Show simple item record

Direct sequencing of haplotypes from diploid individuals through a modified emulsion PCR ‐based single‐molecule sequencing approach

dc.contributor.authorMetzger, Brian Patrick Hansenen_US
dc.contributor.authorGelembiuk, Gregory Williamen_US
dc.contributor.authorLee, Carol Eunmien_US
dc.date.accessioned2013-01-03T19:41:43Z
dc.date.available2014-03-03T15:09:25Zen_US
dc.date.issued2013-01en_US
dc.identifier.citationMetzger, Brian Patrick Hansen; Gelembiuk, Gregory William; Lee, Carol Eunmi (2013). "Direct sequencing of haplotypes from diploid individuals through a modified emulsion PCR ‐based single‐molecule sequencing approach." Molecular Ecology Resources (1): 135-143. <http://hdl.handle.net/2027.42/95197>en_US
dc.identifier.issn1755-098Xen_US
dc.identifier.issn1755-0998en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95197
dc.description.abstractWhile standard DNA ‐sequencing approaches readily yield genotypic sequence data, haplotype information is often of greater utility for population genetic analyses. However, obtaining individual haplotype sequences can be costly and time‐consuming and sometimes requires statistical reconstruction approaches that are subject to bias and error. Advancements have recently been made in determining individual chromosomal sequences in large‐scale genomic studies, yet few options exist for obtaining this information from large numbers of highly polymorphic individuals in a cost‐effective manner. As a solution, we developed a simple PCR ‐based method for obtaining sequence information from individual DNA strands using standard laboratory equipment. The method employs a water‐in‐oil emulsion to separate the PCR mixture into thousands of individual microreactors. PCR within these small vesicles results in amplification from only a single starting DNA template molecule and thus a single haplotype. We improved upon previous approaches by including SYBR Green I and a melted agarose solution in the PCR , allowing easy identification and separation of individually amplified DNA molecules. We demonstrate the use of this method on a highly polymorphic estuarine population of the copepod Eurytemora affinis for which current molecular and computational methods for haplotype determination have been inadequate.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherPhasingen_US
dc.subject.otherSingle‐Molecule Sequencingen_US
dc.subject.otherHaplotypeen_US
dc.subject.otherEurytemora Affinisen_US
dc.subject.otherCopepoden_US
dc.titleDirect sequencing of haplotypes from diploid individuals through a modified emulsion PCR ‐based single‐molecule sequencing approachen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23231626en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95197/1/men12034.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95197/2/men12034-sup-0001-FigureS1-S2.pdf
dc.identifier.doi10.1111/1755-0998.12034en_US
dc.identifier.sourceMolecular Ecology Resourcesen_US
dc.identifier.citedreferenceSabeti PC, Reich DE, Higgins JM et al. ( 2002 ) Detecting recent positive selection in the human genome from haplotype structure. Nature, 419, 832 – 837.en_US
dc.identifier.citedreferenceLee CE ( 1999 ) Rapid and repeated invasions of fresh water by the copepod Eurytemora affinis. Evolution, 53, 1423 – 1434.en_US
dc.identifier.citedreferenceLee CE ( 2000 ) Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “populations.” Evolution, 54, 2014 – 2027.en_US
dc.identifier.citedreferenceLee CE, Frost BW ( 2002 ) Morphological stasis in the Eurytemora affinis species complex (Copepoda: Temoridae). Hydrobiologia, 480, 111 – 128.en_US
dc.identifier.citedreferenceLevenstien MA, Ott J, Gordon D ( 2006 ) Are molecular haplotypes worth the time and expense? A cost‐effective method for applying molecular haplotypes. PLoS Genetics, 2, e127.en_US
dc.identifier.citedreferenceLin D, Huang B ( 2007 ) The use of inferred haplotypes in downstream analyses. The American Journal of Human Genetics, 80, 577 – 579.en_US
dc.identifier.citedreferenceMarchini J, Cutler D, Patterson N et al. ( 2006 ) A comparison of phasing algorithms for trios and unrelated individuals. The American Journal of Human Genetics, 78, 437 – 450.en_US
dc.identifier.citedreferenceMeyerhans A, Vartanian J‐P, Wain‐Hobson S ( 1990 ) DNA recombination during PCR. Nucleic Acids Research, 18, 1687 – 1691.en_US
dc.identifier.citedreferenceMullis KB, Faloona FA ( 1987 ) Specific synthesis of DNA in vitro via a polymerase‐catalyzed chain reaction. Methods in Enzymology, 155, 335 – 350.en_US
dc.identifier.citedreferenceRasch EM, Lee CE, Wyngaard GA ( 2004 ) DNA‐Feulgen cytophotometric determination of genome size for the freshwater‐invading copepod Eurytemora affinis. Genome, 47, 559 – 564.en_US
dc.identifier.citedreferenceRuano G, Fenton W, Kidd KK ( 1989 ) Biphasic amplification of very dilute DNA samples via “booster” PCR. Nucleic Acids Research, 17, 5407.en_US
dc.identifier.citedreferenceSanger F, Coulson AR ( 1975 ) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 94, 441 – 448.en_US
dc.identifier.citedreferenceSoulsbury CD, Iossa G, Edwards KJ, Baker PJ, Harris S ( 2007 ) Allelic dropout from a high‐quality DNA source. Conservation Genetics, 8, 733 – 738.en_US
dc.identifier.citedreferenceStephens M, Smith NJ, Donnelly P ( 2001 ) A new statistical method for haplotype reconstruction from population data. The American Journal of Human Genetics, 68, 978 – 989.en_US
dc.identifier.citedreferenceSuzuki MT, Giovannoni SJ ( 1996 ) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology, 62, 625 – 630.en_US
dc.identifier.citedreferenceTawfik DS, Griffiths AD ( 1998 ) Man‐made cell‐like compartments for molecular evolution. Nature Biotechnology, 16, 652 – 656.en_US
dc.identifier.citedreferenceTewhey R, Bansal V, Torkamani A, Topol EJ, Schork NJ ( 2011 ) The importance of phase information for human genomics. Nature Reviews Genetics, 12, 215 – 223.en_US
dc.identifier.citedreferenceThe International HapMap Consortium ( 2005 ) A haplotype map of the human genome. Nature, 437, 1299 – 1320.en_US
dc.identifier.citedreferenceUddin M, Sturge M, Griffin C, Benteau S, Rahman P ( 2008 ) Variability of haplotype phase and its effect on genetic analysis. Canadian Conference on Electrical and Computer Engineering, 000595 – 000600. IEEE.en_US
dc.identifier.citedreferenceWang GCY, Wang Y ( 1997 ) Frequency of formation of chimeric molecules as a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes. Applied and Environmental Microbiology, 63, 4645 – 4650.en_US
dc.identifier.citedreferenceWinkler G, Dodson JJ, Lee CE ( 2008 ) Heterogeneity within the native range: population genetic analyses of sympatric invasive and noninvasive clades of the freshwater invading copepod Eurytemora affinis. Molecular Ecology, 17, 415 – 430.en_US
dc.identifier.citedreferenceMurakawa K, Takiguchi S, Kambara H ( 2008 ) Method and apparatus for sample preparation. US Patent App 2008/0241841 A1.en_US
dc.identifier.citedreferenceMusyanovych A, Mailänder V, Landfester K ( 2005 ) Miniemulsion droplets as single molecule nanoreactors for polymerase chain reaction. Biomacromolecules, 6, 1824 – 1828.en_US
dc.identifier.citedreferenceNakano H, Kobayashi K, Ohuchi S, Sekiguchi S, Yamane T ( 2000 ) Single‐step single‐molecule PCR of DNA with a homo‐priming sequence using a single primer and hot‐startable DNA polymerase. Journal of Bioscience and Bioengineering, 90, 456 – 458.en_US
dc.identifier.citedreferenceNakano M, Komatsu J, Matsuura S, Takashima K, Katsura S, Mizuno A ( 2003 ) Single‐molecule PCR using water‐in‐oil emulsion. Journal of Biotechnology, 102, 117 – 124.en_US
dc.identifier.citedreferenceAdkins RM ( 2004 ) Comparison of the accuracy of methods of computational haplotype inference using a large empirical dataset. BMC Genetics, 5, 22.en_US
dc.identifier.citedreferenceAkey J, Jin L, Xiong M ( 2001 ) Haplotypes vs single marker linkage disequilibrium tests: what do we gain? European Journal of Human Genetics, 9, 291 – 300.en_US
dc.identifier.citedreferenceAndrés AM, Clark AG, Shimmin L, Boerwinkle E, Sing CF, Hixson JE ( 2007 ) Understanding the accuracy of statistical haplotype inference with sequence data of known phase. Genetic Epidemiology, 31, 659 – 671.en_US
dc.identifier.citedreferenceAvery CL, Martin LJ, Williams JT, North KE ( 2005 ) Accuracy of haplotype estimation in a region of low linkage disequilibrium. BMC Genetics, 6 (Suppl. 1), S80.en_US
dc.identifier.citedreferenceBagos PG ( 2011 ) Meta‐analysis of haplotype‐association studies: comparison of methods and empirical evaluation of the literature. BMC Genetics, 12, 8.en_US
dc.identifier.citedreferenceBecker S, Boger P, Oehlmann R, Ernst A ( 2000 ) PCR bias in ecological analysis: a case study for quantitative Taq nuclease assays in analyses of microbial communities. Applied and Environmental Microbiology, 66, 4945 – 4953.en_US
dc.identifier.citedreferenceBrowning BL, Browning SR ( 2009 ) A unified approach to genotype imputation and haplotype‐phase inference for large data sets of trios and unrelated individuals. The American Journal of Human Genetics, 84, 210 – 223.en_US
dc.identifier.citedreferenceBrowning SR, Browning BL ( 2011 ) Haplotype phasing: existing methods and new developments. Nature Reviews Genetics, 12, 703 – 714.en_US
dc.identifier.citedreferenceFlot J‐F, Tillier A, Samadi S, Tillier S ( 2006 ) Phase determination from direct sequencing of length‐variable DNA regions. Molecular Ecology Notes, 6, 627 – 630.en_US
dc.identifier.citedreferenceGarvin MR, Saitoh K, Gharrett AJ ( 2010 ) Application of single nucleotide polymorphisms to non‐model species: a technical review. Molecular Ecology Resources, 10, 915 – 934.en_US
dc.identifier.citedreferenceHigasa K, Kukita Y, Kato K, Wake N, Tahira T, Hayashi K ( 2009 ) Evaluation of haplotype inference using definitive haplotype data obtained from complete hydatidiform moles, and its significance for the analyses of positively selected regions. PLoS Genetics, 5, e1000468.en_US
dc.identifier.citedreferenceHori M, Fukano H, Suzuki Y ( 2007 ) Uniform amplification of multiple DNAs by emulsion PCR. Biochemical and Biophysical Research Communications, 352, 323 – 328.en_US
dc.identifier.citedreferenceKitzman JO, Mackenzie AP, Adey A et al. ( 2011 ) Haplotype‐resolved genome sequencing of a Gujarati Indian individual. Nature Biotechnology, 29, 59 – 63.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.