, Akins DR, et al. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol 2005; 187: 554 – 566.en_US
dc.identifier.citedreferencePalmer KL, Mashburn LM, Singh PK, et al. Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 2005; 187: 5267 – 5277.en_US
dc.identifier.citedreferenceGan BS, Kim J, Reid G, et al. Lactobacillus fermentum RC‐14 inhibits Staphylococcus aureus infection of surgical implants in rats. J Infect Dis 2002; 185: 1369 – 1372.en_US
dc.identifier.citedreferenceLaughton JM, Devillard E, Heinrichs DE, et al. Inhibition of expression of a staphylococcal superantigen‐like protein by a soluble factor from Lactobacillus reuteri. Microbiology 2006; 152: 1155 – 1167.en_US
dc.identifier.citedreferenceGrice EA, Segre JA. Interaction of the microbiome with the innate immune response in chronic wounds. Adv Exp Med Biol 2012; 946: 55 – 68.en_US
dc.identifier.citedreferenceCosma CL, Sherman DR, Ramakrishnan L. The secret lives of the pathogenic mycobacteria. Annu Rev Microbiol 2003; 57: 641 – 676.en_US
dc.identifier.citedreferenceOkada M. The influence of intestinal flora on wound healing in mice. Surg Today 1994; 24: 347 – 355.en_US
dc.identifier.citedreferenceKanno E, Kawakami K, Ritsu M, et al. Wound healing in skin promoted by inoculation with Pseudomonas aeruginosa PAO1: the critical role of tumor necrosis factor‐alpha secreted from infiltrating neutrophils. Wound Repair Regen 2011; 19: 608 – 621.en_US
dc.identifier.citedreferenceLaato M, Niinikoski J, Lehtonen OP, et al. Accelerated tissue repair induced by Micrococcus varians. Surg Gynecol Obstet 1987; 164: 340 – 344.en_US
dc.identifier.citedreferenceLevenson SM, Kan‐Gruber D, Gruber C, et al. Wound healing accelerated by Staphylococcus aureus. Arch Surg 1983; 118: 310 – 320.en_US
dc.identifier.citedreferenceSouza DG, Vieira AT, Soares AC, et al. The essential role of the intestinal microbiota in facilitating acute inflammatory responses. J Immunol 2004; 173: 4137 – 4146.en_US
dc.identifier.citedreferenceNoverr MC, Noggle RM, Toews GB, et al. Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect Immun 2004; 72: 4996 – 5003.en_US
dc.identifier.citedreferenceDignass AU. Mechanisms and modulation of intestinal epithelial repair. Inflamm Bowel Dis 2001; 7: 68 – 77.en_US
dc.identifier.citedreferenceKarrasch T, Jobin C. Wound healing responses at the gastrointestinal epithelium: a close look at novel regulatory factors and investigative approaches. Z Gastroenterol 2009; 47: 1221 – 1229.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.