Expanding the Number of ‘Druggable’ Targets: Non‐Enzymes and Protein–Protein Interactions
dc.contributor.author | Makley, Leah N. | en_US |
dc.contributor.author | Gestwicki, Jason E. | en_US |
dc.date.accessioned | 2013-01-03T19:39:55Z | |
dc.date.available | 2014-03-03T15:09:24Z | en_US |
dc.date.issued | 2013-01 | en_US |
dc.identifier.citation | Makley, Leah N.; Gestwicki, Jason E. (2013). "Expanding the Number of ‘Druggable’ Targets: Non‐Enzymes and Protein–Protein Interactions." Chemical Biology & Drug Design 81(1). <http://hdl.handle.net/2027.42/95062> | en_US |
dc.identifier.issn | 1747-0277 | en_US |
dc.identifier.issn | 1747-0285 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/95062 | |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Protein–Protein Interaction | en_US |
dc.subject.other | Biological Screening | en_US |
dc.subject.other | Virtual Screening | en_US |
dc.subject.other | Chemical Biology | en_US |
dc.subject.other | Drug Discovery | en_US |
dc.title | Expanding the Number of ‘Druggable’ Targets: Non‐Enzymes and Protein–Protein Interactions | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Pharmacy and Pharmacology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Departments of Pathology, Biological Chemistry and the Interdisciplinary Program in Medicinal Chemistry, The Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109‐2216, USA | en_US |
dc.identifier.pmid | 23253128 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/95062/1/cbdd.12066.pdf | |
dc.identifier.doi | 10.1111/cbdd.12066 | en_US |
dc.identifier.source | Chemical Biology & Drug Design | en_US |
dc.identifier.citedreference | Boldi A.M. ( 2004 ) Libraries from natural product‐like scaffolds. Curr Opin Chem Biol; 8: 281 – 286. | en_US |
dc.identifier.citedreference | Lam K.S., Lebl M., Krchnak V. ( 1997 ) The “one‐bead‐one‐compound” combinatorial library method. Chem Rev; 97: 411 – 448. | en_US |
dc.identifier.citedreference | Chen X. et al. ( 2011 ) Expanded polyglutamine‐binding peptoid as a novel therapeutic agent for treatment of Huntington’s disease. Chem Biol; 18: 1113 – 1125. | en_US |
dc.identifier.citedreference | Zuckermann R.N., Kodadek T. ( 2009 ) Peptoids as potential therapeutics. Curr Opin Mol Ther; 11: 299 – 307. | en_US |
dc.identifier.citedreference | Pande J., Szewczyk M.M., Grover A.K. ( 2010 ) Phage display: concept, innovations, applications and future. Biotechnol Adv; 28: 849 – 858. | en_US |
dc.identifier.citedreference | Audie J., Boyd C. ( 2010 ) The synergistic use of computation, chemistry and biology to discover novel peptide‐based drugs: the time is right. Curr Pharm Des; 16: 567 – 582. | en_US |
dc.identifier.citedreference | Harrison R.S. et al. ( 2010 ) Downsizing human, bacterial, and viral proteins to short water‐stable alpha helices that maintain biological potency. Proc Natl Acad Sci USA; 107: 11686 – 11691. | en_US |
dc.identifier.citedreference | Verdine G.L., Hilinski G.J. ( 2012 ) All‐hydrocarbon stapled peptides as Synthetic Cell‐Accessible Mini‐Proteins. Drug Discov Today; 9: e41 – e47. | en_US |
dc.identifier.citedreference | Kawamoto S.A. et al. ( 2012 ) Design of triazole‐stapled BCL9 alpha‐helical peptides to target the beta‐catenin/B‐cell CLL/lymphoma 9 (BCL9) protein‐protein interaction. J Med Chem; 55: 1137 – 1146. | en_US |
dc.identifier.citedreference | Madden M.M. et al. ( 2011 ) Synthesis of cell‐permeable stapled peptide dual inhibitors of the p53‐Mdm2/Mdmx interactions via photoinduced cycloaddition. Bioorg Med Chem Lett; 21: 1472 – 1475. | en_US |
dc.identifier.citedreference | Moellering R.E. et al. ( 2009 ) Direct inhibition of the NOTCH transcription factor complex. Nature; 462: 182 – 188. | en_US |
dc.identifier.citedreference | Liu T. et al. ( 2009 ) Synthesis and screening of a cyclic peptide library: discovery of small‐molecule ligands against human prolactin receptor. Bioorg Med Chem; 17: 1026 – 1033. | en_US |
dc.identifier.citedreference | Liu T. et al. ( 2011 ) High‐throughput screening of one‐bead‐one‐compound libraries: identification of cyclic peptidyl inhibitors against calcineurin/NFAT interaction. ACS Comb Sci; 13: 537 – 546. | en_US |
dc.identifier.citedreference | Kleiner R.E., Dumelin C.E., Liu D.R. ( 2011 ) Small‐molecule discovery from DNA‐encoded chemical libraries. Chem Soc Rev; 40: 5707 – 5717. | en_US |
dc.identifier.citedreference | Mannocci L. et al. ( 2011 ) 20 years of DNA‐encoded chemical libraries. Chem Commun (Camb); 47: 12747 – 12753. | en_US |
dc.identifier.citedreference | Gartner Z.J., Kanan M.W., Liu D.R. ( 2002 ) Expanding the reaction scope of DNA‐templated synthesis. Angew Chem Int Ed Engl; 41: 1796 – 1800. | en_US |
dc.identifier.citedreference | Leach A.R., Hann M.M. ( 2011 ) Molecular complexity and fragment‐based drug discovery: ten years on. Curr Opin Chem Biol; 15: 489 – 496. | en_US |
dc.identifier.citedreference | Edfeldt F.N., Folmer R.H., Breeze A.L. ( 2011 ) Fragment screening to predict druggability (ligandability) and lead discovery success. Drug Discov Today; 16: 284 – 287. | en_US |
dc.identifier.citedreference | Murray C.W., Rees D.C. ( 2009 ) The rise of fragment‐based drug discovery. Nat Chem; 1: 187 – 192. | en_US |
dc.identifier.citedreference | Carr R.A. et al. ( 2005 ) Fragment‐based lead discovery: leads by design. Drug Discov Today; 10: 987 – 992. | en_US |
dc.identifier.citedreference | Keseru G.M., Makara G.M. ( 2009 ) The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov; 8: 203 – 212. | en_US |
dc.identifier.citedreference | Drewry D.H., Macarron R. ( 2010 ) Enhancements of screening collections to address areas of unmet medical need: an industry perspective. Curr Opin Chem Biol; 14: 289 – 298. | en_US |
dc.identifier.citedreference | Overington J.P., Al‐Lazikani B., Hopkins A.L. ( 2006 ) Opinion – how many drug targets are there? Nat Rev Drug Discovery; 5: 993 – 996. | en_US |
dc.identifier.citedreference | Imming P., Sinning C., Meyer A. ( 2006 ) Opinion – drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discovery; 5: 821 – 834. | en_US |
dc.identifier.citedreference | Rual J.F. et al. ( 2005 ) Towards a proteome‐scale map of the human protein‐protein interaction network. Nature; 437: 1173 – 1178. | en_US |
dc.identifier.citedreference | Arkin M.R., Whitty A. ( 2009 ) The road less traveled: modulating signal transduction enzymes by inhibiting their protein‐protein interactions. Curr Opin Chem Biol; 13: 284 – 290. | en_US |
dc.identifier.citedreference | Smith M.C., Gestwicki J.E. ( 2012 ) Features of protein‐protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med; 14: e16. | en_US |
dc.identifier.citedreference | Thompson A.D. et al. ( 2012 ) Fine‐tuning multiprotein complexes using small molecules. ACS Chem Biol; 7: 1311 – 1320. | en_US |
dc.identifier.citedreference | Wendt M.D. et al. ( 2007 ) Discovery of a novel small molecule binding site of human survivin. Bioorg Med Chem Lett; 17: 3122 – 3129. | en_US |
dc.identifier.citedreference | Renaud J.P., Delsuc M.A. ( 2009 ) Biophysical techniques for ligand screening and drug design. Curr Opin Pharmacol; 9: 622 – 628. | en_US |
dc.identifier.citedreference | Holdgate G.A. et al. ( 2010 ) Affinity‐based, biophysical methods to detect and analyze ligand binding to recombinant proteins: matching high information content with high throughput. J Struct Biol; 172: 142 – 157. | en_US |
dc.identifier.citedreference | Dalvit C. et al. ( 2001 ) WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J Biomol NMR; 21: 349 – 359. | en_US |
dc.identifier.citedreference | Mayer M., Meyer B. ( 1999 ) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed; 38: 1784 – 1788. | en_US |
dc.identifier.citedreference | Hajduk P.J., Olejniczak E.T., Fesik S.W. ( 1997 ) One‐dimensional relaxation‐ and diffusion‐edited NMR methods for screening compounds that bind to macromolecules. J Am Chem Soc; 119: 12257 – 12261. | en_US |
dc.identifier.citedreference | Scott D.E. et al. ( 2012 ) Fragment‐based approaches in drug discovery and chemical biology. Biochemistry; 51(25): 4990 – 5003. | en_US |
dc.identifier.citedreference | Brough P.A. et al. ( 2009 ) Combining hit identification strategies: fragment‐based and in silico approaches to orally active 2‐aminothieno[2,3‐d]pyrimidine inhibitors of the Hsp90 molecular chaperone. J Med Chem; 52: 4794 – 4809. | en_US |
dc.identifier.citedreference | Stockman B.J. et al. ( 2009 ) Identification of allosteric PIF‐pocket ligands for PDK1 using NMR‐based fragment screening and 1H‐15N TROSY experiments. Chem Biol Drug Des; 73: 179 – 188. | en_US |
dc.identifier.citedreference | Jahnke W. et al. ( 2005 ) Strategies for the NMR‐based identification and optimization of allosteric protein kinase inhibitors. ChemBioChem; 6: 1607 – 1610. | en_US |
dc.identifier.citedreference | Kristiansen M. et al. ( 2004 ) Identification, synthesis, and characterization of new glycogen phosphorylase inhibitors binding to the allosteric AMP site. J Med Chem; 47: 3537 – 3545. | en_US |
dc.identifier.citedreference | Krimm I., Lancelin J.M., Praly J.P. ( 2012 ) Binding evaluation of fragment‐based scaffolds for probing allosteric enzymes. J Med Chem; 55: 1287 – 1295. | en_US |
dc.identifier.citedreference | Jahnke W. et al. ( 2010 ) Allosteric non‐bisphosphonate FPPS inhibitors identified by fragment‐based discovery. Nat Chem Biol; 6: 660 – 666. | en_US |
dc.identifier.citedreference | Hajduk P.J., Huth J.R., Fesik S.W. ( 2005 ) Druggability indices for protein targets derived from NMR‐based screening data. J Med Chem; 48: 2518 – 2525. | en_US |
dc.identifier.citedreference | Arkin M.R., Wells J.A. ( 2004 ) Small‐molecule inhibitors of protein‐protein interactions: progressing towards the dream. Nat Rev Drug Discov; 3: 301 – 317. | en_US |
dc.identifier.citedreference | Pagliaro L. et al. ( 2004 ) Emerging classes of protein‐protein interaction inhibitors and new tools for their development. Curr Opin Chem Biol; 8: 442 – 449. | en_US |
dc.identifier.citedreference | Altieri D.C. ( 2008 ) Survivin, cancer networks and pathway‐directed drug discovery. Nat Rev Cancer; 8: 61 – 70. | en_US |
dc.identifier.citedreference | Altieri D.C. ( 2012 ) Targeting survivin in cancer. Cancer. doi: 10.1016/j.canlet.2012.03.005. | en_US |
dc.identifier.citedreference | Zaffaroni N., Pennati M., Daidone M.G. ( 2005 ) Survivin as a target for new anticancer interventions. J Cell Mol Med; 9: 360 – 372. | en_US |
dc.identifier.citedreference | Carrasco R.A. et al. ( 2011 ) Antisense inhibition of survivin expression as a cancer therapeutic. Mol Cancer Ther; 10: 221 – 232. | en_US |
dc.identifier.citedreference | Jonker N. et al. ( 2011 ) Recent developments in protein‐ligand affinity mass spectrometry. Anal Bioanal Chem; 399: 2669 – 2681. | en_US |
dc.identifier.citedreference | Wrenn S.J. et al. ( 2007 ) Synthetic ligands discovered by in vitro selection. J Am Chem Soc; 129: 13137 – 13143. | en_US |
dc.identifier.citedreference | Clark M.A. ( 2010 ) Selecting chemicals: the emerging utility of DNA‐encoded libraries. Curr Opin Chem Biol; 14: 396 – 403. | en_US |
dc.identifier.citedreference | Vassilev L.T. et al. ( 2004 ) In vivo activation of the p53 pathway by small‐molecule antagonists of MDM2. Science; 303: 844 – 848. | en_US |
dc.identifier.citedreference | Koehler A.N., Shamji A.F., Schreiber S.L. ( 2003 ) Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity‐oriented synthesis. J Am Chem Soc; 125: 8420 – 8421. | en_US |
dc.identifier.citedreference | Stanton B.Z. et al. ( 2009 ) A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat Chem Biol; 5: 154 – 156. | en_US |
dc.identifier.citedreference | Peng L.F. et al. ( 2009 ) Syntheses of aminoalcohol‐derived macrocycles leading to a small‐molecule binder to and inhibitor of Sonic Hedgehog. Bioorg Med Chem Lett; 19: 6319 – 6325. | en_US |
dc.identifier.citedreference | Landry J.P., Fei Y., Zhu X.D. ( 2011 ) High throughput, label‐free screening small molecule compound libraries for protein‐ligands using combination of small molecule microarrays and a special ellipsometry‐based optical scanner. Int Drug Discov; 8 – 13. | en_US |
dc.identifier.citedreference | Landry J.P., Fei Y., Zhu X. ( 2012 ) Simultaneous measurement of 10,000 protein‐ligand affinity constants using microarray‐based kinetic constant assays. Assay Drug Dev Technol; 10: 250 – 259. | en_US |
dc.identifier.citedreference | Fei Y.Y. et al. ( 2008 ) A novel high‐throughput scanning microscope for label‐free detection of protein and small‐molecule chemical microarrays. Rev Sci Instrum; 79: 013708. | en_US |
dc.identifier.citedreference | Ulloa‐Aguirre A. et al. ( 2004 ) Pharmacologic rescue of conformationally‐defective proteins: implications for the treatment of human disease. Traffic; 5: 821 – 837. | en_US |
dc.identifier.citedreference | Kozarich J.W. ( 2009 ) The biochemistry of disease: desperately seeking syzygy. Annu Rev Biochem; 78: 55 – 63. | en_US |
dc.identifier.citedreference | Pey A.L. et al. ( 2008 ) Identification of pharmacological chaperones as potential therapeutic agents to treat phenylketonuria. J Clin Invest; 118: 2858 – 2867. | en_US |
dc.identifier.citedreference | Sawkar A.R., D’Haeze W., Kelly J.W. ( 2006 ) Therapeutic strategies to ameliorate lysosomal storage disorders – a focus on Gaucher disease. Cell Mol Life Sci; 63: 1179 – 1192. | en_US |
dc.identifier.citedreference | Yu Z., Sawkar A.R., Kelly J.W. ( 2007 ) Pharmacologic chaperoning as a strategy to treat Gaucher disease. FEBS J; 274: 4944 – 4950. | en_US |
dc.identifier.citedreference | Tropak M.B. et al. ( 2007 ) High‐throughput screening for human lysosomal beta‐N‐Acetyl hexosaminidase inhibitors acting as pharmacological chaperones. Chem Biol; 14: 153 – 164. | en_US |
dc.identifier.citedreference | Wang Y. et al. ( 2007 ) Additive effect of multiple pharmacological chaperones on maturation of CFTR processing mutants. Biochem J; 406: 257 – 263. | en_US |
dc.identifier.citedreference | Wang Y. et al. ( 2007 ) Modulating the folding of P‐glycoprotein and cystic fibrosis transmembrane conductance regulator truncation mutants with pharmacological chaperones. Mol Pharmacol; 71: 751 – 758. | en_US |
dc.identifier.citedreference | Hammarstrom P. et al. ( 2003 ) Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science; 299: 713 – 716. | en_US |
dc.identifier.citedreference | Johnson S.M. et al. ( 2005 ) Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: a focus on the transthyretin amyloidoses. Acc Chem Res; 38: 911 – 921. | en_US |
dc.identifier.citedreference | Johnson S.M. et al. ( 2012 ) The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory‐agency‐approved drug. J Mol Biol; 421: 185 – 203. | en_US |
dc.identifier.citedreference | Stanger K. et al. ( 2012 ) Allosteric peptides bind a caspase zymogen and mediate caspase tetramerization. Nat Chem Biol; 8: 655 – 660. | en_US |
dc.identifier.citedreference | Kuryatov A. et al. ( 2005 ) Nicotine acts as a pharmacological chaperone to up‐regulate human alpha4beta2 acetylcholine receptors. Mol Pharmacol; 68: 1839 – 1851. | en_US |
dc.identifier.citedreference | Lester H.A. et al. ( 2009 ) Nicotine is a selective pharmacological chaperone of acetylcholine receptor number and stoichiometry. Implications for drug discovery. AAPS J; 11: 167 – 177. | en_US |
dc.identifier.citedreference | Holdgate G.A., Ward W.H. ( 2005 ) Measurements of binding thermodynamics in drug discovery. Drug Discov Today; 10: 1543 – 1550. | en_US |
dc.identifier.citedreference | Cummings M.D., Farnum M.A., Nelen M.I. ( 2006 ) Universal screening methods and applications of ThermoFluor. J Biomol Screen; 11: 854 – 863. | en_US |
dc.identifier.citedreference | Niesen F.H., Berglund H., Vedadi M. ( 2007 ) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc; 2: 2212 – 2221. | en_US |
dc.identifier.citedreference | Lo M.C. et al. ( 2004 ) Evaluation of fluorescence‐based thermal shift assays for hit identification in drug discovery. Anal Biochem; 332: 153 – 159. | en_US |
dc.identifier.citedreference | DeSantis K. et al. ( 2012 ) Use of differential scanning fluorimetry as a high‐throughput assay to identify nuclear receptor ligands. Nucl Recept Signal; 10: e002. | en_US |
dc.identifier.citedreference | Koblish H.K. et al. ( 2006 ) Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol Cancer Ther; 5: 160 – 169. | en_US |
dc.identifier.citedreference | Grasberger B.L. et al. ( 2005 ) Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem; 48: 909 – 912. | en_US |
dc.identifier.citedreference | Parks D.J. et al. ( 2005 ) 1,4‐Benzodiazepine‐2,5‐diones as small molecule antagonists of the HDM2‐p53 interaction: discovery and SAR. Bioorg Med Chem Lett; 15: 765 – 770. | en_US |
dc.identifier.citedreference | Sampson H.M. et al. ( 2011 ) Identification of a NBD1‐binding pharmacological chaperone that corrects the trafficking defect of F508del‐CFTR. Chem Biol; 18: 231 – 242. | en_US |
dc.identifier.citedreference | Forneris F. et al. ( 2009 ) ThermoFAD, a Thermofluor‐adapted flavin ad hoc detection system for protein folding and ligand binding. FEBS J; 276: 2833 – 2840. | en_US |
dc.identifier.citedreference | Isom D.G. et al. ( 2010 ) A miniaturized technique for assessing protein thermodynamics and function using fast determination of quantitative cysteine reactivity. Proteins; 79: 1034 – 1047. | en_US |
dc.identifier.citedreference | Ghaemmaghami S., Fitzgerald M.C., Oas T.G. ( 2000 ) A quantitative, high‐throughput screen for protein stability. Proc Natl Acad Sci USA; 97: 8296 – 8301. | en_US |
dc.identifier.citedreference | Tang L. et al. ( 2007 ) H/D exchange‐ and mass spectrometry‐based strategy for the thermodynamic analysis of protein‐ligand binding. Anal Chem; 79: 5869 – 5877. | en_US |
dc.identifier.citedreference | Powell K.D., Fitzgerald M.C. ( 2004 ) High‐throughput screening assay for the tunable selection of protein ligands. J Comb Chem; 6: 262 – 269. | en_US |
dc.identifier.citedreference | Hopper E.D. et al. ( 2008 ) Throughput and efficiency of a mass spectrometry‐based screening assay for protein‐ligand binding detection. J Am Soc Mass Spectrom; 19: 1303 – 1311. | en_US |
dc.identifier.citedreference | Dearmond P.D. et al. ( 2010 ) Discovery of novel cyclophilin A ligands using an H/D exchange‐ and mass spectrometry‐based strategy. J Biomol Screen; 15: 1051 – 1062. | en_US |
dc.identifier.citedreference | Perot S. et al. ( 2010 ) Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discov Today; 15: 656 – 667. | en_US |
dc.identifier.citedreference | Henrich S. et al. ( 2010 ) Computational approaches to identifying and characterizing protein binding sites for ligand design. J Mol Recognit; 23: 209 – 219. | en_US |
dc.identifier.citedreference | An J.H., Totrov M., Abagyan R. ( 2005 ) Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol Cell Proteomics; 4: 752 – 761. | en_US |
dc.identifier.citedreference | Kozakov D. et al. ( 2011 ) Structural conservation of druggable hot spots in protein‐protein interfaces. Proc Natl Acad Sci USA; 108: 13528 – 13533. | en_US |
dc.identifier.citedreference | Mattos C., Ringe D. ( 1996 ) Locating and characterizing binding sites on proteins. Nat Biotechnol; 14: 595 – 599. | en_US |
dc.identifier.citedreference | Lexa K.W., Carlson H.A. ( 2010 ) Full protein flexibility is essential for proper hot‐spot mapping. J Am Chem Soc; 133: 200 – 202. | en_US |
dc.identifier.citedreference | Cheng A.C. et al. ( 2007 ) Structure‐based maximal affinity model predicts small‐molecule druggability. Nat Biotechnol; 25: 71 – 75. | en_US |
dc.identifier.citedreference | Halgren T.A. ( 2009 ) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model; 49: 377 – 389. | en_US |
dc.identifier.citedreference | Zhong S., MacKerell A.D. Jr ( 2007 ) Binding response: a descriptor for selecting ligand binding site on protein surfaces. J Chem Inf Model; 47: 2303 – 2315. | en_US |
dc.identifier.citedreference | Nayal M., Honig B. ( 2006 ) On the nature of cavities on protein surfaces: application to the identification of drug‐binding sites. Proteins; 63: 892 – 906. | en_US |
dc.identifier.citedreference | Dar A.C., Shokat K.M. ( 2011 ) The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu Rev Biochem; 80: 769 – 795. | en_US |
dc.identifier.citedreference | Chang L. et al. ( 2011 ) Chemical screens against a reconstituted multiprotein complex: myricetin blocks DnaJ regulation of DnaK through an allosteric mechanism. Chem Biol; 18: 210 – 221. | en_US |
dc.identifier.citedreference | Bauer R.A., Wurst J.M., Tan D.S. ( 2010 ) Expanding the range of ‘druggable’ targets with natural product‐based libraries: an academic perspective. Curr Opin Chem Biol; 14: 308 – 314. | en_US |
dc.identifier.citedreference | Dandapani S., Marcaurelle L.A. ( 2010 ) Grand challenge commentary: accessing new chemical space for ‘undruggable’ targets. Nat Chem Biol; 6: 861 – 863. | en_US |
dc.identifier.citedreference | Sperandio O. et al. ( 2010 ) Rationalizing the chemical space of protein‐protein interaction inhibitors. Drug Discov Today; 15: 220 – 229. | en_US |
dc.identifier.citedreference | Smith M.C., Gestwicki J.E. ( 2012 ) Features of protein‐protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med; 14: e16. | en_US |
dc.identifier.citedreference | Schreiber S.L. ( 2009 ) Organic chemistry: molecular diversity by design. Nature; 457: 153 – 154. | en_US |
dc.identifier.citedreference | Galloway W.R., Isidro‐Llobet A., Spring D.R. ( 2010 ) Diversity‐oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat Commun; 1: 80. | en_US |
dc.identifier.citedreference | Burke M.D., Schreiber S.L. ( 2004 ) A planning strategy for diversity‐oriented synthesis. Angew Chem Int Ed Engl; 43: 46 – 58. | en_US |
dc.identifier.citedreference | Isidro‐Llobet A. et al. ( 2011 ) Diversity‐oriented synthesis of macrocyclic peptidomimetics. Proc Natl Acad Sci USA; 108: 6793 – 6798. | en_US |
dc.identifier.citedreference | Renner S. et al. ( 2011 ) Recent trends and observations in the design of high‐quality screening collections. Future Med Chem; 3: 751 – 766. | en_US |
dc.identifier.citedreference | Clardy J., Walsh C. ( 2004 ) Lessons from natural molecules. Nature; 432: 829 – 837. | en_US |
dc.identifier.citedreference | Harvey A.L. ( 2007 ) Natural products as a screening resource. Curr Opin Chem Biol; 11: 480 – 484. | en_US |
dc.identifier.citedreference | Harvey A.L. ( 2008 ) Natural products in drug discovery. Drug Discov Today; 13: 894 – 901. | en_US |
dc.identifier.citedreference | Bottcher T., Pitscheider M., Sieber S.A. ( 2010 ) Natural products and their biological targets: proteomic and metabolomic labeling strategies. Angew Chem Int Ed Engl; 49: 2680 – 2698. | en_US |
dc.identifier.citedreference | Hopkins A.L., Groom C.R. ( 2002 ) The druggable genome. Nat Rev Drug Discov; 1: 727 – 730. | en_US |
dc.identifier.citedreference | Zhang L. et al. ( 2007 ) High‐throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc Natl Acad Sci USA; 104: 4606 – 4611. | en_US |
dc.identifier.citedreference | Hegde N.S. et al. ( 2011 ) The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat Chem; 3: 725 – 731. | en_US |
dc.identifier.citedreference | Evans C.G., Chang L., Gestwicki J.E. ( 2010 ) Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem; 53: 4585 – 4602. | en_US |
dc.identifier.citedreference | Koehn F.E., Carter G.T. ( 2005 ) The evolving role of natural products in drug discovery. Nat Rev Drug Discov; 4: 206 – 220. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.