Show simple item record

Crystal Structure of FePb 4 Sb 6 Se 14 and its Structural Relationship with FePb 3 Sb 4 Se 10

dc.contributor.authorPoudeu, Pierre F. P.en_US
dc.contributor.authorDjieutedjeu, Honoreen_US
dc.contributor.authorSahoo, Pranatien_US
dc.date.accessioned2013-01-03T19:41:43Z
dc.date.available2014-01-07T14:51:09Zen_US
dc.date.issued2012-12en_US
dc.identifier.citationPoudeu, Pierre F. P.; Djieutedjeu, Honore; Sahoo, Pranati (2012). "Crystal Structure of FePb 4 Sb 6 Se 14 and its Structural Relationship with FePb 3 Sb 4 Se 10 ." Zeitschrift für anorganische und allgemeine Chemie 638(15): 2549-2554. <http://hdl.handle.net/2027.42/95198>en_US
dc.identifier.issn0044-2313en_US
dc.identifier.issn1521-3749en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95198
dc.description.abstractSingle crystals of FePb 4 Sb 6 Se 14 , were obtained from solid‐state combination of high purity elemental powders at 873K for three days. Single crystal X‐ray structure determination revealed that the compound crystallizes in the monoclinic space group P 2 1 / c (no. 14) and adopts the structure of Jamesonite (FePb 4 Sb 6 S 14 ). The structure contains two crystallographically independent lead atoms with monocapped and bicapped trigonal prismatic coordinations, three antimony atoms located in a distorted octahedral environment and one iron atom occupying a flattened octahedral coordination. Neighboring monocapped and bicapped trigonal prims around lead atoms share faces and edges to build a corrugated layer parallel to the ac plane. Octahedrally coordinated antimony atoms share edges to form one‐dimensional (1D) {SbSe} ∞ ribbons connecting adjacent corrugated layers. The distortion of the octahedral coordination around antimony atoms within the {SbSe} ∞ ribbons with the longest bond pointing towards the center of the ribbon, suggests the stereochemical activity of antimony lone‐pairs with their electron clouds pointing towards the center of the {SbSe} ∞ ribbon. The three dimensional framework resulting from the connectivity between the corrugated layers and the {SbSe} ∞ ribbons, contains isolated cylindrical voids parallel to [100] which are filled by a 1D Fe n Se 4n+2 straight chain of edge‐sharing FeSe 6 octahedra. The crystal structure of FePb 4 Sb 6 Se 14 is closely related to that of FePb 3 Sb 4 Se 10 as they are formed by similar building units with different sizes.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherSemiconductorsen_US
dc.subject.otherCrystal Structureen_US
dc.subject.otherIron Selenideen_US
dc.subject.otherMain Group Elementsen_US
dc.subject.otherSeleno Jamesoniteen_US
dc.titleCrystal Structure of FePb 4 Sb 6 Se 14 and its Structural Relationship with FePb 3 Sb 4 Se 10en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumLaboratory for Emerging Energy and Electronic Materials (LE 3 M), Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USAen_US
dc.contributor.affiliationumLaboratory for Emerging Energy and Electronic Materials (LE 3 M), Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA, Fax: +1‐734‐763‐4788en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95198/1/2549_ftp.pdf
dc.identifier.doi10.1002/zaac.201200249en_US
dc.identifier.sourceZeitschrift für anorganische und allgemeine Chemieen_US
dc.identifier.citedreferenceD. Kurowski, PhD Thesis Thesis, University of Regensburg, Germany 2003.en_US
dc.identifier.citedreferenceK. F. Hsu, D. Y. Chung, S. Lai, A. Mrotzek, T. Kyratsi, T. Hogan, M. G. Kanatzidis, J. Am. Chem. Soc. 2002, 124, 2410.en_US
dc.identifier.citedreferenceJ. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, Angew. Chem. Int. Ed. 2009, 48, 8616.en_US
dc.identifier.citedreferenceD. Colombara, L. M. Peter, K. D. Rogers, J. D. Painter, S. Roncallo, Thin Solid Films 2011, 519, 7438.en_US
dc.identifier.citedreferenceS. Manolache, A. Duta, L. Isac, M. Nanu, A. Goossens, J. Schoonman, Thin Solid Films 2007, 515, 5957.en_US
dc.identifier.citedreferenceH. Dittrich, K. Herz, Inst. Phys. Conf. Ser. 1998, 152, 293.en_US
dc.identifier.citedreferenceH. Dittrich, A. Stadler, D. Topa, H. J. Schimper, A. Basch, Phys. Status Solidi A 2009, 206, 1034.en_US
dc.identifier.citedreferenceP. S. Sonawane, P. A. Wani, L. A. Patil, T. Seth, Mater. Chem. Phys. 2004, 84, 221.en_US
dc.identifier.citedreferenceJ. Gutwirth, T. Wagner, P. Nemec, S. O. Kasap, M. Frumar, J. Non‐Cryst. Solids 2008, 354, 497.en_US
dc.identifier.citedreferenceT. Wagner, M. Krbal, P. Nemec, M. Frumar, T. Wagner, M. Vlcek, V. Perina, A. Mackova, V. Hnatovitz, S. O. Kasap, Appl. Phys. A‐Mater. 2004, 79, 1563.en_US
dc.identifier.citedreferenceA. Kaidatzis, J. B. Wachter, K. Chrissafis, K. M. Paraskevopoulos, M. G. Kanatzidis, J. Non‐Cryst. Solids 2008, 354, 3643.en_US
dc.identifier.citedreferenceH. Djieutedjeu, J. P. A. Makongo, A. Rotaru, A. Palasyuk, N. J. Takas, X. Y. Zhou, K. G. S. Ranmohotti, L. Spinu, C. Uher, P. F. P. Poudeu, Eur. J. Inorg. Chem. 2011, 3969.en_US
dc.identifier.citedreferenceS. F. Matar, R. Weihrich, D. Kurowski, A. Pfitzner, V. Eyert, Phys. Rev. B 2005, 71.en_US
dc.identifier.citedreferenceP. A. Salyer, L. W. ter Haar, J. Appl. Phys. 2000, 87, 6025.en_US
dc.identifier.citedreferenceP. Leone, C. Doussier‐Brochard, G. Andre, Y. Moelo, Phys. Chem. Miner. 2008, 35, 201.en_US
dc.identifier.citedreferenceP. Leone, L. M. Le Leuch, P. Palvadeau, P. Molinie, Y. Moelo, Solid State Sci. 2003, 5, 771.en_US
dc.identifier.citedreferenceY. Matsushita, Y. Ueda, Inorg. Chem. 2003, 42, 7830.en_US
dc.identifier.citedreferenceH. Djieutedjeu, P. F. P. Poudeu, N. J. Takas, J. P. A. Makongo, A. Rotaru, K. G. S. Ranmohotti, C. J. Anglin, L. Spinu, J. B. Wiley, Angew. Chem. Int. Ed. 2010, 49, 9977.en_US
dc.identifier.citedreferenceP. F. P. Poudeu, N. Takas, C. Anglin, J. Eastwood, A. Rivera, J. Am. Chem. Soc. 2010, 132, 5751.en_US
dc.identifier.citedreferenceC. Anglin, N. Takas, J. Callejas, P. F. P. Poudeu, J. Solid State Chem. 2010, 183, 1529.en_US
dc.identifier.citedreferenceR. D. Shannon, Acta Crystallogr., Sect. A 1976, 32, 751.en_US
dc.identifier.citedreferenceR. D. Shannon, C. T. Prewitt, Acta Crystallogr., Sect. B 1969, 25, 925.en_US
dc.identifier.citedreferenceA. Skowron, F. W. Boswell, J. M. Corbett, N. J. Taylor, J. Solid State Chem. 1994, 112, 251.en_US
dc.identifier.citedreferenceG. M. Sheldrick, SHELXTL, Bruker Analytical X‐ray Instruments, Inc., Madison, WI., 2000.en_US
dc.identifier.citedreferenceN. E. Breese, M. O'Keeffe, Acta Crystallogr., Sect. B 1991, 47, 192.en_US
dc.identifier.citedreferenceK. Brandenburg, Diamond, Crystal Impact GbR, Bonn, Germany, 2005.en_US
dc.identifier.citedreferenceD. Y. Chung, T. Hogan, P. Brazis, M. Rocci‐Lane, C. Kannewurf, M. Bastea, C. Uher, M. G. Kanatzidis, Science 2000, 287, 1024.en_US
dc.identifier.citedreferenceB. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. A. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dresselhaus, G. Chen, Z. F. Ren, Science 2008, 320, 634.en_US
dc.identifier.citedreferenceP. H. Soni, M. V. Hathi, C. F. DeSai, Bull. Mater. Sci. 2003, 26, 683.en_US
dc.identifier.citedreferenceK. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, Science 2004, 303, 818.en_US
dc.identifier.citedreferenceP. F. P. Poudeu, J. D′Angelo, A. Downey, R. Pcionek, J. Sootsman, Z. H. Zhou, O. Palchik, T. P. Hogan, C. Uher, M. G. Kanatzidis, Mater. Res. Soc. Symp. P. 2006, 886, 195.en_US
dc.identifier.citedreferenceP. F. P. Poudeu, J. D′Angelo, A. D. Downey, J. L. Short, T. P. Hogan, M. G. Kanatzidis, Angew. Chem. Int. Ed. 2006, 45, 3835.en_US
dc.identifier.citedreferenceC. J. Vineis, A. Shakouri, A. Majumdar, M. G. Kanatzidis, Adv. Mater. 2010, 22, 3970.en_US
dc.identifier.citedreferenceJ. Androulakis, D. Y. Chung, X. L. Su, L. Zhang, C. Uher, T. C. Hasapis, E. Hatzikraniotis, K. M. Paraskevopoulos, M. G. Kanatzidis, Phys. Rev. B 2011, 84, 155207.en_US
dc.identifier.citedreferenceA. Mrotzek, M. G. Kanatzidis, Inorg. Chem. 2003, 42, 7200.en_US
dc.identifier.citedreferenceM. K. Han, J. Androulakis, S. J. Kim, M. G. Kanatzidis, Adv. Energ. Mater. 2012, 2, 157.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.