Direct sequencing of haplotypes from diploid individuals through a modified emulsion PCR ‐based single‐molecule sequencing approach
dc.contributor.author | Metzger, Brian Patrick Hansen | en_US |
dc.contributor.author | Gelembiuk, Gregory William | en_US |
dc.contributor.author | Lee, Carol Eunmi | en_US |
dc.date.accessioned | 2013-01-03T19:41:43Z | |
dc.date.available | 2014-03-03T15:09:25Z | en_US |
dc.date.issued | 2013-01 | en_US |
dc.identifier.citation | Metzger, Brian Patrick Hansen; Gelembiuk, Gregory William; Lee, Carol Eunmi (2013). "Direct sequencing of haplotypes from diploid individuals through a modified emulsion PCR ‐based single‐molecule sequencing approach." Molecular Ecology Resources (1): 135-143. <http://hdl.handle.net/2027.42/95197> | en_US |
dc.identifier.issn | 1755-098X | en_US |
dc.identifier.issn | 1755-0998 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/95197 | |
dc.description.abstract | While standard DNA ‐sequencing approaches readily yield genotypic sequence data, haplotype information is often of greater utility for population genetic analyses. However, obtaining individual haplotype sequences can be costly and time‐consuming and sometimes requires statistical reconstruction approaches that are subject to bias and error. Advancements have recently been made in determining individual chromosomal sequences in large‐scale genomic studies, yet few options exist for obtaining this information from large numbers of highly polymorphic individuals in a cost‐effective manner. As a solution, we developed a simple PCR ‐based method for obtaining sequence information from individual DNA strands using standard laboratory equipment. The method employs a water‐in‐oil emulsion to separate the PCR mixture into thousands of individual microreactors. PCR within these small vesicles results in amplification from only a single starting DNA template molecule and thus a single haplotype. We improved upon previous approaches by including SYBR Green I and a melted agarose solution in the PCR , allowing easy identification and separation of individually amplified DNA molecules. We demonstrate the use of this method on a highly polymorphic estuarine population of the copepod Eurytemora affinis for which current molecular and computational methods for haplotype determination have been inadequate. | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Phasing | en_US |
dc.subject.other | Single‐Molecule Sequencing | en_US |
dc.subject.other | Haplotype | en_US |
dc.subject.other | Eurytemora Affinis | en_US |
dc.subject.other | Copepod | en_US |
dc.title | Direct sequencing of haplotypes from diploid individuals through a modified emulsion PCR ‐based single‐molecule sequencing approach | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Ecology and Evolutionary Biology | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.identifier.pmid | 23231626 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/95197/1/men12034.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/95197/2/men12034-sup-0001-FigureS1-S2.pdf | |
dc.identifier.doi | 10.1111/1755-0998.12034 | en_US |
dc.identifier.source | Molecular Ecology Resources | en_US |
dc.identifier.citedreference | Sabeti PC, Reich DE, Higgins JM et al. ( 2002 ) Detecting recent positive selection in the human genome from haplotype structure. Nature, 419, 832 – 837. | en_US |
dc.identifier.citedreference | Lee CE ( 1999 ) Rapid and repeated invasions of fresh water by the copepod Eurytemora affinis. Evolution, 53, 1423 – 1434. | en_US |
dc.identifier.citedreference | Lee CE ( 2000 ) Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “populations.” Evolution, 54, 2014 – 2027. | en_US |
dc.identifier.citedreference | Lee CE, Frost BW ( 2002 ) Morphological stasis in the Eurytemora affinis species complex (Copepoda: Temoridae). Hydrobiologia, 480, 111 – 128. | en_US |
dc.identifier.citedreference | Levenstien MA, Ott J, Gordon D ( 2006 ) Are molecular haplotypes worth the time and expense? A cost‐effective method for applying molecular haplotypes. PLoS Genetics, 2, e127. | en_US |
dc.identifier.citedreference | Lin D, Huang B ( 2007 ) The use of inferred haplotypes in downstream analyses. The American Journal of Human Genetics, 80, 577 – 579. | en_US |
dc.identifier.citedreference | Marchini J, Cutler D, Patterson N et al. ( 2006 ) A comparison of phasing algorithms for trios and unrelated individuals. The American Journal of Human Genetics, 78, 437 – 450. | en_US |
dc.identifier.citedreference | Meyerhans A, Vartanian J‐P, Wain‐Hobson S ( 1990 ) DNA recombination during PCR. Nucleic Acids Research, 18, 1687 – 1691. | en_US |
dc.identifier.citedreference | Mullis KB, Faloona FA ( 1987 ) Specific synthesis of DNA in vitro via a polymerase‐catalyzed chain reaction. Methods in Enzymology, 155, 335 – 350. | en_US |
dc.identifier.citedreference | Rasch EM, Lee CE, Wyngaard GA ( 2004 ) DNA‐Feulgen cytophotometric determination of genome size for the freshwater‐invading copepod Eurytemora affinis. Genome, 47, 559 – 564. | en_US |
dc.identifier.citedreference | Ruano G, Fenton W, Kidd KK ( 1989 ) Biphasic amplification of very dilute DNA samples via “booster” PCR. Nucleic Acids Research, 17, 5407. | en_US |
dc.identifier.citedreference | Sanger F, Coulson AR ( 1975 ) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 94, 441 – 448. | en_US |
dc.identifier.citedreference | Soulsbury CD, Iossa G, Edwards KJ, Baker PJ, Harris S ( 2007 ) Allelic dropout from a high‐quality DNA source. Conservation Genetics, 8, 733 – 738. | en_US |
dc.identifier.citedreference | Stephens M, Smith NJ, Donnelly P ( 2001 ) A new statistical method for haplotype reconstruction from population data. The American Journal of Human Genetics, 68, 978 – 989. | en_US |
dc.identifier.citedreference | Suzuki MT, Giovannoni SJ ( 1996 ) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology, 62, 625 – 630. | en_US |
dc.identifier.citedreference | Tawfik DS, Griffiths AD ( 1998 ) Man‐made cell‐like compartments for molecular evolution. Nature Biotechnology, 16, 652 – 656. | en_US |
dc.identifier.citedreference | Tewhey R, Bansal V, Torkamani A, Topol EJ, Schork NJ ( 2011 ) The importance of phase information for human genomics. Nature Reviews Genetics, 12, 215 – 223. | en_US |
dc.identifier.citedreference | The International HapMap Consortium ( 2005 ) A haplotype map of the human genome. Nature, 437, 1299 – 1320. | en_US |
dc.identifier.citedreference | Uddin M, Sturge M, Griffin C, Benteau S, Rahman P ( 2008 ) Variability of haplotype phase and its effect on genetic analysis. Canadian Conference on Electrical and Computer Engineering, 000595 – 000600. IEEE. | en_US |
dc.identifier.citedreference | Wang GCY, Wang Y ( 1997 ) Frequency of formation of chimeric molecules as a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes. Applied and Environmental Microbiology, 63, 4645 – 4650. | en_US |
dc.identifier.citedreference | Winkler G, Dodson JJ, Lee CE ( 2008 ) Heterogeneity within the native range: population genetic analyses of sympatric invasive and noninvasive clades of the freshwater invading copepod Eurytemora affinis. Molecular Ecology, 17, 415 – 430. | en_US |
dc.identifier.citedreference | Murakawa K, Takiguchi S, Kambara H ( 2008 ) Method and apparatus for sample preparation. US Patent App 2008/0241841 A1. | en_US |
dc.identifier.citedreference | Musyanovych A, Mailänder V, Landfester K ( 2005 ) Miniemulsion droplets as single molecule nanoreactors for polymerase chain reaction. Biomacromolecules, 6, 1824 – 1828. | en_US |
dc.identifier.citedreference | Nakano H, Kobayashi K, Ohuchi S, Sekiguchi S, Yamane T ( 2000 ) Single‐step single‐molecule PCR of DNA with a homo‐priming sequence using a single primer and hot‐startable DNA polymerase. Journal of Bioscience and Bioengineering, 90, 456 – 458. | en_US |
dc.identifier.citedreference | Nakano M, Komatsu J, Matsuura S, Takashima K, Katsura S, Mizuno A ( 2003 ) Single‐molecule PCR using water‐in‐oil emulsion. Journal of Biotechnology, 102, 117 – 124. | en_US |
dc.identifier.citedreference | Adkins RM ( 2004 ) Comparison of the accuracy of methods of computational haplotype inference using a large empirical dataset. BMC Genetics, 5, 22. | en_US |
dc.identifier.citedreference | Akey J, Jin L, Xiong M ( 2001 ) Haplotypes vs single marker linkage disequilibrium tests: what do we gain? European Journal of Human Genetics, 9, 291 – 300. | en_US |
dc.identifier.citedreference | Andrés AM, Clark AG, Shimmin L, Boerwinkle E, Sing CF, Hixson JE ( 2007 ) Understanding the accuracy of statistical haplotype inference with sequence data of known phase. Genetic Epidemiology, 31, 659 – 671. | en_US |
dc.identifier.citedreference | Avery CL, Martin LJ, Williams JT, North KE ( 2005 ) Accuracy of haplotype estimation in a region of low linkage disequilibrium. BMC Genetics, 6 (Suppl. 1), S80. | en_US |
dc.identifier.citedreference | Bagos PG ( 2011 ) Meta‐analysis of haplotype‐association studies: comparison of methods and empirical evaluation of the literature. BMC Genetics, 12, 8. | en_US |
dc.identifier.citedreference | Becker S, Boger P, Oehlmann R, Ernst A ( 2000 ) PCR bias in ecological analysis: a case study for quantitative Taq nuclease assays in analyses of microbial communities. Applied and Environmental Microbiology, 66, 4945 – 4953. | en_US |
dc.identifier.citedreference | Browning BL, Browning SR ( 2009 ) A unified approach to genotype imputation and haplotype‐phase inference for large data sets of trios and unrelated individuals. The American Journal of Human Genetics, 84, 210 – 223. | en_US |
dc.identifier.citedreference | Browning SR, Browning BL ( 2011 ) Haplotype phasing: existing methods and new developments. Nature Reviews Genetics, 12, 703 – 714. | en_US |
dc.identifier.citedreference | Flot J‐F, Tillier A, Samadi S, Tillier S ( 2006 ) Phase determination from direct sequencing of length‐variable DNA regions. Molecular Ecology Notes, 6, 627 – 630. | en_US |
dc.identifier.citedreference | Garvin MR, Saitoh K, Gharrett AJ ( 2010 ) Application of single nucleotide polymorphisms to non‐model species: a technical review. Molecular Ecology Resources, 10, 915 – 934. | en_US |
dc.identifier.citedreference | Higasa K, Kukita Y, Kato K, Wake N, Tahira T, Hayashi K ( 2009 ) Evaluation of haplotype inference using definitive haplotype data obtained from complete hydatidiform moles, and its significance for the analyses of positively selected regions. PLoS Genetics, 5, e1000468. | en_US |
dc.identifier.citedreference | Hori M, Fukano H, Suzuki Y ( 2007 ) Uniform amplification of multiple DNAs by emulsion PCR. Biochemical and Biophysical Research Communications, 352, 323 – 328. | en_US |
dc.identifier.citedreference | Kitzman JO, Mackenzie AP, Adey A et al. ( 2011 ) Haplotype‐resolved genome sequencing of a Gujarati Indian individual. Nature Biotechnology, 29, 59 – 63. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.