Show simple item record

Expanding the Number of ‘Druggable’ Targets: Non‐Enzymes and Protein–Protein Interactions

dc.contributor.authorMakley, Leah N.en_US
dc.contributor.authorGestwicki, Jason E.en_US
dc.date.accessioned2013-01-03T19:39:55Z
dc.date.available2014-03-03T15:09:24Zen_US
dc.date.issued2013-01en_US
dc.identifier.citationMakley, Leah N.; Gestwicki, Jason E. (2013). "Expanding the Number of ‘Druggable’ Targets: Non‐Enzymes and Protein–Protein Interactions." Chemical Biology & Drug Design 81(1). <http://hdl.handle.net/2027.42/95062>en_US
dc.identifier.issn1747-0277en_US
dc.identifier.issn1747-0285en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95062
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherProtein–Protein Interactionen_US
dc.subject.otherBiological Screeningen_US
dc.subject.otherVirtual Screeningen_US
dc.subject.otherChemical Biologyen_US
dc.subject.otherDrug Discoveryen_US
dc.titleExpanding the Number of ‘Druggable’ Targets: Non‐Enzymes and Protein–Protein Interactionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Pathology, Biological Chemistry and the Interdisciplinary Program in Medicinal Chemistry, The Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109‐2216, USAen_US
dc.identifier.pmid23253128en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95062/1/cbdd.12066.pdf
dc.identifier.doi10.1111/cbdd.12066en_US
dc.identifier.sourceChemical Biology & Drug Designen_US
dc.identifier.citedreferenceBoldi A.M. ( 2004 ) Libraries from natural product‐like scaffolds. Curr Opin Chem Biol; 8: 281 – 286.en_US
dc.identifier.citedreferenceLam K.S., Lebl M., Krchnak V. ( 1997 ) The “one‐bead‐one‐compound” combinatorial library method. Chem Rev; 97: 411 – 448.en_US
dc.identifier.citedreferenceChen X. et al. ( 2011 ) Expanded polyglutamine‐binding peptoid as a novel therapeutic agent for treatment of Huntington’s disease. Chem Biol; 18: 1113 – 1125.en_US
dc.identifier.citedreferenceZuckermann R.N., Kodadek T. ( 2009 ) Peptoids as potential therapeutics. Curr Opin Mol Ther; 11: 299 – 307.en_US
dc.identifier.citedreferencePande J., Szewczyk M.M., Grover A.K. ( 2010 ) Phage display: concept, innovations, applications and future. Biotechnol Adv; 28: 849 – 858.en_US
dc.identifier.citedreferenceAudie J., Boyd C. ( 2010 ) The synergistic use of computation, chemistry and biology to discover novel peptide‐based drugs: the time is right. Curr Pharm Des; 16: 567 – 582.en_US
dc.identifier.citedreferenceHarrison R.S. et al. ( 2010 ) Downsizing human, bacterial, and viral proteins to short water‐stable alpha helices that maintain biological potency. Proc Natl Acad Sci USA; 107: 11686 – 11691.en_US
dc.identifier.citedreferenceVerdine G.L., Hilinski G.J. ( 2012 ) All‐hydrocarbon stapled peptides as Synthetic Cell‐Accessible Mini‐Proteins. Drug Discov Today; 9: e41 – e47.en_US
dc.identifier.citedreferenceKawamoto S.A. et al. ( 2012 ) Design of triazole‐stapled BCL9 alpha‐helical peptides to target the beta‐catenin/B‐cell CLL/lymphoma 9 (BCL9) protein‐protein interaction. J Med Chem; 55: 1137 – 1146.en_US
dc.identifier.citedreferenceMadden M.M. et al. ( 2011 ) Synthesis of cell‐permeable stapled peptide dual inhibitors of the p53‐Mdm2/Mdmx interactions via photoinduced cycloaddition. Bioorg Med Chem Lett; 21: 1472 – 1475.en_US
dc.identifier.citedreferenceMoellering R.E. et al. ( 2009 ) Direct inhibition of the NOTCH transcription factor complex. Nature; 462: 182 – 188.en_US
dc.identifier.citedreferenceLiu T. et al. ( 2009 ) Synthesis and screening of a cyclic peptide library: discovery of small‐molecule ligands against human prolactin receptor. Bioorg Med Chem; 17: 1026 – 1033.en_US
dc.identifier.citedreferenceLiu T. et al. ( 2011 ) High‐throughput screening of one‐bead‐one‐compound libraries: identification of cyclic peptidyl inhibitors against calcineurin/NFAT interaction. ACS Comb Sci; 13: 537 – 546.en_US
dc.identifier.citedreferenceKleiner R.E., Dumelin C.E., Liu D.R. ( 2011 ) Small‐molecule discovery from DNA‐encoded chemical libraries. Chem Soc Rev; 40: 5707 – 5717.en_US
dc.identifier.citedreferenceMannocci L. et al. ( 2011 ) 20 years of DNA‐encoded chemical libraries. Chem Commun (Camb); 47: 12747 – 12753.en_US
dc.identifier.citedreferenceGartner Z.J., Kanan M.W., Liu D.R. ( 2002 ) Expanding the reaction scope of DNA‐templated synthesis. Angew Chem Int Ed Engl; 41: 1796 – 1800.en_US
dc.identifier.citedreferenceLeach A.R., Hann M.M. ( 2011 ) Molecular complexity and fragment‐based drug discovery: ten years on. Curr Opin Chem Biol; 15: 489 – 496.en_US
dc.identifier.citedreferenceEdfeldt F.N., Folmer R.H., Breeze A.L. ( 2011 ) Fragment screening to predict druggability (ligandability) and lead discovery success. Drug Discov Today; 16: 284 – 287.en_US
dc.identifier.citedreferenceMurray C.W., Rees D.C. ( 2009 ) The rise of fragment‐based drug discovery. Nat Chem; 1: 187 – 192.en_US
dc.identifier.citedreferenceCarr R.A. et al. ( 2005 ) Fragment‐based lead discovery: leads by design. Drug Discov Today; 10: 987 – 992.en_US
dc.identifier.citedreferenceKeseru G.M., Makara G.M. ( 2009 ) The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov; 8: 203 – 212.en_US
dc.identifier.citedreferenceDrewry D.H., Macarron R. ( 2010 ) Enhancements of screening collections to address areas of unmet medical need: an industry perspective. Curr Opin Chem Biol; 14: 289 – 298.en_US
dc.identifier.citedreferenceOverington J.P., Al‐Lazikani B., Hopkins A.L. ( 2006 ) Opinion – how many drug targets are there? Nat Rev Drug Discovery; 5: 993 – 996.en_US
dc.identifier.citedreferenceImming P., Sinning C., Meyer A. ( 2006 ) Opinion – drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discovery; 5: 821 – 834.en_US
dc.identifier.citedreferenceRual J.F. et al. ( 2005 ) Towards a proteome‐scale map of the human protein‐protein interaction network. Nature; 437: 1173 – 1178.en_US
dc.identifier.citedreferenceArkin M.R., Whitty A. ( 2009 ) The road less traveled: modulating signal transduction enzymes by inhibiting their protein‐protein interactions. Curr Opin Chem Biol; 13: 284 – 290.en_US
dc.identifier.citedreferenceSmith M.C., Gestwicki J.E. ( 2012 ) Features of protein‐protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med; 14: e16.en_US
dc.identifier.citedreferenceThompson A.D. et al. ( 2012 ) Fine‐tuning multiprotein complexes using small molecules. ACS Chem Biol; 7: 1311 – 1320.en_US
dc.identifier.citedreferenceWendt M.D. et al. ( 2007 ) Discovery of a novel small molecule binding site of human survivin. Bioorg Med Chem Lett; 17: 3122 – 3129.en_US
dc.identifier.citedreferenceRenaud J.P., Delsuc M.A. ( 2009 ) Biophysical techniques for ligand screening and drug design. Curr Opin Pharmacol; 9: 622 – 628.en_US
dc.identifier.citedreferenceHoldgate G.A. et al. ( 2010 ) Affinity‐based, biophysical methods to detect and analyze ligand binding to recombinant proteins: matching high information content with high throughput. J Struct Biol; 172: 142 – 157.en_US
dc.identifier.citedreferenceDalvit C. et al. ( 2001 ) WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J Biomol NMR; 21: 349 – 359.en_US
dc.identifier.citedreferenceMayer M., Meyer B. ( 1999 ) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed; 38: 1784 – 1788.en_US
dc.identifier.citedreferenceHajduk P.J., Olejniczak E.T., Fesik S.W. ( 1997 ) One‐dimensional relaxation‐ and diffusion‐edited NMR methods for screening compounds that bind to macromolecules. J Am Chem Soc; 119: 12257 – 12261.en_US
dc.identifier.citedreferenceScott D.E. et al. ( 2012 ) Fragment‐based approaches in drug discovery and chemical biology. Biochemistry; 51(25): 4990 – 5003.en_US
dc.identifier.citedreferenceBrough P.A. et al. ( 2009 ) Combining hit identification strategies: fragment‐based and in silico approaches to orally active 2‐aminothieno[2,3‐d]pyrimidine inhibitors of the Hsp90 molecular chaperone. J Med Chem; 52: 4794 – 4809.en_US
dc.identifier.citedreferenceStockman B.J. et al. ( 2009 ) Identification of allosteric PIF‐pocket ligands for PDK1 using NMR‐based fragment screening and 1H‐15N TROSY experiments. Chem Biol Drug Des; 73: 179 – 188.en_US
dc.identifier.citedreferenceJahnke W. et al. ( 2005 ) Strategies for the NMR‐based identification and optimization of allosteric protein kinase inhibitors. ChemBioChem; 6: 1607 – 1610.en_US
dc.identifier.citedreferenceKristiansen M. et al. ( 2004 ) Identification, synthesis, and characterization of new glycogen phosphorylase inhibitors binding to the allosteric AMP site. J Med Chem; 47: 3537 – 3545.en_US
dc.identifier.citedreferenceKrimm I., Lancelin J.M., Praly J.P. ( 2012 ) Binding evaluation of fragment‐based scaffolds for probing allosteric enzymes. J Med Chem; 55: 1287 – 1295.en_US
dc.identifier.citedreferenceJahnke W. et al. ( 2010 ) Allosteric non‐bisphosphonate FPPS inhibitors identified by fragment‐based discovery. Nat Chem Biol; 6: 660 – 666.en_US
dc.identifier.citedreferenceHajduk P.J., Huth J.R., Fesik S.W. ( 2005 ) Druggability indices for protein targets derived from NMR‐based screening data. J Med Chem; 48: 2518 – 2525.en_US
dc.identifier.citedreferenceArkin M.R., Wells J.A. ( 2004 ) Small‐molecule inhibitors of protein‐protein interactions: progressing towards the dream. Nat Rev Drug Discov; 3: 301 – 317.en_US
dc.identifier.citedreferencePagliaro L. et al. ( 2004 ) Emerging classes of protein‐protein interaction inhibitors and new tools for their development. Curr Opin Chem Biol; 8: 442 – 449.en_US
dc.identifier.citedreferenceAltieri D.C. ( 2008 ) Survivin, cancer networks and pathway‐directed drug discovery. Nat Rev Cancer; 8: 61 – 70.en_US
dc.identifier.citedreferenceAltieri D.C. ( 2012 ) Targeting survivin in cancer. Cancer. doi: 10.1016/j.canlet.2012.03.005.en_US
dc.identifier.citedreferenceZaffaroni N., Pennati M., Daidone M.G. ( 2005 ) Survivin as a target for new anticancer interventions. J Cell Mol Med; 9: 360 – 372.en_US
dc.identifier.citedreferenceCarrasco R.A. et al. ( 2011 ) Antisense inhibition of survivin expression as a cancer therapeutic. Mol Cancer Ther; 10: 221 – 232.en_US
dc.identifier.citedreferenceJonker N. et al. ( 2011 ) Recent developments in protein‐ligand affinity mass spectrometry. Anal Bioanal Chem; 399: 2669 – 2681.en_US
dc.identifier.citedreferenceWrenn S.J. et al. ( 2007 ) Synthetic ligands discovered by in vitro selection. J Am Chem Soc; 129: 13137 – 13143.en_US
dc.identifier.citedreferenceClark M.A. ( 2010 ) Selecting chemicals: the emerging utility of DNA‐encoded libraries. Curr Opin Chem Biol; 14: 396 – 403.en_US
dc.identifier.citedreferenceVassilev L.T. et al. ( 2004 ) In vivo activation of the p53 pathway by small‐molecule antagonists of MDM2. Science; 303: 844 – 848.en_US
dc.identifier.citedreferenceKoehler A.N., Shamji A.F., Schreiber S.L. ( 2003 ) Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity‐oriented synthesis. J Am Chem Soc; 125: 8420 – 8421.en_US
dc.identifier.citedreferenceStanton B.Z. et al. ( 2009 ) A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat Chem Biol; 5: 154 – 156.en_US
dc.identifier.citedreferencePeng L.F. et al. ( 2009 ) Syntheses of aminoalcohol‐derived macrocycles leading to a small‐molecule binder to and inhibitor of Sonic Hedgehog. Bioorg Med Chem Lett; 19: 6319 – 6325.en_US
dc.identifier.citedreferenceLandry J.P., Fei Y., Zhu X.D. ( 2011 ) High throughput, label‐free screening small molecule compound libraries for protein‐ligands using combination of small molecule microarrays and a special ellipsometry‐based optical scanner. Int Drug Discov; 8 – 13.en_US
dc.identifier.citedreferenceLandry J.P., Fei Y., Zhu X. ( 2012 ) Simultaneous measurement of 10,000 protein‐ligand affinity constants using microarray‐based kinetic constant assays. Assay Drug Dev Technol; 10: 250 – 259.en_US
dc.identifier.citedreferenceFei Y.Y. et al. ( 2008 ) A novel high‐throughput scanning microscope for label‐free detection of protein and small‐molecule chemical microarrays. Rev Sci Instrum; 79: 013708.en_US
dc.identifier.citedreferenceUlloa‐Aguirre A. et al. ( 2004 ) Pharmacologic rescue of conformationally‐defective proteins: implications for the treatment of human disease. Traffic; 5: 821 – 837.en_US
dc.identifier.citedreferenceKozarich J.W. ( 2009 ) The biochemistry of disease: desperately seeking syzygy. Annu Rev Biochem; 78: 55 – 63.en_US
dc.identifier.citedreferencePey A.L. et al. ( 2008 ) Identification of pharmacological chaperones as potential therapeutic agents to treat phenylketonuria. J Clin Invest; 118: 2858 – 2867.en_US
dc.identifier.citedreferenceSawkar A.R., D’Haeze W., Kelly J.W. ( 2006 ) Therapeutic strategies to ameliorate lysosomal storage disorders – a focus on Gaucher disease. Cell Mol Life Sci; 63: 1179 – 1192.en_US
dc.identifier.citedreferenceYu Z., Sawkar A.R., Kelly J.W. ( 2007 ) Pharmacologic chaperoning as a strategy to treat Gaucher disease. FEBS J; 274: 4944 – 4950.en_US
dc.identifier.citedreferenceTropak M.B. et al. ( 2007 ) High‐throughput screening for human lysosomal beta‐N‐Acetyl hexosaminidase inhibitors acting as pharmacological chaperones. Chem Biol; 14: 153 – 164.en_US
dc.identifier.citedreferenceWang Y. et al. ( 2007 ) Additive effect of multiple pharmacological chaperones on maturation of CFTR processing mutants. Biochem J; 406: 257 – 263.en_US
dc.identifier.citedreferenceWang Y. et al. ( 2007 ) Modulating the folding of P‐glycoprotein and cystic fibrosis transmembrane conductance regulator truncation mutants with pharmacological chaperones. Mol Pharmacol; 71: 751 – 758.en_US
dc.identifier.citedreferenceHammarstrom P. et al. ( 2003 ) Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science; 299: 713 – 716.en_US
dc.identifier.citedreferenceJohnson S.M. et al. ( 2005 ) Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: a focus on the transthyretin amyloidoses. Acc Chem Res; 38: 911 – 921.en_US
dc.identifier.citedreferenceJohnson S.M. et al. ( 2012 ) The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory‐agency‐approved drug. J Mol Biol; 421: 185 – 203.en_US
dc.identifier.citedreferenceStanger K. et al. ( 2012 ) Allosteric peptides bind a caspase zymogen and mediate caspase tetramerization. Nat Chem Biol; 8: 655 – 660.en_US
dc.identifier.citedreferenceKuryatov A. et al. ( 2005 ) Nicotine acts as a pharmacological chaperone to up‐regulate human alpha4beta2 acetylcholine receptors. Mol Pharmacol; 68: 1839 – 1851.en_US
dc.identifier.citedreferenceLester H.A. et al. ( 2009 ) Nicotine is a selective pharmacological chaperone of acetylcholine receptor number and stoichiometry. Implications for drug discovery. AAPS J; 11: 167 – 177.en_US
dc.identifier.citedreferenceHoldgate G.A., Ward W.H. ( 2005 ) Measurements of binding thermodynamics in drug discovery. Drug Discov Today; 10: 1543 – 1550.en_US
dc.identifier.citedreferenceCummings M.D., Farnum M.A., Nelen M.I. ( 2006 ) Universal screening methods and applications of ThermoFluor. J Biomol Screen; 11: 854 – 863.en_US
dc.identifier.citedreferenceNiesen F.H., Berglund H., Vedadi M. ( 2007 ) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc; 2: 2212 – 2221.en_US
dc.identifier.citedreferenceLo M.C. et al. ( 2004 ) Evaluation of fluorescence‐based thermal shift assays for hit identification in drug discovery. Anal Biochem; 332: 153 – 159.en_US
dc.identifier.citedreferenceDeSantis K. et al. ( 2012 ) Use of differential scanning fluorimetry as a high‐throughput assay to identify nuclear receptor ligands. Nucl Recept Signal; 10: e002.en_US
dc.identifier.citedreferenceKoblish H.K. et al. ( 2006 ) Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol Cancer Ther; 5: 160 – 169.en_US
dc.identifier.citedreferenceGrasberger B.L. et al. ( 2005 ) Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem; 48: 909 – 912.en_US
dc.identifier.citedreferenceParks D.J. et al. ( 2005 ) 1,4‐Benzodiazepine‐2,5‐diones as small molecule antagonists of the HDM2‐p53 interaction: discovery and SAR. Bioorg Med Chem Lett; 15: 765 – 770.en_US
dc.identifier.citedreferenceSampson H.M. et al. ( 2011 ) Identification of a NBD1‐binding pharmacological chaperone that corrects the trafficking defect of F508del‐CFTR. Chem Biol; 18: 231 – 242.en_US
dc.identifier.citedreferenceForneris F. et al. ( 2009 ) ThermoFAD, a Thermofluor‐adapted flavin ad hoc detection system for protein folding and ligand binding. FEBS J; 276: 2833 – 2840.en_US
dc.identifier.citedreferenceIsom D.G. et al. ( 2010 ) A miniaturized technique for assessing protein thermodynamics and function using fast determination of quantitative cysteine reactivity. Proteins; 79: 1034 – 1047.en_US
dc.identifier.citedreferenceGhaemmaghami S., Fitzgerald M.C., Oas T.G. ( 2000 ) A quantitative, high‐throughput screen for protein stability. Proc Natl Acad Sci USA; 97: 8296 – 8301.en_US
dc.identifier.citedreferenceTang L. et al. ( 2007 ) H/D exchange‐ and mass spectrometry‐based strategy for the thermodynamic analysis of protein‐ligand binding. Anal Chem; 79: 5869 – 5877.en_US
dc.identifier.citedreferencePowell K.D., Fitzgerald M.C. ( 2004 ) High‐throughput screening assay for the tunable selection of protein ligands. J Comb Chem; 6: 262 – 269.en_US
dc.identifier.citedreferenceHopper E.D. et al. ( 2008 ) Throughput and efficiency of a mass spectrometry‐based screening assay for protein‐ligand binding detection. J Am Soc Mass Spectrom; 19: 1303 – 1311.en_US
dc.identifier.citedreferenceDearmond P.D. et al. ( 2010 ) Discovery of novel cyclophilin A ligands using an H/D exchange‐ and mass spectrometry‐based strategy. J Biomol Screen; 15: 1051 – 1062.en_US
dc.identifier.citedreferencePerot S. et al. ( 2010 ) Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discov Today; 15: 656 – 667.en_US
dc.identifier.citedreferenceHenrich S. et al. ( 2010 ) Computational approaches to identifying and characterizing protein binding sites for ligand design. J Mol Recognit; 23: 209 – 219.en_US
dc.identifier.citedreferenceAn J.H., Totrov M., Abagyan R. ( 2005 ) Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol Cell Proteomics; 4: 752 – 761.en_US
dc.identifier.citedreferenceKozakov D. et al. ( 2011 ) Structural conservation of druggable hot spots in protein‐protein interfaces. Proc Natl Acad Sci USA; 108: 13528 – 13533.en_US
dc.identifier.citedreferenceMattos C., Ringe D. ( 1996 ) Locating and characterizing binding sites on proteins. Nat Biotechnol; 14: 595 – 599.en_US
dc.identifier.citedreferenceLexa K.W., Carlson H.A. ( 2010 ) Full protein flexibility is essential for proper hot‐spot mapping. J Am Chem Soc; 133: 200 – 202.en_US
dc.identifier.citedreferenceCheng A.C. et al. ( 2007 ) Structure‐based maximal affinity model predicts small‐molecule druggability. Nat Biotechnol; 25: 71 – 75.en_US
dc.identifier.citedreferenceHalgren T.A. ( 2009 ) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model; 49: 377 – 389.en_US
dc.identifier.citedreferenceZhong S., MacKerell A.D. Jr ( 2007 ) Binding response: a descriptor for selecting ligand binding site on protein surfaces. J Chem Inf Model; 47: 2303 – 2315.en_US
dc.identifier.citedreferenceNayal M., Honig B. ( 2006 ) On the nature of cavities on protein surfaces: application to the identification of drug‐binding sites. Proteins; 63: 892 – 906.en_US
dc.identifier.citedreferenceDar A.C., Shokat K.M. ( 2011 ) The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu Rev Biochem; 80: 769 – 795.en_US
dc.identifier.citedreferenceChang L. et al. ( 2011 ) Chemical screens against a reconstituted multiprotein complex: myricetin blocks DnaJ regulation of DnaK through an allosteric mechanism. Chem Biol; 18: 210 – 221.en_US
dc.identifier.citedreferenceBauer R.A., Wurst J.M., Tan D.S. ( 2010 ) Expanding the range of ‘druggable’ targets with natural product‐based libraries: an academic perspective. Curr Opin Chem Biol; 14: 308 – 314.en_US
dc.identifier.citedreferenceDandapani S., Marcaurelle L.A. ( 2010 ) Grand challenge commentary: accessing new chemical space for ‘undruggable’ targets. Nat Chem Biol; 6: 861 – 863.en_US
dc.identifier.citedreferenceSperandio O. et al. ( 2010 ) Rationalizing the chemical space of protein‐protein interaction inhibitors. Drug Discov Today; 15: 220 – 229.en_US
dc.identifier.citedreferenceSmith M.C., Gestwicki J.E. ( 2012 ) Features of protein‐protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med; 14: e16.en_US
dc.identifier.citedreferenceSchreiber S.L. ( 2009 ) Organic chemistry: molecular diversity by design. Nature; 457: 153 – 154.en_US
dc.identifier.citedreferenceGalloway W.R., Isidro‐Llobet A., Spring D.R. ( 2010 ) Diversity‐oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat Commun; 1: 80.en_US
dc.identifier.citedreferenceBurke M.D., Schreiber S.L. ( 2004 ) A planning strategy for diversity‐oriented synthesis. Angew Chem Int Ed Engl; 43: 46 – 58.en_US
dc.identifier.citedreferenceIsidro‐Llobet A. et al. ( 2011 ) Diversity‐oriented synthesis of macrocyclic peptidomimetics. Proc Natl Acad Sci USA; 108: 6793 – 6798.en_US
dc.identifier.citedreferenceRenner S. et al. ( 2011 ) Recent trends and observations in the design of high‐quality screening collections. Future Med Chem; 3: 751 – 766.en_US
dc.identifier.citedreferenceClardy J., Walsh C. ( 2004 ) Lessons from natural molecules. Nature; 432: 829 – 837.en_US
dc.identifier.citedreferenceHarvey A.L. ( 2007 ) Natural products as a screening resource. Curr Opin Chem Biol; 11: 480 – 484.en_US
dc.identifier.citedreferenceHarvey A.L. ( 2008 ) Natural products in drug discovery. Drug Discov Today; 13: 894 – 901.en_US
dc.identifier.citedreferenceBottcher T., Pitscheider M., Sieber S.A. ( 2010 ) Natural products and their biological targets: proteomic and metabolomic labeling strategies. Angew Chem Int Ed Engl; 49: 2680 – 2698.en_US
dc.identifier.citedreferenceHopkins A.L., Groom C.R. ( 2002 ) The druggable genome. Nat Rev Drug Discov; 1: 727 – 730.en_US
dc.identifier.citedreferenceZhang L. et al. ( 2007 ) High‐throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc Natl Acad Sci USA; 104: 4606 – 4611.en_US
dc.identifier.citedreferenceHegde N.S. et al. ( 2011 ) The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat Chem; 3: 725 – 731.en_US
dc.identifier.citedreferenceEvans C.G., Chang L., Gestwicki J.E. ( 2010 ) Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem; 53: 4585 – 4602.en_US
dc.identifier.citedreferenceKoehn F.E., Carter G.T. ( 2005 ) The evolving role of natural products in drug discovery. Nat Rev Drug Discov; 4: 206 – 220.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.