Show simple item record

Limits to reconstructing paleotopography from thermochronometer data

dc.contributor.authorOlen, Stephanie M.en_US
dc.contributor.authorEhlers, Todd A.en_US
dc.contributor.authorDensmore, Mathew S.en_US
dc.date.accessioned2013-01-03T19:41:55Z
dc.date.available2013-05-01T17:24:44Zen_US
dc.date.issued2012-03en_US
dc.identifier.citationOlen, Stephanie M.; Ehlers, Todd A.; Densmore, Mathew S. (2012). "Limits to reconstructing paleotopography from thermochronometer data." Journal of Geophysical Research: Earth Surface 117(F1): n/a-n/a. <http://hdl.handle.net/2027.42/95240>en_US
dc.identifier.issn0148-0227en_US
dc.identifier.issn2156-2202en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95240
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherMineral. Soc. of Am.en_US
dc.subject.otherErosionen_US
dc.subject.otherInversionen_US
dc.subject.otherNumerical Modelingen_US
dc.subject.otherPaleotopographyen_US
dc.subject.otherThermochronologyen_US
dc.subject.otherGeomorphologyen_US
dc.titleLimits to reconstructing paleotopography from thermochronometer dataen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherNow at Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germanyen_US
dc.contributor.affiliationotherDepartment of Geosciences, University of Tübingen, Tübingen, Germanyen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95240/1/jgrf851.pdf
dc.identifier.doi10.1029/2011JF001985en_US
dc.identifier.sourceJournal of Geophysical Research: Earth Surfaceen_US
dc.identifier.citedreferenceSchildgen, T. F., G. Balco, and D. L. Shuster ( 2010 ), Canyon incision and knickpoint propagation recorded by apatite 4 He/ 3 He thermochronometry, Earth Planet. Sci. Lett., 293, 377 – 387, doi: 10.1016/j.epsl.2010.03.009.en_US
dc.identifier.citedreferenceO'Sullivan, P. B., and R. R. Parrish ( 1995 ), The importance of apatite composition and single‐grain ages when interpreting fission track data from plutonic rocks: A case study from the Coast Ranges, British Columbia, Earth Planet. Sci. Lett., 132, 213 – 224, doi: 10.1016/0012‐821X(95)00058‐K.en_US
dc.identifier.citedreferenceParrish, R. R. ( 1983 ), Cenozoic thermal evolution and tectonics of the Coast Mountains of British Columbia: 1. Fission track dating, apparent uplift rates, and patterns of uplift, Tectonics, 2 ( 6 ), 601 – 631, doi: 10.1029/TC002i006p00601.en_US
dc.identifier.citedreferencePinet, C., C. Jaupart, J.‐C. Mareschal, C. Gariepy, G. Bienfait, and R. Lapointe ( 1991 ), Heat flow and structure of the lithosphere in the eastern Canadian Shield, J. Geophys. Res., 96 ( B12 ), 19,941 – 19,963, doi: 10.1029/91JB01020.en_US
dc.identifier.citedreferenceRahl, J. M., T. A. Ehlers, and B. A. van der Pluijm ( 2007 ), Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits, Earth Planet. Sci. Lett., 256, 147 – 161, doi: 10.1016/j.epsl.2007.01.020.en_US
dc.identifier.citedreferenceRoe, G. H., and R. S. Lindzen ( 2001 ), The mutual interaction between continental‐scale ice sheets and atmospheric stationary waves, J. Clim., 14, 1450 – 1465, doi: 10.1175/1520‐0442(2001)014<1450:TMIBCS>2.0.CO;2.en_US
dc.identifier.citedreferenceSambridge, M. ( 1999 a), Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space, Geophys. J. Int., 138, 479 – 494, doi: 10.1046/j.1365‐246X.1999.00876.x.en_US
dc.identifier.citedreferenceSambridge, M. ( 1999 b), Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble, Geophys. J. Int., 138, 727 – 746, doi: 10.1046/j.1365‐246x.1999.00900.x.en_US
dc.identifier.citedreferenceSchildgen, T. F., T. A. Ehlers, D. M. Whipp Jr., M. C. van Soest, K. X. Whipple, and K. V. Hodges ( 2009 ), Quantifying canyon incision and Andean Plateau surface uplift, southwest Peru: A thermochronometer and numerical modeling approach, J. Geophys. Res., 114, F04014, doi: 10.1029/2009JF001305.en_US
dc.identifier.citedreferenceShuster, D. L., T. A. Ehlers, M. E. Rusmore, and K. A. Farley ( 2005 ), Rapid glacial erosion at 1.8 Ma revealed by 4 He/ 3 He thermochronometry, Science, 310, 1668 – 1670, doi: 10.1126/science.1118519.en_US
dc.identifier.citedreferenceShuster, D. L., R. M. Flowers, and K. A. Farley ( 2006 ), The influence of natural radiation damage on helium diffusion kinetics in apatite, Earth Planet. Sci. Lett., 249, 148 – 161, doi: 10.1016/j.epsl.2006.07.028.en_US
dc.identifier.citedreferenceSpotila, J. A., J. T. Buscher, A. J. Meigs, and P. W. Reiners ( 2004 ), Long‐term glacial erosion of active mountain belts: Example of the Chugach‐St. Elias Range, Alaska, Geology, 32 ( 6 ), 501 – 504, doi: 10.1130/G20343.1.en_US
dc.identifier.citedreferenceStüwe, K., and M. Hintermüller ( 2000 ), Topography and isotherms revisited: The influence of laterally migrating drainage divides, Earth Planet. Sci. Lett., 184, 287 – 303, doi: 10.1016/S0012‐821X(00)00315‐0.en_US
dc.identifier.citedreferenceStüwe, K., L. White, and R. Brown ( 1994 ), The influence of eroding topography on steady‐state isotherms. Application to fission track analysis, Earth Planet. Sci. Lett., 124, 63 – 74, doi: 10.1016/0012‐821X(94)00068‐9.en_US
dc.identifier.citedreferenceThiede, R. C., J. R. Arrowsmith, B. Bookhagen, M. O. McWilliams, E. R. Sobel, and M. R. Strecker ( 2005 ), From tectonically to erosionally controlled development of the Himalayan orogen, Geology, 33 ( 8 ), 689 – 692, doi: 10.1130/G21483.1.en_US
dc.identifier.citedreferenceThiede, R. C., T. A. Ehlers, B. Bookhagen, and M. R. Strecker ( 2009 ), Erosional variability along the northwest Himalaya, J. Geophys. Res., 114, F01015, doi: 10.1029/2008JF001010.en_US
dc.identifier.citedreferenceValla, P. G., F. Herman, P. van der Beek, and J. Braun ( 2010 ), Inversion of thermochronological age‐elevation profiles to extract independent estimates of denudation and relief history—I: Theory and conceptual model, Earth Planet. Sci. Lett., 295, 511 – 522, doi: 10.1016/j.epsl.2010.04.033.en_US
dc.identifier.citedreferencevan der Beek, P. A., P. G. Valla, F. Herman, J. Braun, C. Persano, K. J. Dobson, and E. Labrin ( 2010 ), Inversion of thermochronological age‐elevation profiles to extract independent estimates of denudation and relief history—II: Application to the French Western Alps, Earth Planet. Sci. Lett., 296, 9 – 22, doi: 10.1016/j.epsl.2010.04.032.en_US
dc.identifier.citedreferenceWaples, D. W., and J. S. Waples ( 2004 ), A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: Minerals and nonporous rocks, Nat. Resour. Res., 13 ( 2 ), 97 – 122, doi: 10.1023/B:NARR.0000032647.41046.e7.en_US
dc.identifier.citedreferenceWhipp, D. M., Jr., and T. A. Ehlers ( 2007 ), Influence of groundwater flow on thermochronometer‐derived exhumation rates in the central Nepalese Himalaya, Geology, 35 ( 9 ), 851 – 854, doi: 10.1130/G23788A.1.en_US
dc.identifier.citedreferenceWhipp, D. M., Jr., T. A. Ehlers, J. Braun, and C. D. Spath ( 2009 ), Effects of exhumation kinematics and topographic evolution on detrital thermochronometer data, J. Geophys. Res., 114, F04021, doi: 10.1029/2008JF001195.en_US
dc.identifier.citedreferenceWhipple, K. X. ( 2009 ), The influence of climate on the tectonic evolution of mountain belts, Nat. Geosci., 2, 97 – 104, doi: 10.1038/ngeo413.en_US
dc.identifier.citedreferenceWillett, S. D., and M. T. Brandon ( 2002 ), On steady states in mountain belts, Geology, 30 ( 2 ), 175 – 178, doi: 10.1130/0091‐7613(2002)030<0175:OSSIMB>2.0.CO;2.en_US
dc.identifier.citedreferenceWillett, S. D., F. Schlunegger, and V. Picotti ( 2006 ), Messinian climate change ad erosional destruction of the central European Alps, Geology, 34 ( 8 ), 613 – 616, doi: 10.1130/G22280.1.en_US
dc.identifier.citedreferenceWoodsworth, G. J., R. G. Anderson, R. L. Armstrong, L. C. Struik, and P. van der Heyden ( 1991 ), Plutonic regimes, in Geology of Canada, vol. 4, Geology of the Cordilleran Orogen in Canada, edited by H. Gabrielse and C. J. Yorath, pp. 493 – 530, Geol. Surv. Can., Ottawa.en_US
dc.identifier.citedreferenceBao, G., Y. Dou, T. A. Ehlers, P. Li, Y. Wang, and Z. Xu ( 2011 ), Quantifying tectonic and geomorphic interpretations of thermochronometer data with inverse problem theory, Commun. Comput. Phys., 9, 129 – 146, doi: 10.4208/cicp.090110.270410a.en_US
dc.identifier.citedreferenceBraun, J. ( 2002 a), Quantifying the effect of recent relief changes on age‐elevation relationships, Earth Planet. Sci. Lett., 200, 331 – 343, doi: 10.1016/S0012‐821X(02)00638‐6.en_US
dc.identifier.citedreferenceBraun, J. ( 2002 b), Estimating exhumation rate and relief evolution by spectral analysis of age‐elevation datasets, Terra Nova, 14, 210 – 214, doi: 10.1046/j.1365‐3121.2002.00409.x.en_US
dc.identifier.citedreferenceBraun, J. ( 2003 ), Pecube: A new finite‐element code to solve the 3D heat transport equation including the effects of a time‐varying, finite amplitude surface topography, Comput. Geosci., 29, 787 – 794, doi: 10.1016/S0098‐3004(03)00052‐9.en_US
dc.identifier.citedreferenceBraun, J. ( 2005 ), Quantifying constraints on the rate of landform evolution derived from low‐temperature thermochronology, in Low‐Temperature Thermochronology: Techniques, Interpretations, and Applications, Rev. Mineral. Geochem., vol. 58, edited by P. W. Reiners and T. A. Ehlers, pp. 351 – 374, Mineral. Soc. of Am., Chantilly, Va., doi: 10.2138/rmg.2005.58.13.en_US
dc.identifier.citedreferenceBraun, J., and X. Robert ( 2005 ), Constraints on the rate of post‐orogenic erosional decay from low‐temperature thermochronological data: Applications to the Dabie Shan, China, Earth Surf. Processes Landforms, 30, 1203 – 1225, doi: 10.1002/esp.1271.en_US
dc.identifier.citedreferenceBraun, J., and M. Sambridge ( 1997 ), Modeling landscape evolution on geological time scales: A new method based on irregular spatial discretization, Basin Res., 9, 27 – 52, doi: 10.1046/j.1365‐2117.1997.00030.x.en_US
dc.identifier.citedreferenceClague, J. J. ( 1991 ), Quaternary glaciation and sedimentation, in Geology of Canada, vol. 4, Geology of the Cordilleran Orogen in Canada, edited by H. Gabrielse and C. J. Yorath, pp. 421 – 434, Geol. Surv. Can., Ottawa.en_US
dc.identifier.citedreferenceDensmore, M. S. ( 2008 ), Quantifying long‐term glacial denudation with low‐temperature thermochronology, 186 pp., Univ. of Mich., Ann Arbor.en_US
dc.identifier.citedreferenceDensmore, M. S., T. A. Ehlers, and G. J. Woodsworth ( 2007 ), Effect of Alpine glaciation on thermochronometer age‐elevation profiles, Geophys. Res. Lett., 34, L02502, doi: 10.1029/2006GL028371.en_US
dc.identifier.citedreferenceDenton, G. H., and R. L. Armstrong ( 1969 ), Miocene‐Pliocene glaciations in southern Alaska, Am. J. Sci., 267, 1121 – 1142, doi: 10.2475/ajs.267.10.1121.en_US
dc.identifier.citedreferenceDodson, M. H. ( 1973 ), Closure temperature in cooling geochronological and petrological systems, Contrib. Mineral. Petrol., 40, 259 – 274, doi: 10.1007/BF00373790.en_US
dc.identifier.citedreferenceEhlers, T. A. ( 2005 ), Crustal thermal processes and the interpretation of thermochronometer data, in Low‐Temperature Thermochronology: Techniques, Interpretations, and Applications, Rev. Mineral. Geochem., vol. 58, edited by P. W. Reiners and T. A. Ehlers, pp. 315 – 350, Mineral. Soc. of Am., Chantilly, Va., doi: 10.2138/rmg.2005.58.12.en_US
dc.identifier.citedreferenceEhlers, T. A., and D. S. Chapman ( 1999 ), Normal fault thermal regimes: Conductive and thermal heat transfer surrounding the Wasatch fault, Utah, Tectonophysics, 312, 217 – 234, doi: 10.1016/S0040‐1951(99)00203‐6.en_US
dc.identifier.citedreferenceEhlers, T. A., and K. A. Farley ( 2003 ), Apatite (U‐Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes, Earth Planet. Sci. Lett., 206, 1 – 14, doi: 10.1016/S0012‐821X(02)01069‐5.en_US
dc.identifier.citedreferenceEhlers, T. A., and C. J. Poulsen ( 2009 ), Influence of Andean uplift on climate and paleoaltimetry estimates, Earth Planet. Sci. Lett., 281, 238 – 248, doi: 10.1016/j.epsl.2009.02.026.en_US
dc.identifier.citedreferenceEhlers, T. A., et al. ( 2005 ), Computational tools for low‐temperature thermochronometer interpretation, in Low‐Temperature Thermochronology: Techniques, Interpretations, and Applications, Rev. Mineral. Geochem., vol. 58, edited by P. W. Reiners and T. A. Ehlers, pp. 589 – 622, Mineral. Soc. of Am., Chantilly, Va., doi: 10.2138/rmg.2005.58.22.en_US
dc.identifier.citedreferenceEhlers, T. A., K. A. Farley, M. E. Rusmore, and G. J. Woodsworth ( 2006 ), Apatite (U‐Th)/He signal of large‐magnitude accelerated glacial erosion, southwest British Columbia, Geology, 34 ( 9 ), 765 – 768, doi: 10.1130/G22507.1.en_US
dc.identifier.citedreferenceEnkelmann, E., J. I. Garver, and T. L. Pavlis ( 2008 ), Rapid exhumation of ice‐covered rocks of the Chugach‐St. Elias orogen, southeast Alaska, Geology, 36 ( 12 ), 915 – 918, doi: 10.1130/G2252A.1.en_US
dc.identifier.citedreferenceEnkelmann, E., P. K. Zeitler, T. L. Pavlis, J. I. Garver, and K. D. Ridgeway ( 2009 ), Intense localized rock uplift and erosion in the St Elias orogen of Alaska, Nat. Geosci., 2, 360 – 363, doi: 10.1038/ngeo502.en_US
dc.identifier.citedreferenceFarley, K. A. ( 2000 ), Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite, J. Geophys. Res., 105 ( B2 ), 2903 – 2914, doi: 10.1029/1999JB900348.en_US
dc.identifier.citedreferenceFarley, K. A. ( 2002 ), (U‐Th)/He dating: Techniques, calibrations, and applications, in Noble Gases in Geochemistry and Cosmochemistry, Rev. Mineral. Geochem., vol. 47, edited by D. Porcelli, C. J. Ballentine, and R. Wieler, pp. 819 – 844, Mineral. Soc. of Am., Chantilly, Va.en_US
dc.identifier.citedreferenceFarley, K. A., M. E. Rusmore, and S. W. Bogue ( 2001 ), Post‐10 Ma uplift and exhumation of the northern Coast Mountains, British Columbia, Geology, 29 ( 2 ), 99 – 102, doi: 10.1130/0091‐7613(2001)029<0099:PMUAEO>2.0.CO;2.en_US
dc.identifier.citedreferenceHouse, M. A., B. P. Wernicke, and K. A. Farley ( 1998 ), Dating topography of the Sierra Nevada, California, using apatite (U‐Th)/He ages, Nature, 396, 66 – 69, doi: 10.1038/23926.en_US
dc.identifier.citedreferenceHouse, M. A., B. P. Wernicke, and K. A. Farley ( 2001 ), Paleo‐geomorphology of the Sierra Nevada, California, from (U‐Th)/He ages in apatite, Am. J. Sci., 301, 77 – 102, doi: 10.2475/ajs.301.2.77.en_US
dc.identifier.citedreferenceHuntington, K. W., A. E. Blythe, and K. V. Hodges ( 2006 ), Climate change and late Pliocene acceleration of erosion in the Himalaya, Earth Planet. Sci. Lett., 252, 107 – 118, doi: 10.1016/j.epsl.2006.09.031.en_US
dc.identifier.citedreferenceInsel, N., C. J. Poulsen, and T. A. Ehlers ( 2009 ), Influence of the Andes Mountains on South American moisture transport, convection, and precipitation, Clim. Dyn., 35, 1477 – 1492, doi: 10.1007/s00382‐009‐0637‐1.en_US
dc.identifier.citedreferenceKetcham, R. A. ( 2005 ), Forward and inverse modeling of low‐temperature thermochronometry data, in Low‐Temperature Thermochronology: Techniques, Interpretations, and Applications, Rev. Mineral. Geochem., vol. 58, edited by P. W. Reiners and T. A. Ehlers, pp. 275 – 314, Mineral. Soc. of Am., Chantilly, Va., doi: 10.2138/rmg.2005.58.11.en_US
dc.identifier.citedreferenceKooi, H., and C. Beaumont ( 1996 ), Large‐scale geomorphology: Classical concepts reconciled and integrated with contemporary ideas via a surface processes model, J. Geophys. Res., 101 ( B2 ), 3361 – 3386, doi: 10.1029/95JB01861.en_US
dc.identifier.citedreferenceLachenbruch, A. H. ( 1970 ), Crustal temperature and heat production: Implications of the linear heat‐flow relation, J. Geophys. Res., 75, 3291 – 3300, doi: 10.1029/JB075i017p03291.en_US
dc.identifier.citedreferenceLees, C. H. ( 1910 ), On the shapes of the isogeotherms under mountain ranges in radio‐active districts, Proc. R. Soc. London A, 83 ( 563 ), 339 – 346.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.