Show simple item record

A mechanistic ecohydrological model to investigate complex interactions in cold and warm water‐controlled environments: 1. Theoretical framework and plot‐scale analysis

dc.contributor.authorFatichi, S.en_US
dc.contributor.authorIvanov, V. Y.en_US
dc.contributor.authorCaporali, E.en_US
dc.date.accessioned2013-01-03T19:42:26Z
dc.date.available2013-06-11T19:15:54Zen_US
dc.date.issued2012-05en_US
dc.identifier.citationFatichi, S.; Ivanov, V. Y.; Caporali, E. (2012). "A mechanistic ecohydrological model to investigate complex interactions in cold and warm water‐controlled environments: 1. Theoretical framework and plot‐scale analysis." Journal of Advances in Modeling Earth Systems 4(5): n/a-n/a. <http://hdl.handle.net/2027.42/95321>en_US
dc.identifier.issn1942-2466en_US
dc.identifier.issn1942-2466en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95321
dc.publisherAcademicen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherHydrology Modelingen_US
dc.subject.otherVegetation Modelingen_US
dc.subject.otherEcohydrologyen_US
dc.titleA mechanistic ecohydrological model to investigate complex interactions in cold and warm water‐controlled environments: 1. Theoretical framework and plot‐scale analysisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA.en_US
dc.contributor.affiliationotherDepartment of Civil and Environmental Engineering, University of Florence, Florence, Italy.en_US
dc.contributor.affiliationotherInstitute of Environmental Engineering, ETH Zürich, Zurich, Switzerland.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95321/1/jame60.pdf
dc.identifier.doi10.1029/2011MS000086en_US
dc.identifier.sourceJournal of Advances in Modeling Earth Systemsen_US
dc.identifier.citedreferenceReich, P. B., M. B. Walters, and D. S. Ellsworth ( 1997 ), From tropics to tundra: Global convergence in plant functioning, Proc. Natl. Acad. Sci. U. S. A., 94, 13,730 – 13,734.en_US
dc.identifier.citedreferenceThornley, J. H. M. ( 1970 ), Respiration, growth and maintenance in plants, Nature, 227, 304 – 305, doi: 10.1038/227304b0.en_US
dc.identifier.citedreferenceTromp‐van Meerveld, I., and M. Weiler ( 2008 ), Hillslope dynamics modeled with increasing complexity, J. Hydrol., 361, 24 – 40, doi: 10.1016/j.jhydrol.2008.07.019.en_US
dc.identifier.citedreferenceTucker, G. E., S. T. Lancaster, N. M. Gasparini, R. L. Bras, and S. M. Rybarczyk ( 2001 ), An object‐oriented framework for distributed hydrologic and geomorphologic modeling using triangulated irregular networks, Comput. Geosci., 27 ( 8 ), 959 – 973, doi: 10.1016/S0098‐3004(00)00134‐5.en_US
dc.identifier.citedreferenceTuzet, A., A. Perrier, and R. Leuning ( 2003 ), A coupled model of stomatal conductance, photosynthesis and transpiration, Plant Cell Environ., 26, 1097 – 1116, doi: 10.1046/j.1365‐3040.2003.01035.x.en_US
dc.identifier.citedreferenceTVA ( 1972 ), Heat and mass transfer between a water surface and the atmosphere, Tech. Rep. 14, Tenn. Val. Auth. Water Resour. Res. Eng. Lab., Norrisen_US
dc.identifier.citedreferencevan den Hurk, B. J. J. M., and A. A. M. Holtslag ( 1997 ), On the bulk parameterization of surface fluxes for various conditions and parameter ranges, Boundary Layer Meteorol., 82, 119 – 134, doi: 10.1023/A:1000245600901.en_US
dc.identifier.citedreferencevanGenuchten, M. T. ( 1980 ), A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892 – 898, doi: 10.2136/sssaj1980.03615995004400050002x.en_US
dc.identifier.citedreferenceVeatch, W., P. D. Brooks, J. R. Gustafson, and N. P. Molotch ( 2009 ), Quantifying the effects of forest canopy cover on net snow accumulation at a continental, mid‐latitude site, Ecohydrology, 2 ( 2 ), 115 – 128, doi: 10.1002/eco.45.en_US
dc.identifier.citedreferenceVereecken, H., M. Weynants, M. Javaux, Y. Pachepsky, M. G. Schaap, and M. van Genuchten ( 2010 ), Using pedotransfer functions to estimate the van Genuchten‐Mualem soil hydraulic properties: A review, Vadose Zone J., 9, 795 – 820, doi: 10.2136/vzj2010.0045.en_US
dc.identifier.citedreferenceVerseghy, D. L. ( 1991 ), CLASS‐A Canadian land surface scheme for GCMs. I. Soil model, Int. J. Climatol., 11, 111 – 133, doi: 10.1002/joc.3370110202.en_US
dc.identifier.citedreferenceVivoni, E. R., V. Y. Ivanov, R. L. Bras, and D. Entekhabi ( 2005 ), On the effects of triangulated terrain resolution on distributed hydrologic model response, Hydrol. Processes, 19 ( 11 ), 2101 – 2122, doi: 10.1002/hyp.5671.en_US
dc.identifier.citedreferenceWang, Y. P., and R. Leuning ( 1998 ), A two‐leaf model for canopy conductance, photosynthesis and portioning of available energy I: Model description and comparison with a multi‐layered model, Agric. For. Meteorol., 91, 89 – 111, doi: 10.1016/S0168‐1923(98)00061‐6.en_US
dc.identifier.citedreferenceWeiler, M., and J. J. McDonnell ( 2004 ), Virtual experiments: A new approach for improving process conceptualization in hillslope hydrology, J. Hydrol., 285, 3 – 18, doi: 10.1016/S0022‐1694(03)00271‐3.en_US
dc.identifier.citedreferenceWhite, M. A., P. E. Thornton, S. W. Running, and R. R. Nemani ( 2000 ), Parameterization and sensitivity analysis of the BIOME‐BGC terrestrial ecosystem model: Net primary production controls, Earth Interact., 4 ( 3 ), 1 – 85, doi: 10.1175/1087‐3562(2000)004<0003:PASAOT>2.0.CO;2.en_US
dc.identifier.citedreferenceWigmosta, M. S., and D. P. Lettenmaier ( 1999 ), A comparison of simplified methods for routing topographically driven subsurface flow, Water Resour. Res., 35 ( 1 ), 255 – 264, doi: 10.1029/1998WR900017.en_US
dc.identifier.citedreferenceWigmosta, M. S., L. W. Vail, and D. P. Lettenmaier ( 1994 ), A distributed hydrology‐vegetation model for complex terrain, Water Resour. Res., 30 ( 6 ), 1665 – 1679, doi: 10.1029/94WR00436.en_US
dc.identifier.citedreferenceWilliams, K. S., and D. G. Tarboton ( 1999 ), The ABC's of snowmelt: A topographically factorized energy component snowmelt model, Hydrol. Processes, 13, 1905 – 1920, doi: 10.1002/(SICI)1099‐1085(199909)13:12/13<1905::AID‐HYP890>3.0.CO;2‐#.en_US
dc.identifier.citedreferenceWinstral, A., and D. Marks ( 2002 ), Simulating wind fields and snow redistribution using terrain‐based parameters to model snow accumulation and melt over a semi‐arid mountain catchment, Hydrol. Processes, 16, 3585 – 3603, doi: 10.1002/hyp.1238.en_US
dc.identifier.citedreferenceWood, E. F., and et al., ( 2011 ), Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water, Water Resour. Res., 47, W05301, doi: 10.1029/2010WR010090.en_US
dc.identifier.citedreferenceWramneby, A., B. Smith, S. Zaehle, and M. T. Sykes ( 2008 ), Parameter uncertainties in the modelling of vegetation dynamics‐effects on tree community structure and ecosystem functioning in European forest biomes, Ecol. Modell., 216, 277 – 290, doi: 10.1016/j.ecolmodel.2008.04.013.en_US
dc.identifier.citedreferenceWright, I. J., and et al., ( 2004 ), The worldwide leaf economics spectrum, Nature, 428, 821 – 827, doi: 10.1038/nature02403.en_US
dc.identifier.citedreferenceZeng, X., R. Dickinson, M. Barlage, Y. Dai, G. Wang, and K. Oleson ( 2005 ), Treatment of undercanopy turbulence in land models, J. Clim., 18, 5086 – 5094, doi: 10.1175/JCLI3595.1.en_US
dc.identifier.citedreferenceAbbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O'Connell, and J. Rasmussen ( 1986 a), An introduction to the european hydrologic system‐systeme hydrologique europeen, SHE, 1: History and philosophy of a physically‐based, distributed modeling system, J. Hydrol., 87, 45 – 59, doi: 10.1016/0022‐1694(86)90114‐9.en_US
dc.identifier.citedreferenceAbbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O'Connell, and J. Rasmussen ( 1986 b), An introduction to the european hydrologic system‐systeme hydrologique europeen, SHE, 2: Structure of a physically‐based, distributed modeling system, J. Hydrol., 87, 61 – 77, doi: 10.1016/0022‐1694(86)90115‐0.en_US
dc.identifier.citedreferenceAbdella, K., and N. A. McFarlane ( 1996 ), Parameterization of the surface‐layer exchange coefficients for atmospheric models, Boundary Layer Meteorol., 80, 223 – 248.en_US
dc.identifier.citedreferenceAbdelnour, A., M. Stieglitz, F. Pan, and R. McKane ( 2011 ), Catchment hydrological responses to forest harvest amount and spatial pattern, Water Resour. Res., 47, W09521, doi: 10.1029/2010WR010165.en_US
dc.identifier.citedreferenceAnderson, E. A. ( 1968 ), Development and testing of snow pack energy balance equations, Water Resour. Res., 4 ( 1 ), 19 – 37, doi: 10.1029/WR004i001p00019.en_US
dc.identifier.citedreferenceArain, M. A., F. Yuan, and T. A. Black ( 2006 ), Soil‐plant nitrogen cycling modulated carbon exchanges in a western temperate conifer forest in Canada, Agric. For. Meteorol., 140, 171 – 192, doi: 10.1016/j.agrformet.2006.03.021.en_US
dc.identifier.citedreferenceArora, V. ( 2002 ), Modeling vegetation as a dynamic component in soil‐vegetation‐atmosphere transfer schemes and hydrological models, Rev. Geophys., 40 ( 2 ), 1006, doi: 10.1029/2001RG000103.en_US
dc.identifier.citedreferenceArora, V. K., and G. J. Boer ( 2005 ), A parameterization of leaf phenology for the terrestrial ecosystem component of climate models, Global Change Biol., 11 ( 1 ), 39 – 59, doi: 10.1111/j.1365‐2486.2004.00890.x.en_US
dc.identifier.citedreferenceArya, S. P. ( 2001 ), Introduction to Micrometeorology, 2nd ed., Academic, San Diego, Califen_US
dc.identifier.citedreferenceAssmann, S. M. ( 1999 ), The cellular basis of guard cell sensing to rising CO 2, Plant Cell Environ., 22, 629 – 637, doi: 10.1046/j.1365‐3040.1999.00408.x.en_US
dc.identifier.citedreferenceAssouline, S. ( 2004 ), Rainfall‐induced soil surface sealing: A critical review of observations, conceptual models, and solutions, Vadose Zone J., 3, 570 – 591.en_US
dc.identifier.citedreferenceAssouline, S., and Y. Mualem ( 1997 ), Modeling the dynamics of seal formation and its effect on infiltration as related to soil and rainfall characteristics, Water Resour. Res., 33 ( 7 ), 1527 – 1536, doi: 10.1029/96WR02674.en_US
dc.identifier.citedreferenceAssouline, S., and Y. Mualem ( 2001 ), Soil seal formation and its effect on infiltration: Uniform versus nonuniform seal approximation, Water Resour. Res., 37 ( 2 ), 297 – 305, doi: 10.1029/2000WR900275.en_US
dc.identifier.citedreferenceBaldocchi, D. D., and K. B. Wilson ( 2001 ), Modeling CO 2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales, Ecol. Modell., 142, 155 – 184, doi: 10.1016/S0304‐3800(01)00287‐3.en_US
dc.identifier.citedreferenceBall, J. T., I. E. Woodrow, and J. A. Berry ( 1987 ), A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, in Progress in Photosynthesis Research, edited by J. Biggins pp. 221 – 224, Martinus Nijhoff, Dordrecht, Netherlands.en_US
dc.identifier.citedreferenceBand, L. E., P. Patterson, R. Nemani, and S. W. Running ( 1993 ), Forest ecosystem processes at the watershed scale: Incorporating hillslope hydrology, Agric. For. Meteorol., 63, 93 – 126, doi: 10.1016/0168‐1923(93)90024‐C.en_US
dc.identifier.citedreferenceBartelt, P., and M. Lehning ( 2002 ), A physical SNOWPACK model for the Swiss avalanche warning. Part I: Numerical model, Cold Reg. Technol., 35, 123 – 145, doi: 10.1016/S0165‐232X(02)00074‐5.en_US
dc.identifier.citedreferenceBelair, S., R. Brown, J. Mailhot, B. Bilodeau, and L.‐P. Crevier ( 2003 ), Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results, J. Hydrometeorol., 4, 371 – 386, doi: 10.1175/1525‐7541(2003)4<371:OIOTIL>2.0.CO;2.en_US
dc.identifier.citedreferenceBertoldi, G., R. Rigon, and T. M. Over ( 2006 a), Impact of watershed geomorphic characteristics on the energy and water budgets, J. Hydrometeorol., 7, 389 – 403, doi: 10.1175/JHM500.1.en_US
dc.identifier.citedreferenceBertoldi, G., R. Rigon, D. Tamanini, and F. Zanotti ( 2006 b), GEOtop version 0.875: Technical description and programs guide, Tech. Rep. dica‐06‐001, Univ. of Trento, Trento, Italy.en_US
dc.identifier.citedreferenceBeven, K. J., and J. Freer ( 2001 ), A dynamic TOPMODEL, Hydrol. Processes, 15, 1993 – 2011, doi: 10.1002/hyp.252.en_US
dc.identifier.citedreferenceBeven, K. J., and M. J. Kirkby ( 1979 ), A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 43 – 69, doi: 10.1080/02626667909491834.en_US
dc.identifier.citedreferenceBewley, D., R. Essery, J. Pomeroy, and C. Ménard ( 2010 ), Measurements and modelling of snowmelt and turbulent heat fluxes over shrub tundra, Hydrol. Earth Syst. Sci., 14, 1331 – 1340, doi: 10.5194/hess‐14‐1331‐2010.en_US
dc.identifier.citedreferenceBonan, G. B. ( 1996 ), A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user's guide, NCAR Tech. Note NCAR/TN‐417, Natl. Cent. for Atmos. Res., Boulder, Colo.en_US
dc.identifier.citedreferenceBonan, G. B. ( 2002 ), Ecological Climatology: Concept and Applications, Cambridge Univ. Press, New Yorken_US
dc.identifier.citedreferenceBonan, G. B. ( 2008 ), Forests and climate change: Forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444 – 1449, doi: 10.1126/science.1155121.en_US
dc.identifier.citedreferenceBonan, G. B., S. Levis, L. Kergoat, and K. W. Oleson ( 2002 ), Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models, Global Biogeochem. Cycles, 16 ( 2 ), 1021, doi: 10.1029/2000GB001360.en_US
dc.identifier.citedreferenceBonan, G. B., S. Levis, S. Sitch, M. Vertenstein, and K. W. Oleson ( 2003 ), A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics, Global Change Biol., 9, 1543 – 1566, doi: 10.1046/j.1365‐2486.2003.00681.x.en_US
dc.identifier.citedreferenceBond, B. ( 2003 ), Hydrology and ecology meet‐and the meeting is good, Hydrol. Processes, 17, 2087 – 2089, doi: 10.1002/hyp.5133.en_US
dc.identifier.citedreferenceBotta, A., N. Viovy, P. Ciais, and P. Friedlingstein ( 2000 ), A global prognostic scheme of leaf onset using satellite data, Global Change Biol., 6, 709 – 726, doi: 10.1046/j.1365‐2486.2000.00362.x.en_US
dc.identifier.citedreferenceBotter, G., S. Zanardo, A. Porporato, I. Rodriguez‐Iturbe, and A. Rinaldo ( 2008 ), Ecohydrological model of flow duration curves and annual minima, Water Resour. Res., 44, W08418, doi: 10.1029/2008WR006814.en_US
dc.identifier.citedreferenceBras, R. L. ( 1990 ), Hydrology: An Introduction to Hydrologic Science, Addison‐Wesley, Reading, Massen_US
dc.identifier.citedreferenceBrutsaert, W. ( 2005 ), Hydrology: An Introduction, Cambridge Univ. Press, Cambridge, U. Ken_US
dc.identifier.citedreferenceCamporese, M., C. Paniconi, M. Putti, and S. Orlandini ( 2010 ), Surface‐subsurface flow modeling with path‐based runoff routing, boundary condition‐based coupling, and assimilation of multisource observation data, Water Resour. Res., 46, W02512, doi: 10.1029/2008WR007536.en_US
dc.identifier.citedreferenceCaylor, K. K., S. Manfreda, and I. Rodriguez‐Iturbe ( 2005 ), On the coupled geomorphological and ecohydrological organization of river basins, Adv. Water Resour., 28, 69 – 86, doi: 10.1016/j.advwatres.2004.08.013.en_US
dc.identifier.citedreferenceCayrol, P., L. Kergoat, S. Moulin, G. Dedieu, and A. Chehbouni ( 2000 ), Calibrating a coupled SVAT‐vegetation growth model with remotely sensed reflectance and surface temperature––A case study for the HAPEX‐Sahel grassland sites, J. Appl. Meteorol., 39 ( 12 ), 2452 – 2472, doi: 10.1175/1520‐0450(2000)039<2452:CACSVG>2.0.CO;2.en_US
dc.identifier.citedreferenceChanson, H. ( 2004 ), The Hydraulics of Open Channel Flow: An Introduction, Elsevier, Oxford, U. Ken_US
dc.identifier.citedreferenceChapin, F. S., E.‐D. Schulze, and H. A. Mooney ( 1990 ), The ecology and economics of storage in plants, Annu. Rev. Ecol. Syst., 21, 423 – 447, doi: 10.1146/annurev.es.21.110190.002231.en_US
dc.identifier.citedreferenceChapin, F. S., J. T. Randerson, A. D. McGuire, J. A. Foley, and C. B. Field ( 2008 ), Changing feedbacks in the climate‐biosphere system, Front. Ecol. Environ., 6 ( 6 ), 313 – 320, doi: 10.1890/080005.en_US
dc.identifier.citedreferenceChoudhury, B. J., and J. L. Monteith ( 1988 ), A four‐layer model for the heat budget of homogeneous land surfaces, Q. J. R. Meteorol. Soc., 114, 378 – 398, doi: 10.1002/qj.49711448006.en_US
dc.identifier.citedreferenceChow, V. T. ( 1988 ), Applied Hydrology, McGraw‐Hill, New Yorken_US
dc.identifier.citedreferenceCiarapica, L., and E. Todini ( 2002 ), TOPKAPI: A model for the representation of the rainfall‐runoff process at different scales, Hydrol. Processes, 16, 207 – 229, doi: 10.1002/hyp.342.en_US
dc.identifier.citedreferenceCollins, D. B. G., and R. L. Bras ( 2007 ), Plant rooting strategies in water‐limited ecosystems, Water Resour. Res., 43, W06407, doi: 10.1029/2006WR005541.en_US
dc.identifier.citedreferenceCox, P. M. ( 2001 ), Description of the TRIFFID Dynamic Global Vegetation Model, Tech. Note 24, Met Off. Hadley Cent., Exeter, U. Ken_US
dc.identifier.citedreferenceCrawford, N., and R. Linsley ( 1966 ), Digital simulation on hydrology: Stanford watershed model IV, Tech. Rep. 39, Stanford Univ., Palo Alto, Califen_US
dc.identifier.citedreferenceDai, Y., R. E. Dickinson, and Y.‐P. Wang ( 2004 ), A two‐big‐leaf model for canopy temperature, photosynthesis, and stomatal conductance, J. Clim., 17, 2281 – 2299, doi: 10.1175/1520‐0442(2004)017<2281:ATMFCT>2.0.CO;2.en_US
dc.identifier.citedreferenceDaly, E., and A. Porporato ( 2005 ), A review of soil moisture dynamics: From rainfall infiltration to ecosystem response, Environ. Eng. Sci., 22 ( 1 ), 9 – 24, doi: 10.1089/ees.2005.22.9.en_US
dc.identifier.citedreferenceDaly, E., A. Porporato, and I. Rodriguez‐Iturbe ( 2004 ), Coupled dynamics of photosynthesis, transpiration, and soil water balance. Part I: Upscaling from hourly to daily level, J. Hydrometeorol., 5, 546 – 558, doi: 10.1175/1525‐7541(2004)005<0546:CDOPTA>2.0.CO;2.en_US
dc.identifier.citedreferencede Pury, D. G. G., and G. D. Farquhar ( 1997 ), Simple scaling of photosynthesis from leaves to canopies without the errors of big‐leaf models, Plant Cell Environ., 20 ( 5 ), 537 – 557, doi: 10.1111/j.1365‐3040.1997.00094.x.en_US
dc.identifier.citedreferenceDeardorff, J. W. ( 1978 ), Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation, J. Geophys. Res., 83 ( C4 ), 1889 – 1903, doi: 10.1029/JC083iC04p01889.en_US
dc.identifier.citedreferenceDeckmym, G., H. Verbeeck, M. O. de Beeck, D. Vansteenkiste, K. Steppe, and R. Ceulemans ( 2008 ), ANAFORE: A stand‐scale process‐based forest model that includes wood tissue development and labile carbon storage in trees, Ecol. Modell., 215, 345 – 368, doi: 10.1016/j.ecolmodel.2008.04.007.en_US
dc.identifier.citedreferenceDewar, R. C. ( 2002 ), The Ball‐Berry‐Leuning and Tardieu‐Davies stomatal models: Synthesis and extension within a spatially aggregated picture of guard cell function, Plant Cell Environ., 25, 1383 – 1398, doi: 10.1046/j.1365‐3040.2002.00909.x.en_US
dc.identifier.citedreferenceDickinson, R. E. ( 1983 ), Land surface processes and climate‐surface albedos and energy balance, Adv. Geophys., 25, 305 – 353, doi: 10.1016/S0065‐2687(08)60176‐4.en_US
dc.identifier.citedreferenceDickinson, R. E., A. Henderson‐Sellers, and P. J. Kennedy ( 1993 ), Biosphere‐atmosphere transfer scheme (BATS) version 1E as coupled to the NCAR Community Climate Model, NCAR Tech. Note NCAR/TN‐387+STR, Natl. Cent. for Atmos. Res., Boulder, Coloen_US
dc.identifier.citedreferenceDickinson, R. E., M. Shaikh, R. Bryant, and L. Graumlich ( 1998 ), Interactive canopies for a climate model, J. Clim., 11, 2823 – 2836, doi: 10.1175/1520‐0442(1998)011<2823:ICFACM>2.0.CO;2.en_US
dc.identifier.citedreferenceDickinson, R. E., et al. ( 2002 ), Nitrogen controls on climate model evapotranspiration, J. Clim., 15, 278 – 294, doi: 10.1175/1520‐0442(2002)015<0278:NCOCME>2.0.CO;2.en_US
dc.identifier.citedreferenceDingman, S. L. ( 1994 ), Physical Hydrology, Prentice‐Hall, Upple Saddle River, N. Jen_US
dc.identifier.citedreferenceDouville, H., J.‐F. Royer, and J.‐F. Mahfouf ( 1995 ), A new snow parameterization for the Meteo‐France climate model. Part I: Validation in stand‐alone experiments, Clim. Dyn., 12, 21 – 35, doi: 10.1007/BF00208760.en_US
dc.identifier.citedreferenceDrewry, D. T., P. Kumar, S. Long, C. Bernacchi, X.‐Z. Liang, and M. Sivapalan ( 2010 a), Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway, J. Geophys. Res., 115, G04022, doi: 10.1029/2010JG001340.en_US
dc.identifier.citedreferenceDrewry, D. T., P. Kumar, S. Long, C. Bernacchi, X.‐Z. Liang, and M. Sivapalan ( 2010 b), Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO 2, J. Geophys. Res., 115, G04023, doi: 10.1029/2010JG001341.en_US
dc.identifier.citedreferenceDubayah, R., and S. Loechel ( 1997 ), Modeling topographic solar radiation using GOES data, J. Appl. Meteorol., 36, 141 – 154, doi: 10.1175/1520‐0450(1997)036<0141:MTSRUG>2.0.CO;2.en_US
dc.identifier.citedreferenceEagleson, P. S. ( 2002 ), Ecohydrology: Darwinian Expression of Vegetation Form and Function, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceEbel, B. A., K. Loague, D. R. Montgomery, and W. E. Dietrich ( 2008 ), Physics‐based continuous simulation of long‐term near‐surface hydrologic response for the Coos Bay experimental catchment, Water Resour. Res., 44, W07417, doi: 10.1029/2007WR006442.en_US
dc.identifier.citedreferenceEllis, C. R., J. W. Pomeroy, T. Brown, and J. MacDonald ( 2010 ), Simulation of snow accumulation and melt in needleleaf forest environments, Hydrol. Earth Syst. Sci., 14, 925 – 940, doi: 10.5194/hess‐14‐925‐2010.en_US
dc.identifier.citedreferenceEmanuel, R. E., H. E. Epstein, B. L. McGlynn, D. L. Welsch, D. J. Muth, and P. D'Odorico ( 2010 ), Spatial and temporal controls on watershed ecohydrology in the northern Rocky Mountains, Water Resour. Res., 46, W11553, doi: 10.1029/2009WR008890.en_US
dc.identifier.citedreferenceEmmerich, W. E., and C. L. Verdugo ( 2008 ), Long‐term carbon dioxide and water flux database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S09, doi: 10.1029/2006WR005693.en_US
dc.identifier.citedreferenceEssery, R., E. Martin, H. Douville, A. Fernandez, and E. Brun ( 1999 ), A comparison of four snow models using observations from an alpine site, Clim. Dyn., 15, 583 – 593, doi: 10.1007/s003820050302.en_US
dc.identifier.citedreferenceEssery, R., N. Rutter, J. Pomeroy, R. Baxter, M. Stähli, D. Gustafsson, A. Barr, P. Bartlett, and K. Elder ( 2009 ), SNOWMIP2: An evaluation of forest snow process simulations, Bull. Am. Meteorol. Soc., 90 ( 8 ), 1120 – 1135, doi: 10.1175/2009BAMS2629.1.en_US
dc.identifier.citedreferenceFarquhar, G. D. ( 1989 ), Models of integrated photosynthesis of cells and leaves, Philos. Trans. R. Soc. B, 323, 357 – 367, doi: 10.1098/rstb.1989.0016.en_US
dc.identifier.citedreferenceFatichi, S. ( 2010 ), The modeling of hydrological cycle and its interaction with vegetation in the framework of climate change, PhD thesis, Univ. of Florence, Florence, Italyen_US
dc.identifier.citedreferenceFatichi, S., V. Y. Ivanov, and E. Caporali ( 2011 ), Simulation of future climate scenarios with a weather generator, Adv. Water Resour., 34, 448 – 467, doi: 10.1016/j.advwatres.2010.12.013.en_US
dc.identifier.citedreferenceFatichi, S., V. Y. Ivanov, and E. Caporali ( 2012 ), A mechanistic ecohydrological model to investigate complex interactions in cold and warm water‐controlled environments: 2. Spatiotemporal analyses, J. Adv. Model. Earth Syst., doi: 10.1029/2011MS000087, in press.en_US
dc.identifier.citedreferenceFeddes, R. A., et al. ( 2001 ), Modeling root water uptake in hydrological and climate models, Bull. Am. Meteorol. Soc., 82 ( 12 ), 2797 – 2809, doi: 10.1175/1520‐0477(2001)082<2797:MRWUIH>2.3.CO;2.en_US
dc.identifier.citedreferenceFernandez‐Illescas, C. P., A. Porporato, F. Laio, and I. Rodriguez‐Iturbe ( 2001 ), The ecohydrological role of soil texture in a water‐limited ecosystem, Water Resour. Res., 37 ( 12 ), 2863 – 2872, doi: 10.1029/2000WR000121.en_US
dc.identifier.citedreferenceFlerchinger, G. N., D. Marks, M. L. Reba, Q. Yu, and M. S. Seyfried ( 2010 ), Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment, Hydrol. Earth Syst. Sci., 14, 965 – 978, doi: 10.5194/hess‐14‐965‐2010.en_US
dc.identifier.citedreferenceFoley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine ( 1996 ), An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics, Global Biogeochem. Cycles, 10 ( 4 ), 603 – 628, doi: 10.1029/96GB02692.en_US
dc.identifier.citedreferenceFreeze, R. A. ( 1971 ), Three‐dimensional, transient, saturated‐unsaturated flow in a groundwater basin, Water Resour. Res., 7 ( 2 ), 347 – 366, doi: 10.1029/WR007i002p00347.en_US
dc.identifier.citedreferenceFreeze, R. A. ( 1972 ), Role of subsurface flow in generating surface runoff: 1. Base flow contributions to channel flow, Water Resour. Res., 8 ( 3 ), 609 – 623, doi: 10.1029/WR008i003p00609.en_US
dc.identifier.citedreferenceFriedlingstein, P., G. Joel, C. B. Field, and I. Fung ( 1998 ), Toward an allocation scheme for global terrestrial carbon models, Global Change Biol., 5, 755 – 770, doi: 10.1046/j.1365‐2486.1999.00269.x.en_US
dc.identifier.citedreferenceFriend, A. D., A. K. Stevens, R. G. Knox, and M. G. R. Cannell ( 1997 ), A process‐based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0), Ecol. Modell., 95, 249 – 287, doi: 10.1016/S0304‐3800(96)00034‐8.en_US
dc.identifier.citedreferenceGarratt, J. R. ( 1992 ), The Atmospheric Boundary Layer, Cambridge Univ. Press, Cambridge, U. Ken_US
dc.identifier.citedreferenceGarrote, L., and R. L. Bras ( 1995 ), A distributed model for real‐time flood casting using digital elevation models, J. Hydrol., 167, 279 – 306, doi: 10.1016/0022‐1694(94)02592‐Y.en_US
dc.identifier.citedreferenceGelfan, A. N., J. W. Pomeroy, and L. S. Kuchment ( 2004 ), Modeling forest cover influences on snow accumulation, sublimation, and melt, J. Hydrometeorol., 5, 785 – 803, doi: 10.1175/1525‐7541(2004)005<0785:MFCIOS>2.0.CO;2.en_US
dc.identifier.citedreferenceGerrits, A. M. J., H. H. G. Savenije, L. Hoffmann, and L. Pfister ( 2007 ), New technique to measure forest floor interception––An application in a beech forest in Luxembourg, Hydrol. Earth Syst. Sci., 11, 695 – 701, doi: 10.5194/hess‐11‐695‐2007.en_US
dc.identifier.citedreferenceGill, R. A., and R. B. Jackson ( 2000 ), Global patterns of root turnover for terrestrial ecosystems, New Phytol., 147, 13 – 31, doi: 10.1046/j.1469‐8137.2000.00681.x.en_US
dc.identifier.citedreferenceGough, C. M., C. E. Flower, C. S. Vogel, D. Dragoni, and P. S. Curtis ( 2009 ), Whole‐ecosystem labile carbon production in a north temperate deciduous forest, Agric. For. Meteorol., 149, 1531 – 1540, doi: 10.1016/j.agrformet.2009.04.006.en_US
dc.identifier.citedreferenceGuswa, A. J., M. A. Celia, and I. Rodriguez‐Iturbe ( 2002 ), Models of soil moisture dynamics in ecohydrology: A comparative study, Water Resour. Res., 38 ( 9 ), 1166, doi: 10.1029/2001WR000826.en_US
dc.identifier.citedreferenceHanson, C. L. ( 2001 ), Long‐term precipitation database, Reynolds Creek Experimental Watershed, Idaho, United States, Water Resour. Res., 37 ( 11 ), 2831 – 2834, doi: 10.1029/2001WR000415.en_US
dc.identifier.citedreferenceHedstrom, N. R., and J. W. Pomeroy ( 1998 ), Measurements and modelling of snow interception in the boreal forest, Hydrol. Processes, 12, 1611 – 1625, doi: 10.1002/(SICI)1099‐1085(199808/09)12:10/11<1611::AID‐HYP684>3.0.CO;2‐4.en_US
dc.identifier.citedreferenceHoch, G., A. Richter, and C. Körner ( 2003 ), Non‐structural carbon compounds in temperate forest trees, Plant Cell Environ., 26, 1067 – 1081, doi: 10.1046/j.0016‐8025.2003.01032.x.en_US
dc.identifier.citedreferenceHowes, D. A., and A. D. Abrahams ( 2003 ), Modeling runoff and runon in a desert shrubland ecosystem, Jornada Basin, New Mexico, Geomorphology, 53, 45 – 73, doi: 10.1016/S0169‐555X(02)00347‐1.en_US
dc.identifier.citedreferenceHsu, K., H. V. Gupta, and S. Sorooshian ( 1995 ), Artificial Neural Network Modeling of the rainfall‐runoff process, Water Resour. Res., 31 ( 10 ), 2517 – 2530, doi: 10.1029/95WR01955.en_US
dc.identifier.citedreferenceHu, Z., and S. Islam ( 1995 ), Prediction of ground surface temperature and soil moisture content by the force‐restore method, Water Resour. Res., 31 ( 10 ), 2531 – 2539, doi: 10.1029/95WR01650.en_US
dc.identifier.citedreferenceIdso, S. B. ( 1981 ), A set of equations for full spectrum and 8‐ to 14‐μm and 10.5‐ to 12.5 μm thermal radiation from cloudless skies, Water Resour. Res., 17 ( 2 ), 295 – 304.en_US
dc.identifier.citedreferenceIstanbulluoglu, E., T. Wang, and D. A. Wedin ( 2011 ), Evaluation of ecohydrologic model parsimony at local and regional scales in a semiarid grassland ecosystem, Ecohydrology, 5 ( 1 ), 121 – 142, doi: 10.1002/eco.211.en_US
dc.identifier.citedreferenceIvanov, V. Y. ( 2006 ), Effects of dynamic vegetation and topography on hydrological processes in semi‐arid areas, PhD thesis, Dep. of Civ. and Environ. Eng., Mass. Inst. of Technol., Cambridgeen_US
dc.identifier.citedreferenceIvanov, V. Y., E. R. Vivoni, R. L. Bras, and D. Entekhabi ( 2004 a), Catchment hydrologic response with a fully distributed triangulated irregular network model, Water Resour. Res., 40, W11102, doi: 10.1029/2004WR003218.en_US
dc.identifier.citedreferenceIvanov, V. Y., E. R. Vivoni, R. L. Bras, and D. Entekhabi ( 2004 b), Preserving high‐resolution surface and rainfall data in operational‐scale basin hydrology: A fully‐distributed physically‐based approach, J. Hydrol., 298, 80 – 111, doi: 10.1016/j.jhydrol.2004.03.041.en_US
dc.identifier.citedreferenceIvanov, V. Y., R. L. Bras, and D. C. Curtis ( 2007 ), A weather generator for hydrological, ecological, and agricultural applications, Water Resour. Res., 43, W10406, doi: 10.1029/2006WR005364.en_US
dc.identifier.citedreferenceIvanov, V. Y., R. L. Bras, and E. R. Vivoni ( 2008 ), Vegetation‐hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks, Water Resour. Res., 44, W03429, doi: 10.1029/2006WR005588.en_US
dc.identifier.citedreferenceIvanov, V. Y., S. Fatichi, G. D. Jenerette, J. F. Espeleta, P. A. Troch, and T. E. Huxman ( 2010 ), Hysteresis of soil moisture spatial heterogeneity and the “homogenizing”effect of vegetation, Water Resour. Res., 46, W09521, doi: 10.1029/2009WR008611.en_US
dc.identifier.citedreferenceJackson, R. B., J. Canadell, J. R. Ehleringer, H. A. Mooney, O. E. Sala, and E. D. Schulze ( 1996 ), A global analysis of root distributions for terrestrial biomes, Oecologia, 108 ( 3 ), 389 – 411, doi: 10.1007/BF00333714.en_US
dc.identifier.citedreferenceJost, G., M. Weiler, D. R. Gluns, and Y. Alila ( 2007 ), The influence of forest and topography on snow accumulation and melt at the watershed‐scale, J. Hydrol., 347, 101 – 115, doi: 10.1016/j.jhydrol.2007.09.006.en_US
dc.identifier.citedreferenceKampf, S. K., and S. J. Burges ( 2007 ), A framework for classifying and comparing distributed hillslope and catchment hydrologic models, Water Resour. Res., 43, W05423, doi: 10.1029/2006WR005370.en_US
dc.identifier.citedreferenceKamphorst, E., V. G. Jetten, J. Guerif, J. Pitkanen, B. Iversen, J. Douglas, and A. Paz ( 2000 ), Predicting depressional storage from soil surface roughness, Soil Sci. Soc. Am. J., 64, 1749 – 1758, doi: 10.2136/sssaj2000.6451749x.en_US
dc.identifier.citedreferenceKeefer, T. O., M. S. Moran, and G. B. Paige ( 2008 ), Long‐term meteorological and soil hydrology database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S07, doi: 10.1029/2006WR005702.en_US
dc.identifier.citedreferenceKing, D. M., S. M. Skirvin, C. D. Holifield Collins, M. S. Moran, S. H. Biedenbender, M. R. Kidwell, M. A. Weltz, and A. Diaz‐Gutierrez ( 2008 ), Assessing vegetation change temporally and spatially in southeastern Arizona, Water Resour. Res., 44, W05S15, doi: 10.1029/2006WR005850.en_US
dc.identifier.citedreferenceKnorr, W. ( 2000 ), Annual and interannual CO 2 exchanges of the terrestrial biosphere: Process based simulations and uncertainties, Global Ecol. Biogeogr., 9, 225 – 252, doi: 10.1046/j.1365‐2699.2000.00159.x.en_US
dc.identifier.citedreferenceKollet, S. J., and R. M. Maxwell ( 2006 ), Integrated surface‐groundwater flow modeling: A free‐surface overland flow boundary condition in a parallel groundwater flow model, Adv. Water Resour., 29, 945 – 958, doi: 10.1016/j.advwatres.2005.08.006.en_US
dc.identifier.citedreferenceKollet, S. J., and R. M. Maxwell ( 2008 ), Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model, Water Resour. Res., 44, W02402, doi: 10.1029/2007WR006004.en_US
dc.identifier.citedreferenceKollet, S. J., R. M. Maxwell, C. S. Woodward, S. Smith, J. Vanderborght, H. Vereecken, and C. Simmer ( 2010 ), Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources, Water Resour. Res., 46, W04201, doi: 10.1029/2009WR008730.en_US
dc.identifier.citedreferenceKörner, C. ( 2003 ), Carbon limitation in trees, J. Ecol., 91, 4 – 17, doi: 10.1046/j.1365‐2745.2003.00742.x.en_US
dc.identifier.citedreferenceKozlowski, T. T., and S. G. Pallardy ( 1997 ), Physiology of Woody Plants, Academic, San Diego, Califen_US
dc.identifier.citedreferenceKozlowski, T. T., and S. G. Pallardy ( 2002 ), Acclimation and adaptive responses of woody plants to environmental stresses, Bot. Rev., 68 ( 2 ), 270 – 334, doi: 10.1663/0006‐8101(2002)068[0270:AAAROW]2.0.CO;2.en_US
dc.identifier.citedreferenceKrinner, G., N. Viovy, N. de Noblet‐Ducoudré, J. Ogée, J. Polcher, P. Friedlingstein, P. Ciais, S. Sitch, and I. C. Prentice ( 2005 ), A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system, Global Biogeochem. Cycles, 19, GB1015, doi: 10.1029/2003GB002199.en_US
dc.identifier.citedreferenceKucharik, C. J., J. A. Foley, C. Delire, V. A. Fisher, M. T. Coe, J. D. Lenters, C. Young‐Molling, N. Ramankutty, J. M. Norman, and S. T. Gower ( 2000 ), Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure, Global Biogeochem. Cycles, 14 ( 3 ), 795 – 825, doi: 10.1029/1999GB001138.en_US
dc.identifier.citedreferenceKumar, L., A. K. Skidmore, and E. Knowles ( 1997 ), Modeling topographic variation in solar radiation in a GIS environment, Int. J. Geogr. Inf. Sci., 11, 475 – 497, doi: 10.1080/136588197242266.en_US
dc.identifier.citedreferenceKumar, M., G. Bhatt, and C. J. Duffy ( 2010 ), An object‐oriented shared data model for GIS and distributed hydrologic models, Int. J. Geogr. Inf. Sci., 24 ( 7 ), 1061 – 1079, doi: 10.1080/13658810903289460.en_US
dc.identifier.citedreferenceLaio, F., A. Porporato, L. Ridolfi, and I. Rodriguez‐Iturbe. ( 2001 ), Plants in water‐controlled ecosystems: active role in hydrological processes and response to water stress. II. Probabilistic soil moisture dynamics, Adv. Water Resour., 24, 707 – 723, doi: 10.1016/S0309‐1708(01)00005‐7.en_US
dc.identifier.citedreferenceLee, H. S., C. J. Matthews, R. D. Braddock, G. C. Sander, and F. Gandola ( 2004 ), A MATLAB method of lines template for transport equations, Environ. Modell. Software, 19, 603 – 614, doi: 10.1016/j.envsoft.2003.08.017.en_US
dc.identifier.citedreferenceLee, Y. H., and L. Mahrt ( 2004 ), An evaluation of snowmelt and sublimation over short vegetation in land surface modelling, Hydrol. Processes, 18, 3543 – 3557, doi: 10.1002/hyp.5799.en_US
dc.identifier.citedreferenceLeRoux, X., A. Lacointe, A. Escobar‐Gutiérrez, and S. LeDizès ( 2001 ), Carbon‐based models of individual tree growth: A critical appraisal, Ann. For. Sci., 58, 459 – 506, doi: 10.1051/forest:2001140.en_US
dc.identifier.citedreferenceLeuning, R. ( 1990 ), Modelling stomatal behaviour and photosynthesis of eucalyptus grandis, Aust. J. Plant Physiol., 17, 159 – 175, doi: 10.1071/PP9900159.en_US
dc.identifier.citedreferenceLeuning, R. ( 1995 ), A critical appraisal of a combined stomatal‐photosynthesis model for C3 plants, Plant Cell Environ., 18, 357 – 364, doi: 10.1111/j.1365‐3040.1995.tb00371.x.en_US
dc.identifier.citedreferenceLevin, S. ( 1999 ), Fragile Dominion: Complexity and the Commons, Perseus, Reading, Massen_US
dc.identifier.citedreferenceLevis, S., G. B. Bonan, M. Vertenstein, and K. W. Oleson ( 2004 ), The Community Land Model's Dynamic Global Vegetation Model (CLMDGVM): Technical description and user's guide, NCAR Tech. Note NCAR/TN‐459+IA, Natl. Cent. for Atmos. Res., Boulder, Coloen_US
dc.identifier.citedreferenceListon, G. E., and K. Elder ( 2006 ), A distributed snow‐evolution modeling system (SnowModel), J. Hydrometeorol., 7, 1259 – 1276, doi: 10.1175/JHM548.1.en_US
dc.identifier.citedreferenceListon, G. E., J. P. McFadden, M. Sturm, and R. A. Pielke ( 2002 ), Modelled changes in arctic tundra snow, energy and moisture fluxes due to increased shrubs, Global Change Biol., 8, 17 – 32, doi: 10.1046/j.1354‐1013.2001.00416.x.en_US
dc.identifier.citedreferenceLoague, K., and J. E. VanderKwaak ( 2004 ), Physics‐based hydrologic response simulation: platinum bridge, 1958 Edsel, or useful tool, Hydrol. Processes, 18, 2949 – 2956, doi: 10.1002/hyp.5737.en_US
dc.identifier.citedreferenceLoague, K., C. S. Heppner, B. B. Mirus, B. A. Ebel, Q. Ran, A. E. Carr, S. H. BeVille, and J. E. VanderKwaak ( 2006 ), Physics‐based hydrologic‐response simulation: Foundation for hydroecology and hydrogeomorphology, Hydrol. Processes, 20, 1231 – 1237, doi: 10.1002/hyp.6179.en_US
dc.identifier.citedreferenceLouis, J. F. ( 1979 ), A parametric model of the vertical eddy fluxes in the atmosphere, Boundary Layer Meteorol., 17, 187 – 202, doi: 10.1007/BF00117978.en_US
dc.identifier.citedreferenceLüdeke, M. K. B., and et al., ( 1994 ), The Frankfurt biosphere model: A global process‐oriented model of seasonal and long‐term CO 2 exchange between terrestrial ecosystems and the atmosphere. I. Model description and illustrative results for cold deciduous and boreal forests, Clim. Res., 4 ( 2 ), 143 – 166, doi: 10.3354/cr004143.en_US
dc.identifier.citedreferenceMa, S., D. D. Baldocchi, L. Xu, and T. Hehn ( 2007 ), Inter‐annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in california, Agric. For. Meteorol., 147, 157 – 171, doi: 10.1016/j.agrformet.2007.07.008.en_US
dc.identifier.citedreferenceMackay, D. S. ( 2001 ), Evaluation of hydrologic equlibrium in a mountainous watershed: incorporating forest canopy spatial adjustment to soil biogeochemical processes, Adv. Water Resour., 24, 1211 – 1227, doi: 10.1016/S0309‐1708(01)00040‐9.en_US
dc.identifier.citedreferenceMackay, D. S., and L. E. Band ( 1997 ), Forest ecosystem processes at the watershed scale: Dynamic coupling of distributed hydrology and canopy growth, Hydrol. Processes, 11, 1197 – 1217, doi: 10.1002/(SICI)1099‐1085(199707)11:9<1197::AID‐HYP552>3.0.CO;2‐W.en_US
dc.identifier.citedreferenceMahfouf, J. F., and B. Jacquemin ( 1989 ), A study of rainfall interception using a land surface parameterization for mesoscale meteorological models, J. Appl. Meteorol., 28, 1282 – 1302, doi: 10.1175/1520‐0450(1989)028<1282:ASORIU>2.0.CO;2.en_US
dc.identifier.citedreferenceManzoni, S., and A. Porporato ( 2009 ), Soil carbon and nitrogen mineralization: Theory and models across scales, Soil Biol. Biochem., 41, 1355 – 1379, doi: 10.1016/j.soilbio.2009.02.031.en_US
dc.identifier.citedreferenceMarks, D., J. Kimball, D. Tingey, and T. Link ( 1998 ), The sensitivity of snowmelt processes to climate conditions and forest cover during rain‐on‐snow: A study of the 1996 Pacifc Northwest flood, Hydrol. Processes, 12, 1569 – 1587, doi: 10.1002/(SICI)1099‐1085(199808/09)12:10/11<1569::AID‐HYP682>3.0.CO;2‐L.en_US
dc.identifier.citedreferenceMarks, D., K. R. Cooley, D. C. Robertson, and A. Winstral ( 2000 ), Snow measurements and monitoring, Reynolds Creek Experimental Watershed, Idaho, USA, Tech. Rep. 2000‐5, Northwest Watershed Res. Cent., Agric. Res. Serv., U.S. Dep. of Agric., Boise, Idahoen_US
dc.identifier.citedreferenceMarks, D., K. R. Cooley, D. C. Robertson, and A. Winstral ( 2001 ), Long‐term snow database, Reynolds Creek Experimental Watershed, Idaho, United States, Water Resour. Res., 37 ( 11 ), 2835 – 2838, doi: 10.1029/2001WR000416.en_US
dc.identifier.citedreferenceMarks, D., A. Winstral, and M. Seyfried ( 2002 ), Simulation of terrain and forest shelter effects on patterns of snow deposition, snowmelt and runoff over a semi‐arid mountain catchment, Hydrol. Processes, 16, 3605 – 3626, doi: 10.1002/hyp.1237.en_US
dc.identifier.citedreferenceMartin, N., and S. M. Gorelick ( 2005 ), MOD_FreeSurf2D: A MATLAB surface fluid flow model for rivers and streams, Comput. Geosci., 31, 929 – 946, doi: 10.1016/j.cageo.2005.03.004.en_US
dc.identifier.citedreferenceMascart, P., J. Noilhan, and H. Giordani ( 1995 ), A modified parameterization of flux‐profile relationships in the surface layer using different roughness lengthvalues for heat and momentum, Boundary Layer Meteorol., 72, 331 – 334, doi: 10.1007/BF00708998.en_US
dc.identifier.citedreferenceMaxwell, R. M., and S. J. Kollet ( 2008 ), Quantifying the effects of three‐dimensional subsurface heterogeneity on hortonian runoff processes using a coupled numerical, stochastic approach, Adv. Water Resour., 31, 807 – 817, doi: 10.1016/j.advwatres.2008.01.020.en_US
dc.identifier.citedreferenceMaxwell, R. M., and N. L. Miller ( 2005 ), Development of a coupled land surface and groundwater model, J. Hydrometeorol., 6, 233 – 247, doi: 10.1175/JHM422.1.en_US
dc.identifier.citedreferenceMaxwell, R. M., F. K. Chow, and S. J. Kollet ( 2007 ), The groundwater‐land‐surface‐atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully‐coupled simulations, Adv. Water Resour., 30, 2447 – 2466, doi: 10.1016/j.advwatres.2007.05.018.en_US
dc.identifier.citedreferenceMcCree, K. J. ( 1970 ), An equation for the rate of respiration of white clover plants grown under controlled conditions, Proceedings of the Technical Meeting IBP, Trebon (CSK), 1969, 221 – 229, Pudoc, Wageningen, Netherlandsen_US
dc.identifier.citedreferenceMenduni, G., A. Pagani, M. C. Rulli, and R. Rosso ( 2002 ), A non‐conventional watershed partitioning method for semi‐distributed hydrological modelling: The package ALADHYN, Hydrol. Processes, 16, 277 – 291, doi: 10.1002/hyp.340.en_US
dc.identifier.citedreferenceMillard, P., and G.‐A. Grelet ( 2010 ), Nitrogen storage and remobilization by trees: Ecophysiological relevance in a changing world, Tree Physiol., 30, 1083 – 1095, doi: 10.1093/treephys/tpq042.en_US
dc.identifier.citedreferenceMirus, B. B., B. A. Ebel, C. S. Heppner, and K. Loague ( 2011 ), Assessing the detail needed to capture rainfall‐runoff dynamics with physics‐based hydrologic response simulation, Water Resour. Res., 47, W00H10, doi: 10.1029/2010WR009906.en_US
dc.identifier.citedreferenceMölders, N., H. Luijting, and K. Sassen ( 2008 ), Use of atmospheric radiation measurement program data from Barrow, Alaska, for evaluation and development of snow‐albedo parameterizations, Meteorol. Atmos. Phys., 99, 199 – 219, doi: 10.1007/s00703‐007‐0271‐6.en_US
dc.identifier.citedreferenceMolotch, N. P., P. D. Brooks, S. P. Burns, M. Litvak, R. K. Monson, J. R. McConnell, and K. Musselman ( 2009 ), Ecohydrological controls on snowmelt partitioning in mixed‐conifer sub‐alpine forests, Ecohydrology, 2, 129 – 142, doi: 10.1002/eco.48.en_US
dc.identifier.citedreferenceMonin, A. S., and A. M. Obukhov ( 1954 ), Dimensionless characteristics of turbulence in the surface layer of the atmosphere [in Russian], Trudy Geofiz. Inst. Akad. Nauk. SSSR, 24, 163 – 187.en_US
dc.identifier.citedreferenceMontaldo, N., J. D. Albertson, and M. Mancini ( 2008 ), Vegetation dynamics and soil water balance in a water‐limited Mediterranean ecosystem on Sardinia, Italy, Hydrol. Earth Syst. Sci., 12, 1257 – 1271, doi: 10.5194/hess‐12‐1257‐2008.en_US
dc.identifier.citedreferenceMontgomery, D. R., and W. E. Dietrich ( 1988 ), Where do channels begin?, Nature, 336, 232 – 234, doi: 10.1038/336232a0.en_US
dc.identifier.citedreferenceMontgomery, D. R., and W. E. Dietrich ( 1989 ), Source areas, drainage density, and channel initiation, Water Resour. Res., 25 ( 8 ), 1907 – 1918, doi: 10.1029/WR025i008p01907.en_US
dc.identifier.citedreferenceMott, K. A. ( 1988 ), Do stomata respond to CO 2 concentrations other than intercellular ? Plant Physiol., 86, 200 – 203, doi: 10.1104/pp.86.1.200.en_US
dc.identifier.citedreferenceMualem, Y., and S. Assouline ( 1989 ), Modeling soil seal as a nonuniform layer, Water Resour. Res., 25 ( 10 ), 2101 – 2108, doi: 10.1029/WR025i010p02101.en_US
dc.identifier.citedreferenceMualem, Y., S. Assouline, and H. Rohdenburg ( 1990 ), Rainfall‐induced soil seal. C. A dynamic model with kinetic energy instead of cumulative rainfall as independent variable, Catena, 17, 289 – 303, doi: 10.1016/0341‐8162(90)90022‐6.en_US
dc.identifier.citedreferenceNardi, F., S. Grimaldi, M. Santini, A. Petroselli, and L. Ubertini ( 2008 ), Hydrogeomorphic properties of simulated drainage patterns using digital elevation models: The flat area issue, Hydrol. Sci. J., 53 ( 6 ), 1176 – 1193, doi: 10.1623/hysj.53.6.1176.en_US
dc.identifier.citedreferenceNoilhan, J., and J.‐F. Mafhouf ( 1996 ), The ISBA land surface parameterisation scheme, Global Planet. Change, 13, 145 – 159, doi: 10.1016/0921‐8181(95)00043‐7.en_US
dc.identifier.citedreferenceNouvellon, Y., S. Rambal, D. L. Seen, M. S. Moran, J. P. Lhomme, A. Begue, A. G. Chehbouni, and Y. Kerr ( 2000 ), Modelling of daily fluxes of water and carbon from shortgrass steppes, Agric. For. Meteorol., 100, 137 – 153, doi: 10.1016/S0168‐1923(99)00140‐9.en_US
dc.identifier.citedreferenceO'Callaghan, J. F., and D. M. Mark ( 1984 ), The extraction of drainage networks from digital elevation data, Comput. Vision Graphics Image Process., 28, 323 – 344, doi: 10.1016/S0734‐189X(84)80011‐0.en_US
dc.identifier.citedreferenceOleson, K. W., and et al., ( 2004 ), Technical description of the community land model (CLM), NCAR Tech. Note NCAR/TN‐461+STR, Natl. Cent. for Atmos. Res., Boulder, Coloen_US
dc.identifier.citedreferenceOleson, K. W., and et al., ( 2008 ), Improvements to the Community Land Model and their impact on the hydrological cycle, J. Geophys. Res., 113, G01021, doi: 10.1029/2007JG000563.en_US
dc.identifier.citedreferenceOrlandini, S. ( 2002 ), On the spatial variation of resistance to flow in upland channel networks, Water Resour. Res., 38 ( 10 ), 1197, doi: 10.1029/2001WR001187.en_US
dc.identifier.citedreferenceOrlandini, S., and G. Moretti ( 2009 ), Determination of surface flow paths from gridded elevation data, Water Resour. Res., 45, W03417, doi: 10.1029/2008WR007099.en_US
dc.identifier.citedreferenceOrlandini, S., G. Moretti, M. Franchini, B. Aldighieri, and B. Testa ( 2003 ), Path‐based methods for the determination of nondispersive drainage directions in grid‐based digital elevation models, Water Resour. Res., 39 ( 6 ), 1144, doi: 10.1029/2002WR001639.en_US
dc.identifier.citedreferenceOrlandini, S., P. Tarolli, G. Moretti, and G. Dalla Fontana ( 2011 ), On the prediction of channel heads in a complex alpine terrain using gridded elevation data, Water Resour. Res., 47, W02538, doi: 10.1029/2010WR009648.en_US
dc.identifier.citedreferencePanday, S., and P. S. Huyakorn ( 2004 ), A fully coupled physically‐based spatially‐distributed model for evaluating surface/subsurface flow, Adv. Water Resour., 27, 361 – 382, doi: 10.1016/j.advwatres.2004.02.016.en_US
dc.identifier.citedreferencePaniconi, C., and E. F. Wood ( 1993 ), A detailed model for simulation of catchment scale subsurface hydrologic processes, Water Resour. Res., 29 ( 6 ), 1601 – 1620, doi: 10.1029/92WR02333.en_US
dc.identifier.citedreferencePederson, C. A., and J.‐G. Winther ( 2005 ), Intercomparison and validation of snow‐albedo parameterization schemes in climate models, Clim. Dyn., 25, 351 – 362, doi: 10.1007/s00382‐005‐0037‐0.en_US
dc.identifier.citedreferencePomeroy, J. W., N. Parviainen, N. Hedstrom, and D. M. Gray ( 1998 ), Coupled modeling of forest snow interception and sublimation, Hydrol. Processes, 12, 2317 – 2337, doi: 10.1002/(SICI)1099‐1085(199812)12:15<2317::AID‐HYP799>3.0.CO;2‐X.en_US
dc.identifier.citedreferencePomeroy, J. W., D. M. Gray, N. Hedstrom, and J. R. Janowicz ( 2002 ), Prediction of seasonal snow accumulation in cold climate forests, Hydrol. Processes, 16, 3543 – 3558, doi: 10.1002/hyp.1228.en_US
dc.identifier.citedreferencePorporato, A., F. Laio, L. Ridolfi, and I. Rodriguez‐Iturbe ( 2001 ), Plants in water‐controlled ecosystems: Active role in hydrologic processes and response to water stress III. Vegetation water stress, Adv. Water Resour., 24, 725 – 744, doi: 10.1016/S0309‐1708(01)00006‐9.en_US
dc.identifier.citedreferencePorporato, A., P. D'Odorico, F. Laio, and I. Rodriguez‐Iturbe ( 2003 ), Hydrologic controls on soil carbon and nitrogen cycles. I. Modeling scheme, Adv. Water Resour., 26, 45 – 58, doi: 10.1016/S0309‐1708(02)00094‐5.en_US
dc.identifier.citedreferencePregitzer, K. S. ( 2003 ), Woody plants, carbon allocation and fine roots, New Phytol., 158 ( 3 ), 421 – 424, doi: 10.1046/j.1469‐8137.2003.00766.x.en_US
dc.identifier.citedreferenceQu, Y., and C. J. Duffy ( 2007 ), A semidiscrete finite volume formulation for multiprocess watershed simulation, Water Resour. Res., 43, W08419, doi: 10.1029/2006WR005752.en_US
dc.identifier.citedreferenceQuinn, P., K. Beven, P. Chevallier, and O. Planchon ( 1991 ), The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models, Hydrol. Processes, 5, 59 – 80, doi: 10.1002/hyp.3360050106.en_US
dc.identifier.citedreferenceQuinn, P. F., K. J. Beven, and R. Lamb ( 1995 ), The ln(a/tan β ) index: How to calculate it and how to use in within the TOPMODEL framework, Hydrol. Processes, 9, 161 – 182.en_US
dc.identifier.citedreferenceRamírez, J. A., and S. U. S. Senarath ( 2000 ), A statistical‐dynamical parameterization of interception and land surface‐atmosphere interactions, J. Clim., 13, 4050 – 4063, doi: 10.1175/1520‐0442(2000)013<4050:ASDPOI>2.0.CO;2.en_US
dc.identifier.citedreferenceReba, M. L., D. Marks, M. Seyfried, A. Winstral, M. Kumar, and G. Flerchinger ( 2011 ), A long‐term data set for hydrologic modeling in a snow‐dominated mountain catchment, Water Resour. Res., 47, W07702, doi: 10.1029/2010WR010030.en_US
dc.identifier.citedreferenceReed, S., V. Koren, M. Smith, Z. Zhang, F. Moreda, D.‐J. Seo, and DMIP Participants ( 2004 ), Overall distributed model intercomparison project results, J. Hydrol., 298, 27 – 60, doi: 10.1016/j.jhydrol.2004.03.031.en_US
dc.identifier.citedreferenceReich, P. B., M. B. Walters, D. S. Ellsworth, J. M. Vose, J. C. Volin, C. Gresham, and W. D. Bowman ( 1998 ), Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life‐span: A test across biomes and functional groups, Oecologia, 114, 471 – 482, doi: 10.1007/s004420050471.en_US
dc.identifier.citedreferenceReich, P. B., M. G. Tjoelker, J.‐L. Machado, and J. Oleksyn ( 2006 ), Universal scaling of respiratory metabolism, size and nitrogen in plants, Nature, 339, 457 – 461, doi: 10.1038/nature04282.en_US
dc.identifier.citedreferenceRigon, R., G. Bertoldi, and T. M. Over ( 2006 ), GEOtop: A distributed hydrological model with coupled water and energy budgets, J. Hydrometeorol., 7 ( 3 ), 371 – 388, doi: 10.1175/JHM497.1.en_US
dc.identifier.citedreferenceRodriguez‐Iturbe, I. ( 2000 ), Ecohydrology: A hydrologic perspective of climate‐soil‐vegetation dynamies, Water Resour. Res., 36 ( 1 ), 3 – 9, doi: 10.1029/1999WR900210.en_US
dc.identifier.citedreferenceRodriguez‐Iturbe, I., and A. Porporato ( 2004 ), Ecohydrology of Water‐Controlled Ecosystems, Cambridge Univ. Press, Cambridge, U. Ken_US
dc.identifier.citedreferenceRodriguez‐Iturbe, I., P. D'Odorico, A. Porporato, and L. Ridolfi ( 1999 ), On the spatial and temporal links between vegetation, climate, and soil moisture, Water Resour. Res., 35 ( 12 ), 3709 – 3722, doi: 10.1029/1999WR900255.en_US
dc.identifier.citedreferenceRodriguez‐Iturbe, I., A. Porporato, F. Laio, and L. Ridolfi ( 2001 ), Plants in water‐controlled ecosystems: Active role in hydrologic processes and response to water stress I. Scope and general outline, Adv. Water Resour., 24, 695 – 705, doi: 10.1016/S0309‐1708(01)00004‐5.en_US
dc.identifier.citedreferenceRuimy, A., G. Dedieu, and B. Saugier ( 1996 ), TURC: A diagnostic model of continental gross primary productivity and net primary productivity, Global Biogeochem. Cycles, 10, 269 – 285, doi: 10.1029/96GB00349.en_US
dc.identifier.citedreferenceRulli, M. C. ( 2010 ), A physically based watershed partitioning method, Adv. Water Resour., 33, 1206 – 1215, doi: 10.1016/j.advwatres.2010.06.011.en_US
dc.identifier.citedreferenceRutter, A. J., K. A. Kershaw, P. C. Robins, and A. J. Morton ( 1971 ), A predictive model of rainfall interception in forests. 1. Derivation of the model from observation in a plantation of Corsican pine, Agric. Meteorol., 9, 367 – 384, doi: 10.1016/0002‐1571(71)90034‐3.en_US
dc.identifier.citedreferenceRutter, A. J., A. J. Morton, and P. C. Robins ( 1975 ), A predictive model of rainfall interception in forests. 2. Generalization of model and comparison with observations in some coniferous and hardwood stands, J. Appl. Ecol., 12 ( 1 ), 367 – 380, doi: 10.2307/2401739.en_US
dc.identifier.citedreferenceRyan, M. G. ( 1991 ), Effects of cllimate change on plant respiration, Ecol. Appl., 1 ( 2 ), 157 – 167, doi: 10.2307/1941808.en_US
dc.identifier.citedreferenceSakaguchi, K., and X. Zeng ( 2009 ), Effects of soil wetness, plant litter, and under‐canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3.5), J. Geophys. Res., 114, D01107, doi: 10.1029/2008JD010834.en_US
dc.identifier.citedreferenceSato, H., A. Itoh, and T. Kohyama ( 2007 ), SEIB‐DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual‐based approach, Ecol. Modell., 200, 279 – 307, doi: 10.1016/j.ecolmodel.2006.09.006.en_US
dc.identifier.citedreferenceSaxton, K. E., and W. J. Rawls ( 2006 ), Soil water characteristic estimates by texture and organic matter for hydrologic solutions, Soil Sci. Soc. Am. J., 70, 1569 – 1578, doi: 10.2136/sssaj2005.0117.en_US
dc.identifier.citedreferenceSchenk, H. J., and R. B. Jackson ( 2002 ), The global biogeography of roots, Ecol. Monogr., 72 ( 3 ), 311 – 328, doi: 10.1890/0012‐9615(2002)072[0311:TGBOR]2.0.CO;2.en_US
dc.identifier.citedreferenceSchulze, E., F. M. Kelliher, C. Korner, J. Lloyd, and R. Leuning ( 1994 ), Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise, Annu. Rev. Ecol. Syst., 25, 629 – 662, doi: 10.1146/annurev.es.25.110194.00321.en_US
dc.identifier.citedreferenceSchwanghart, W., and N. J. Kuhn ( 2010 ), Topotoolbox: A set of Matlab functions for topographic analysis, Environ. Modell. Software, 25, 770 – 781, doi: 10.1016/j.envsoft.2009.12.002.en_US
dc.identifier.citedreferenceScott, R. L., W. J. Shuttleworth, T. O. Keefer, and A. W. Warrick ( 2000 ), Modeling multiyear observations of soil moisture recharge in the semiarid American Southwest, Water Resour. Res., 36 ( 8 ), 2233 – 2247, doi: 10.1029/2000WR900116.en_US
dc.identifier.citedreferenceSellers, P. J. ( 1985 ), Canopy reflectance, photosynthesis and transpiration, Int. J. Remote Sens., 6, 1335 – 1372, doi: 10.1080/01431168508948283.en_US
dc.identifier.citedreferenceSellers, P. J., M. D. Heiser, and F. G. Hall ( 1992 ), Relations between surface conductance and spectral vegetation indices at intermediate (100m 2 to 15km 2 ) length scales, J. Geophys. Res., 97 ( D17 ), 19,033 – 19,059.en_US
dc.identifier.citedreferenceSellers, P. J., D. A. Randall, G. J. Collatz, J. A. Berry, C. B. Field, D. A. Dazlich, C. Zhang, G. D. Collelo, and L. Bounoua ( 1996 ), A revised land surface parameterization (SiB2) for atmospheric GCMs. 1. Model formulation, J. Clim., 9 ( 4 ), 674 – 705.en_US
dc.identifier.citedreferenceSellers, P. J., and et al., ( 1997 ), Modeling the exchanges of energy, water and carbon between continents and the atmosphere, Science, 275, 502 – 509, doi: 10.1126/science.275.5299.502.en_US
dc.identifier.citedreferenceSeyfried, M. S., M. D. Murdock, C. L. Hanson, G. N. Flerchinger, and S. Van Vactor ( 2001 ), Long‐term soil water content database, Reynolds Creek Experimental Watershed, Idaho, United States, Water Resour. Res., 37 ( 11 ), 2847 – 2851, doi: 10.1029/2001WR000419.en_US
dc.identifier.citedreferenceSeyfried, M. S., L. E. Grant, D. Marks, A. Winstral, and J. McNamara ( 2009 ), Simulated soil water storage effects on streamflow generation in a mountainous snowmelt environment, Idaho, USA, Hydrol. Processes, 23, 858 – 873, doi: 10.1002/hyp.7211.en_US
dc.identifier.citedreferenceShuttleworth, W. J., and R. J. Gurney ( 1990 ), The theoretical relationship between foliage temperature and canopy resistance in sparse crops, Q. J. R. Meteorol. Soc., 116, 497 – 519, doi: 10.1002/qj.49711649213.en_US
dc.identifier.citedreferenceSingh, V. P., and D. A. Woolhiser ( 2002 ), Mathematical modeling of watershed hydrology, J. Hydrol. Eng., 7 ( 4 ), 270 – 292, doi: 10.1061/(ASCE)1084‐0699(2002)7:4(270).en_US
dc.identifier.citedreferenceSitch, S., and et al., ( 2003 ), Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biol., 9, 161 – 185, doi: 10.1046/j.1365‐2486.2003.00569.x.en_US
dc.identifier.citedreferenceSivapalan, M., K. Beven, and E. F. Wood ( 1987 ), On hydrologic similarity: 2. A scaled model of storm runoff production, Water Resour. Res., 23 ( 12 ), 2266 – 2278, doi: 10.1029/WR023i012p02266.en_US
dc.identifier.citedreferenceSkirvin, S., M. Kidwell, S. Biedenbender, J. P. Henley, D. King, C. H. Collins, S. Moran, and M. Weltz ( 2008 ), Vegetation data, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S08, doi: 10.1029/2006WR005724.en_US
dc.identifier.citedreferenceSlaughter, C. W., D. Marks, G. N. Flerchinger, S. S. Van Vactor, and M. Burgess ( 2001 ), Thirty‐five years of research data collection at the Reynolds Creek Experimental Watershed, Idaho, United States, Water Resour. Res., 37 ( 11 ), 2819 – 2823, doi: 10.1029/2001WR000413.en_US
dc.identifier.citedreferenceStrack, J. E., G. E. Liston, and R. A. Pielke ( 2004 ), Modeling snow depth for improved simulation of snow‐vegetation‐atmosphere interactions, J. Hydrometeorol., 5, 723 – 734, doi: 10.1175/1525‐7541(2004)005<0723:MSDFIS>2.0.CO;2.en_US
dc.identifier.citedreferenceStrasser, U., M. Bernhardt, M. Weber, G. E. Liston, and W. Mauser ( 2008 ), Is snow sublimation important in the Alpine water balance ? Cryosphere, 2, 53 – 66, doi: 10.5194/tc‐2‐53‐2008.en_US
dc.identifier.citedreferenceTague, C. L. ( 2009 ), Assessing climate change impacts on alpine stream‐flow and vegetation water use: Mining the linkages with subsurface hydrologic processes, Hydrol. Processes, 23, 1815 – 1819, doi: 10.1002/hyp.7288.en_US
dc.identifier.citedreferenceTague, C. L., and L. E. Band ( 2004 ), RHESSys: Regional Hydro‐Ecologic Simulation System: An object‐oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling, Earth Interact., 8 ( 19 ), 1 – 42, doi: 10.1175/1087‐3562(2004)8<1:RRHSSO>2.0.CO;2.en_US
dc.identifier.citedreferenceTarboton, D. G. ( 1997 ), A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour. Res., 33 ( 2 ), 309 – 319, doi: 10.1029/96WR03137.en_US
dc.identifier.citedreferenceTarboton, D. G., and C. H. Luce ( 1996 ), Utah Energy Balance snow accumulation and melt model (UEB): Computer model technical description and user's guide, technical report, Utah Water Res. Lab., Loganen_US
dc.identifier.citedreferenceTardieu, F., and W. J. Davies ( 1993 ), Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants, Plant Cell Environ., 16, 341 – 349, doi: 10.1111/j.1365‐3040.1993.tb00880.x.en_US
dc.identifier.citedreferenceThompson, S. E., C. J. Harman, A. G. Konings, M. Sivapalan, A. Neal, and P. A. Troch ( 2011 a), Comparative hydrology across AmeriFlux sites: The variable roles of climate, vegetation, and groundwater, Water Resour. Res., 47, W00J07, doi: 10.1029/2010WR009797.en_US
dc.identifier.citedreferenceThompson, S. E., C. J. Harman, P. A. Troch, P. D. Brooks, and M. Sivapalan ( 2011 b), Spatial scale dependence of ecohydrologically mediated water balance partitioning: A synthesis framework for catchment ecohydrology, Water Resour. Res., 47, W00J03, doi: 10.1029/2010WR009998.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.