Show simple item record

Spatial gradients in action potential duration created by regional magnetofection of hERG are a substrate for wavebreak and turbulent propagation in cardiomyocyte monolayers

dc.contributor.authorCampbell, Katherineen_US
dc.contributor.authorCalvo, Conrado J.en_US
dc.contributor.authorMironov, Sergeyen_US
dc.contributor.authorHerron, Todden_US
dc.contributor.authorBerenfeld, Omeren_US
dc.contributor.authorJalife, Joséen_US
dc.date.accessioned2013-01-03T19:41:30Z
dc.date.available2014-01-07T14:51:08Zen_US
dc.date.issued2012-12-15en_US
dc.identifier.citationCampbell, Katherine; Calvo, Conrado J.; Mironov, Sergey; Herron, Todd; Berenfeld, Omer; Jalife, José (2012). "Spatial gradients in action potential duration created by regional magnetofection of hERG are a substrate for wavebreak and turbulent propagation in cardiomyocyte monolayers." The Journal of Physiology 590(24). <http://hdl.handle.net/2027.42/95178>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95178
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleSpatial gradients in action potential duration created by regional magnetofection of hERG are a substrate for wavebreak and turbulent propagation in cardiomyocyte monolayersen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Molecular & Integrative Physiologyen_US
dc.contributor.affiliationotherCenter for Arrhythmia Research, Department of Internal Medicineen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95178/1/jphysiol.2012.238758.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95178/2/TJP_5439_sm_SuppMat.pdf
dc.identifier.doi10.1113/jphysiol.2012.238758en_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferencePerrin MJ, Subbiah RN, Vandenberg JI & Hill AP ( 2008 ). Human ether‐a‐go‐go related gene (hERG) K + channels: function and dysfunction. Prog Biophys Mol Biol 98, 137 – 148.en_US
dc.identifier.citedreferenceJalife J & Gray R ( 1996 ). Drifting vortices of electrical waves underlie ventricular fibrillation in the rabbit heart. Acta Physiol Scand 157, 123 – 131.en_US
dc.identifier.citedreferenceKadota S, Kanayama T, Miyajima N, Takeuchi K & Nagata K ( 2005 ). Enhancing of measles virus infection by magnetofection. J Virol Methods 128, 61 – 66.en_US
dc.identifier.citedreferenceKalifa J, Tanaka K, Zaitsev AV, Warren M, Vaidyanathan R, Auerbach D, Pandit S, Vikstrom KL, Ploutz‐Snyder R, Talkachou A, Atienza F, Guiraudon G, Jalife J & Berenfeld O ( 2006 ). Mechanisms of wave fractionation at boundaries of high‐frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation. Circulation 113, 626 – 633.en_US
dc.identifier.citedreferenceMorley GE, Vaidya D, Samie FH, Lo C, Delmar M & Jalife J ( 1999 ). Characterization of conduction in the ventricles of normal and heterozygous Cx43 knockout mice using optical mapping. J Cardiovasc Electrophysiol 10, 1361 – 1375.en_US
dc.identifier.citedreferenceMuñoz V, Grzeda KR, Desplantez T, Pandit SV, Mironov S, Taffet SM, Rohr S, Kléber AG & Jalife J ( 2007 ). Adenoviral expression of I Ks contributes to wavebreak and fibrillatory conduction in neonatal rat ventricular cardiomyocyte monolayers. Circ Res 101, 475 – 483.en_US
dc.identifier.citedreferenceNanthakumar K, Jalife J, Massé S, Downar E, Pop M, Asta J, Ross H, Rao V, Mironov S, Sevaptsidis E, Rogers J, Wright G & Dhopeshwarkar R ( 2007 ). Optical mapping of Langendorff‐perfused human hearts: establishing a model for the study of ventricular fibrillation in humans. Am J Physiol Heart Circ Physiol 293, H875 – H880.en_US
dc.identifier.citedreferenceNarayan SM, Patel J, Mulpuru S & Krummen DE ( 2012 ). Focal impulse and rotor modulation ablation of sustaining rotors abruptly terminates persistent atrial fibrillation to sinus rhythm with elimination on follow‐up: a video case study. Heart Rhythm 9, 1436 – 1439.en_US
dc.identifier.citedreferenceNoujaim SF, Berenfeld O, Kalifa J, Cerrone M, Nanthakumar K, Atienza F, Moreno J, Mironov S & Jalife J ( 2007a ). Universal scaling law of electrical turbulence in the mammalian heart. Proc Natl Acad Sci U S A 104, 20985 – 20989.en_US
dc.identifier.citedreferenceNoujaim SF, Pandit SV, Berenfeld O, Vikstrom K, Cerrone M, Mironov S, Zugermayr M, Lopatin AN & Jalife J ( 2007b ). Up‐regulation of the inward rectifier K + current ( I K1 ) in the mouse heart accelerates and stabilizes rotors. J Physiol 578, 315 – 326.en_US
dc.identifier.citedreferenceNuss HB, Marban E & Johns DC ( 1999 ). Overexpression of a human potassium channel suppresses cardiac hyperexcitability in rabbit ventricular myocytes. J Clin Invest 103, 889 – 896.en_US
dc.identifier.citedreferenceObreztchikova MN, Patberg KW, Plotnikov AN, Ozgen N, Shlapakova IN, Rybin AV, Sosunov EA, Danilo P Jr, Anyukhovsky EP, Robinson RB & Rosen MR ( 2006 ). I Kr contributes to the altered ventricular repolarization that determines long‐term cardiac memory. Cardiovasc Res 71, 88 – 96.en_US
dc.identifier.citedreferenceRohr S, Flückiger‐Labrada R & Kucera JP ( 2003 ). Photolithographically defined deposition of attachment factors as a versatile method for patterning the growth of different cell types in culture. Pflugers Arch 446, 125 – 132.en_US
dc.identifier.citedreferenceSamie FH, Berenfeld O, Anumonwo J, Mironov SF, Udassi S, Beaumont J, Taffet S, Pertsov AM & Jalife J ( 2001 ). Rectification of the background potassium current: a determinant of rotor dynamics in ventricular fibrillation. Circ Res 89, 1216 – 1223.en_US
dc.identifier.citedreferenceSekar RB, Kizana E, Cho HC, Molitoris JM, Hesketh GG, Eaton BP, Marbán E & Tung L ( 2009 ). I K1 heterogeneity affects genesis and stability of spiral waves in cardiac myocyte monolayers. Circ Res 104, 355 – 364.en_US
dc.identifier.citedreferenceShimizu W & Antzelevitch C ( 2000 ). Effects of a K + channel opener to reduce transmural dispersion of repolarization and prevent torsade de pointes in LQT1, LQT2, and LQT3 models of the long‐QT syndrome. Circulation 102, 706 – 712.en_US
dc.identifier.citedreferenceStoll M, Quentin M, Molojavyi A, Thamer V & Decking UK ( 2008 ). Spatial heterogeneity of myocardial perfusion predicts local potassium channel expression and action potential duration. Cardiovasc Res 77, 489 – 496.en_US
dc.identifier.citedreferenceVaidya D, Morley GE, Samie FH & Jalife J ( 1999 ). Reentry and fibrillation in the mouse heart. A challenge to the critical mass hypothesis. Circ Res 85, 174 – 181.en_US
dc.identifier.citedreferenceVoigt N, Trausch A, Knaut M, Matschke K, Varró A, Van Wagoner DR, Nattel S, Ravens U & Dobrev D ( 2010 ). Left‐to‐right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol 3, 472 – 480.en_US
dc.identifier.citedreferenceZaitsev AV, Berenfeld O, Mironov SF, Jalife J & Pertsov AM ( 2000 ). Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ Res 86, 408 – 417.en_US
dc.identifier.citedreferenceZhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA & January CT ( 1998 ). Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 74, 230 – 241.en_US
dc.identifier.citedreferenceZlochiver S, Muñoz V, Vikstrom KL, Taffet SM, Berenfeld O & Jalife J ( 2008 ). Electrotonic myofibroblast‐to‐myocyte coupling increases propensity to reentrant arrhythmias in two‐dimensional cardiac monolayers. Biophys J 95, 4469 – 4480.en_US
dc.identifier.citedreferenceAntzelevitch C, Nesterenko VV, Muzikant AL, Rice JJ, Chen G, Colatsky T ( 2001 ). Influence of transmural repolarization gradients on the electrophysiology and pharmacology of ventricular myocardium. Cellular basis for the Brugada and long‐QT syndromes. Phil Trans R Soc Lond A 359, 1201 – 1216.en_US
dc.identifier.citedreferenceAmit G, Kikuchi K, Greener ID, Yang L, Novack V & Donahue JK ( 2010 ). Selective molecular potassium channel blockade prevents atrial fibrillation. Circulation 121, 2263 – 2270.en_US
dc.identifier.citedreferenceBrahmajothi MV, Morales MJ, Reimer KA & Strauss HC ( 1997 ). Regional localization of ERG, the channel protein responsible for the rapid component of the delayed rectifier, K + current in the ferret heart. Circ Res 81, 128 – 135.en_US
dc.identifier.citedreferenceBrugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M, Menendez TM, Brugada J, Pollevick GD, Wolpert C, Burashnikov E, Matsuo K, Wu YS, Guerchicoff A, Bianchi F, Giustetto C, Schimpf R, Brugada P & Antzelevitch C ( 2004 ). Sudden death associated with short‐QT syndrome linked to mutations in HERG. Circulation 109, 30 – 35.en_US
dc.identifier.citedreferenceBryant SM, Wan X, Shipsey SJ & Hart G ( 1998 ). Regional differences in the delayed rectifier current ( I Kr and I Ks ) contribute to the differences in action potential duration in basal left ventricular myocytes in guinea‐pig. Cardiovasc Res 40, 322 – 331.en_US
dc.identifier.citedreferenceCaballero R, de la Fuente MG, Gómez R, Barana A, Amorós I, Dolz‐Gaitón P, Osuna L, Almendral J, Atienza F, Fernández‐Avilés F, Pita A, Rodríguez‐Roda J, Pinto A, Tamargo J & Delpón E ( 2010 ). In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differentially on each atria and increases the slow component of the delayed rectifier current in both. J Am Coll Cardiol 55, 2346 – 2354.en_US
dc.identifier.citedreferenceCha TJ, Ehrlich JR, Zhang L, Chartier D, Leung TK & Nattel S ( 2005 ). Atrial tachycardia remodeling of pulmonary vein cardiomyocytes: comparison with left atrium and potential relation to arrhythmogenesis. Circulation 111, 728 – 735.en_US
dc.identifier.citedreferenceCheng K, Li TS, Malliaras K, Davis DR, Zhang Y & Marban E ( 2010 ). Magnetic targeting enhances engraftment and functional benefit of iron‐labeled cardiosphere‐derived cells in myocardial infarction. Circ Res 106, 1570 – 1581.en_US
dc.identifier.citedreferenceDeo M, Sato PY, Musa H, Lin X, Pandit SV, Delmar M & Berenfeld O ( 2011 ). Relative contribution of changes in sodium current vs. intercellular coupling on reentry initiation in 2‐dimensional preparations of plakophilin‐2‐deficient cardiac cells. Heart Rhythm 8, 1740 – 1748.en_US
dc.identifier.citedreferenceGaita F, Giustetto C, Bianchi F, Wolpert C, Schimpf R, Riccardi R, Grossi S, Richiardi E & Borggrefe M ( 2003 ). Short QT Syndrome: a familial cause of sudden death. Circulation 108, 965 – 970.en_US
dc.identifier.citedreferenceHou L, Deo M, Furspan P, Pandit SV, Mironov S, Auerbach DS, Gong Q, Zhou Z, Berenfeld O & Jalife J ( 2010 ). A major role for HERG in determining frequency of reentry in neonatal rat ventricular myocyte monolayer. Circ Res 107, 1503 – 1511.en_US
dc.identifier.citedreferenceHua F, Johns DC & Gilmour RF Jr ( 2004 ). Suppression of electrical alternans by overexpression of HERG in canine ventricular myocytes. Am J Physiol Heart Circ Physiol 286, H2342 – H2351.en_US
dc.identifier.citedreferenceJalife J ( 2000 ). Ventricular fibrillation: mechanisms of initiation and maintenance. Annu Rev Physiol 62, 25 – 50.en_US
dc.identifier.citedreferenceJalife J DM, Davidenko J & Anumonwo J ( 1998 ). Basic Cardiac Electrophysiology for the Clinician. Futura Publishing Co. Inc., New York.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.