Show simple item record

Looking for evidence of mixing in the solar wind from 0.31 to 0.98 AU

dc.contributor.authorBorovsky, Joseph E.en_US
dc.date.accessioned2013-01-03T19:44:46Z
dc.date.available2013-08-01T14:04:41Zen_US
dc.date.issued2012-06en_US
dc.identifier.citationBorovsky, Joseph E. (2012). "Looking for evidence of mixing in the solar wind from 0.31 to 0.98 AU." Journal of Geophysical Research: Space Physics 117(A6): n/a-n/a. <http://hdl.handle.net/2027.42/95482>en_US
dc.identifier.issn0148-0227en_US
dc.identifier.issn2156-2202en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95482
dc.publisherWiley‐Interscienceen_US
dc.subject.otherHomogenizationen_US
dc.subject.otherMixingen_US
dc.subject.otherPlasmaen_US
dc.subject.otherSolar Winden_US
dc.subject.otherChunk Mixtureen_US
dc.subject.otherTurbulenceen_US
dc.titleLooking for evidence of mixing in the solar wind from 0.31 to 0.98 AUen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherSpace Science Institute, Boulder, Colorado, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95482/1/jgra21890.pdf
dc.identifier.doi10.1029/2012JA017525en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceRistorcelli, J. R. ( 2006 ), Passive scalar mixing: Analytic study of time scale ratio, variance, and mix rate, Phys. Fluids, 18, 075101, doi: 10.1063/1.2214704.en_US
dc.identifier.citedreferenceTu, C.‐Y., and E. Marsch ( 1995 ), MHD structures, waves and turbulence in the solar wind, Space Sci. Rev., 73, 1, doi: 10.1007/BF00748891.en_US
dc.identifier.citedreferenceTu, C.‐Y., E. Marsch, and H. Rosenbauer ( 1990 ), The dependence of MHD turbulence spectra on the inner solar wind stream structure near solar minimum, Geophys. Res. Lett., 17, 283, doi: 10.1029/GL017i003p00283.en_US
dc.identifier.citedreferenceViall, N. M., H. E. Spence, and J. Kasper ( 2009 a), Are periodic solar wind number density structures formed in the solar corona?, Geophys. Res. Lett., 36, L23102, doi: 10.1029/2009GL041191.en_US
dc.identifier.citedreferenceViall, N. M., L. Kepko, and H. E. Spence ( 2009 b), Relative occurrence rates and connection of discrete frequency oscillations in the solar wind density and dayside magnetosphere, J. Geophys. Res., 114, A01201, doi: 10.1029/2008JA013334.en_US
dc.identifier.citedreferenceViall, N. M., H. E. Spence, A. Vourlidas, and R. Howard ( 2010 ), Examining periodic solar‐wind density structures observed in the SECCHI heliospheric imagers, Sol. Phys., 267, 175, doi: 10.1007/s11207‐010‐9633‐1.en_US
dc.identifier.citedreferenceVillante, U., P. Francia, M. Vellante, P. Di Giuseppe, A. Nubile, and M. Pirsanti ( 2007 ), Long‐period oscillations at discrete frequencies: A comparative analysis of ground, magnetospheric, and interplanetary observations, J. Geophys. Res., 112, A04210, doi: 10.1029/2006JA011896.en_US
dc.identifier.citedreferenceVillermaux, E., and C. Innocenti ( 1999 ), On the geometry of turbulent mixing, J. Fluid Mech., 393, 123, doi: 10.1017/S0022112099005674.en_US
dc.identifier.citedreferenceVillermaux, E., C. Innocenti, and J. Duplat ( 1998 ), Historgramme des fluctuations scalaires dans le mélange turbulent transitoire, Comp. Rend. Acad. Sci. Paris, 326, 21.en_US
dc.identifier.citedreferenceVoth, G. A., T. C. Saint, G. Dobler, and J. P. Gollub ( 2003 ), Mixing rates and symmetry breaking in two‐dimensional chaotic flow, Phys. Fluids, 15, 2560, doi: 10.1063/1.1596915.en_US
dc.identifier.citedreferenceWang, Y.‐M., N. R. Sheeley, D. G. Socker, R. A. Howard, and N. B. Rich ( 2000 ), The dynamical nature of coronal streamers, J. Geophys. Res., 105, 25,133, doi: 10.1029/2000JA000149.en_US
dc.identifier.citedreferenceWarhaft, Z. ( 2000 ), Passive scalars in turbulent flows, Annu. Rev. Fluid Mech., 32, 203, doi: 10.1146/annurev.fluid.32.1.203.en_US
dc.identifier.citedreferenceWeimer, D. R., and J. H. King ( 2008 ), Improved calculations of interplanetary magnetic field phase front angles and propagation time delays, J. Geophys. Res., 113, A01105, doi: 10.1029/2007JA012452.en_US
dc.identifier.citedreferenceWhang, Y. C., K. W. Behannon, L. F. Burlaga, and S. Zhang ( 1989 ), Thermodynamic properties of the heliospheric plasma, J. Geophys. Res., 94, 2345, doi: 10.1029/JA094iA03p02345.en_US
dc.identifier.citedreferenceWicks, R. T., M. J. Owens, and T. S. Horbury ( 2010 ), The variations of solar wind correlation lengths over three solar cycles, Sol. Phys., 262, 191, doi: 10.1007/s11207‐010‐9509‐4.en_US
dc.identifier.citedreferenceWoo, R., and S. R. Habbal ( 1997 ), Extension of coronal structure into interplanetary space, Geophys. Res. Lett., 24, 1159, doi: 10.1029/97GL01156.en_US
dc.identifier.citedreferenceWoo, R., and S. R. Habbal ( 1998 ), Multiscale filamentary structures in the solar corona and their implications for the origin and evolution of the solar wind, Phys. Space Plasmas, 15, 351.en_US
dc.identifier.citedreferenceYamauchi, Y., S. T. Suess, and T. Sakurai ( 2002 ), Relation between pressure balance structures and polar plums from Ulysses high‐latitude observations, Geophys. Res. Lett., 29 ( 10 ), 1383, doi: 10.1029/2001GL013820.en_US
dc.identifier.citedreferenceYamauchi, Y., S. T. Suess, and T. Sakurai ( 2003 ), Relation between polar plums and fine structure in the solar wind from Ulysses high‐latitude observations, AIP Conf. Proc., 679, 255, doi: 10.1063/1.1618589.en_US
dc.identifier.citedreferenceYee, E., R. Chan, P. R. Kosteniuk, G. M. Chandler, C. A. Biltoft, and J. F. Bowers ( 1995 a), Measurement of level‐crossing statistics of concentration fluctuation statistics in plumes dispersing in the atmospheric surface layer, Boundary Layer Meteorol., 73, 53, doi: 10.1007/BF00708930.en_US
dc.identifier.citedreferenceYee, E., R. Chan, P. R. Kosteniuk, G. M. Chandler, C. A. Biltoft, and J. F. Bowers ( 1995 b), The vertical structure of concentration fluctuation statistics in plumes dispersing in the atmospheric surface layer, Boundary Layer Meteorol., 76, 41, doi: 10.1007/BF00710890.en_US
dc.identifier.citedreferenceYeung, P. K. ( 2002 ), Lagrangian investigations of turbulence, Annu. Rev. Fluid Mech., 34, 115, doi: 10.1146/annurev.fluid.34.082101.170725.en_US
dc.identifier.citedreferenceAbarzhi, S. I., and K. R. Sreenivasan ( 2010 ), Turbulent mixing and beyond, Phil. Trans. R. Soc. A, 368, 1539, doi: 10.1098/rsta.2010.0021.en_US
dc.identifier.citedreferenceArya, S., and J. W. Freeman ( 1991 ), Estimates of solar wind velocity gradients between 0.3 and 1 AU based on velocity probability distributions from Helios 1 at perihelion and aphelion, J. Geophys. Res., 96, 14,183, doi: 10.1029/91JA01135.en_US
dc.identifier.citedreferenceAtaç, T. ( 1987 ), Time variation of the flare index during the 21st solar cycle, Astrophys. Space Sci., 135, 201, doi: 10.1007/BF00644477.en_US
dc.identifier.citedreferenceBame, S. J., J. R. Asbridge, W. C. Feldman, and J. T. Gosling ( 1977 ), Evidence for a structure‐free state at high solar wind speeds, J. Geophys. Res., 82, 1487, doi: 10.1029/JA082i010p01487.en_US
dc.identifier.citedreferenceBargatze, L. F., R. L. McPherron, J. Minamora, and D. Weimer ( 2005 ), A new interpretation of Weimer et al.'s solar wind propagation delay technique, J. Geophys. Res., 110, A07105, doi: 10.1029/2004JA010902.en_US
dc.identifier.citedreferenceBavassano, B., and R. Bruno ( 1991 ), Solar wind fluctuations at large scale: A comparison between low and high solar activity conditions, J. Geophys. Res., 96, 1737, doi: 10.1029/90JA01959.en_US
dc.identifier.citedreferenceBernstein, I. B., E. A. Friemen, M. D. Kruskal, and R. M. Kulsrud ( 1958 ), An energy principle for hydromagnetic stability problems, Proc. R. Soc. London, Ser. A, 244, 17, doi: 10.1098/rspa.1958.0023.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 2006 ), The eddy viscosity and flow properties of the solar wind: CIRs, CME sheaths, and solar‐wind/magnetosphere coupling, Phys. Plasmas, 13, 056505, doi: 10.1063/1.2200308.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 2008 ), The flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU, J. Geophys. Res., 113, A08110, doi: 10.1029/2007JA012684.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 2010 a), Contribution of strong discontinuities to the power spectrum of the solar wind, Phys. Rev. Lett., 105, 111102, doi: 10.1103/PhysRevLett.105.111102.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 2010 b), On the variations of the solar wind magnetic field about the Parker spiral direction, J. Geophys. Res., 115, A09101, doi: 10.1029/2009JA015040.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 2012 ), The velocity and magnetic‐field fluctuations of the solar wind at 1 AU: Statistical analysis of Fourier spectra and correlations with plasma properties, J. Geophys. Res., 117, A05104, doi: 10.1029/2011JA017499.en_US
dc.identifier.citedreferenceBorovsky, J. E., and T. E. Cayton ( 2011 ), Entropy mapping of the outer electron radiation belt between the magnetotail and geosynchronous orbit, J. Geophys. Res., 116, A06216, doi: 10.1029/2011JA016470.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2010 ), Solar‐wind turbulence and shear: A superposed‐epoch analysis of corotating interaction regions at 1 AU, J. Geophys. Res., 115, A10101, doi: 10.1029/2009JA014966.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2011 ), No evidence for heating of the solar wind at strong current sheets, Phys. Rev. Lett., 739, L61.en_US
dc.identifier.citedreferenceBorovsky, J. E., and H. O. Funsten ( 2003 ), Role of solar wind turbulence in the coupling of the solar wind to the Earth's magnetosphere, J. Geophys. Res., 108 ( A6 ), 1246, doi: 10.1029/2002JA009601.en_US
dc.identifier.citedreferenceBreen, A. R., S. J. Tappin, C. A. Jordan, P. Thomasson, P. J. Moran, R. A. Fallows, A. Canals, and P. J. S. Williams ( 2000 ), Simultaneous interplanetary scintillation and optical measurements of the acceleration of the slow solar wind, Ann. Geophys., 18, 995, doi: 10.1007/s00585‐000‐0995‐9.en_US
dc.identifier.citedreferenceBreen, A. R., P. Thomasson, C. A. Jordan, S. J. Tappin, R. A. Fallows, A. Canals, and P. J. Moran ( 2002 ), Slow and fast solar wind acceleration near solar maximum, Adv. Space Res., 30, 433, doi: 10.1016/S0273‐1177(02)00339‐3.en_US
dc.identifier.citedreferenceBrethouwer, G., J. C. R. Hunt, and F. T. M. Noeuwstadt ( 2003 ), Micro‐structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence, J. Fluid Mech., 474, 193.en_US
dc.identifier.citedreferenceBruno, R. ( 1997 ), Observations of MHD turbulence in the solar wind, Nuovo Cimento Soc. Ital. Fis. C, 20, 881.en_US
dc.identifier.citedreferenceBruno, R., and V. Carbone ( 2005 ), The solar wind as a turbulence laboratory, Living Rev. Sol. Phys, 2, lrsp‐2005‐4.en_US
dc.identifier.citedreferenceBruno, R., V. Carbone, P. Veltri, E. Pietropaolo, and B. Bavassano ( 2001 ), Identifying intermittency events in the solar wind, Planet. Space Sci., 49, 1201, doi: 10.1016/S0032‐0633(01)00061‐7.en_US
dc.identifier.citedreferenceBruno, R., R. D. D'Amicis, B. Bavassano, V. Carbone, and L. Sorriso‐Valvo ( 2007 ), Magnetically dominated structures as an important component of the solar wind turbulence, Ann. Geophys., 25, 1913, doi: 10.5194/angeo‐25‐1913‐2007.en_US
dc.identifier.citedreferenceBuch, K. A., and W. J. A. Dahm ( 1996 ), Experimental study of the fine‐scale structure of conserved scalar mixing in turbulent shear flows. Part 1. Sc >> 1, J. Fluid Mech., 317, 21, doi: 10.1017/S0022112096000651.en_US
dc.identifier.citedreferenceBuch, K. A., and W. J. A. Dahm ( 1998 ), Experimental study of the fine‐scale structure of conserved scalar mixing in turbulent shear flows. Part 2. Sc ≈ 1, J. Fluid Mech., 364, 1, doi: 10.1017/S0022112098008726.en_US
dc.identifier.citedreferenceBurlaga, L. F., W. H. Mish, and Y. C. Whang ( 1990 ), Coalescence of recurrent streams of different sizes and amplitudes, J. Geophys. Res., 95, 4247, doi: 10.1029/JA095iA04p04247.en_US
dc.identifier.citedreferenceBurrell, K. H. ( 1997 ), Effects of E  ×  B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices, Phys. Plasmas, 4, 1499, doi: 10.1063/1.872367.en_US
dc.identifier.citedreferenceBurton, M. E., M. Neugebauer, N. U. Crooker, R. von Steiger, and E. J. Smith ( 1999 ), Identification of trailing edge solar wind stream interfaces: A comparison of Ulysses plasma and compositional measurements, J. Geophys. Res., 104, 9925.en_US
dc.identifier.citedreferenceCatrakis, H. J. ( 2000 ), Distribution of scales in turbulence, Phys. Rev. E, 62, 564, doi: 10.1103/PhysRevE.62.564.en_US
dc.identifier.citedreferenceCatrakis, H. J., and R. C. Aguirre ( 2004 ), Interfacial‐fluid dynamics and the mixing efficiency of turbulent flows, Phys. Fluids, 16, 4746, doi: 10.1063/1.1811671.en_US
dc.identifier.citedreferenceCatrakis, H. J., and C. L. Bond ( 2000 ), Scale distributions of fluid interfaces in turbulence, Phys. Fluids, 12, 2295, doi: 10.1063/1.1286595.en_US
dc.identifier.citedreferenceCatrakis, H. J., R. C. Aguirre, J. Ruiz‐Plancarte, and R. D. Thayne ( 2002 ), Shape complexity of whole‐field three‐dimensional space‐time fluid interfaces in turbulence, Phys. Fluids, 14, 3891, doi: 10.1063/1.1505033.en_US
dc.identifier.citedreferenceCheng, B. ( 2009 ), Review of turbulent mixing models, Acta Math. Sci., 29, 1703, doi: 10.1016/S0252‐9602(10)60012‐4.en_US
dc.identifier.citedreferenceCheng, B., J. Glimm, H. Jin, and D. Sharp ( 2003 ), Theoretical methods for the determination of mixing, Lasers Part. Beams, 21, 429.en_US
dc.identifier.citedreferenceCorrsin, S. ( 1957 ), Simple theory of an idealized turbulent mixer, AIChE J., 3, 329, doi: 10.1002/aic.690030309.en_US
dc.identifier.citedreferenceCorrsin, S. ( 1959 ), Outline of some topics in homogeneous turbulent flow, J. Geophys. Res., 64, 2134, doi: 10.1029/JZ064i012p02134.en_US
dc.identifier.citedreferenceCrooker, N. U., G. L. Siscoe, C. T. Russell, and E. J. Smith ( 1982 ), Factors controlling degree of correlation between ISEE 1 and ISEE 3 interplanetary magnetic field measurements, J. Geophys. Res., 87, 2224, doi: 10.1029/JA087iA04p02224.en_US
dc.identifier.citedreferenceCrooker, N. U., M. E. Burton, G. L. Siscoe, S. W. Kahler, J. T. Gosling, and E. J. Smith ( 1996 ), Solar wind streamer belt structure, J. Geophys. Res., 101, 24,331, doi: 10.1029/96JA02412.en_US
dc.identifier.citedreferenceDahm, W. J. A., K. B. Southerland, and K. A. Buch ( 1991 ), Direct, high resolution, four‐dimensional measurements of the fine scale structure of Sc ≫ 1 molecular mixing in turbulent flows, Phys. Fluids A, 3, 1115, doi: 10.1063/1.858093.en_US
dc.identifier.citedreferenceDasi, L. P., F. Schuerg, and D. R. Webster ( 2007 ), The geometric properties of high‐Schmidt‐number passive scalar iso‐surfaces in turbulent boundary layers, J. Fluid Mech., 588, 253, doi: 10.1017/S0022112007007525.en_US
dc.identifier.citedreferenceDenskat, K. U., and F. M. Neubauer ( 1982 ), Statistical properties of low‐frequency magnetic field fluctuations in the solar wind from 0.29 to 1.0 AU during solar minimum conditions: HELIOS 1 ad HELIOS 2, J. Geophys. Res., 87, 2215, doi: 10.1029/JA087iA04p02215.en_US
dc.identifier.citedreferenceDimotakis, P. E. ( 2000 ), The mixing transition in turbulent flows, J. Fluid Mech., 409, 69, doi: 10.1017/S0022112099007946.en_US
dc.identifier.citedreferenceDimotakis, P. E. ( 2005 ), Turbulent mixing, Annu. Rev. Fluid Mech., 37, 329, doi: 10.1146/annurev.fluid.36.050802.122015.en_US
dc.identifier.citedreferenceDurban, P. A. ( 1982 ), Analysis of the decay of temperature fluctuations in isotropic turbulence, Phys. Fluids, 25, 1326.en_US
dc.identifier.citedreferenceEckart, C. ( 1948 ), An analysis of the stirring and mixing process, Science, 26, 597.en_US
dc.identifier.citedreferenceEselevich, M. V., and V. G. Eselevich ( 2006 ), Manifestation of the ray structure of the coronal streamer belt in the form of sharp peaks of the solar wind plasma density in the Earth's orbit, Geomagn. Aeron., 46, 770, doi: 10.1134/S0016793206060132.en_US
dc.identifier.citedreferenceEswaran, V., and S. B. Pope ( 1988 ), Direct numerical simulations of the turbulent mixing of a passive scalar, Phys. Fluids, 31, 506, doi: 10.1063/1.866832.en_US
dc.identifier.citedreferenceEyni, M., and R. Steinitz ( 1978 ), Cooling of slow solar wind protons from the Helios 1 experiment, J. Geophys. Res., 83, 4387, doi: 10.1029/JA083iA09p04387.en_US
dc.identifier.citedreferenceFeldman, W. C., J. T. Gosling, D. J. McComas, and J. L. Phillips ( 1993 ), Evidence for ion jets in the high‐speed solar wind, J. Geophys. Res., 98, 5593, doi: 10.1029/92JA02260.en_US
dc.identifier.citedreferenceFox, E. A., and V. E. Gex ( 1956 ), Single‐phase blending of liquids, AIChE J., 2, 539, doi: 10.1002/aic.690020422.en_US
dc.identifier.citedreferenceFreeman, J. W. ( 1988 ), Estimates of solar wind heating inside 0.3 AU, Geophys. Res. Lett., 15, 88, doi: 10.1029/GL015i001p00088.en_US
dc.identifier.citedreferenceFreeman, J. W., and R. E. Lopez ( 1985 ), The cold solar wind, J. Geophys. Res., 90, 9885, doi: 10.1029/JA090iA10p09885.en_US
dc.identifier.citedreferenceGarrett, C. ( 1983 ), On the initial streakiness of a dispersing tracer in two‐ and three‐dimensional turbulence, Dyn. Atmos. Oceans, 7, 265, doi: 10.1016/0377‐0265(83)90008‐8.en_US
dc.identifier.citedreferenceGibson, C. H. ( 1991 ), Kolmogorov similarity hypothesis for scalar fields: Sampling intermittent turbulent mixing in the ocean and galaxy, Proc. R. Soc. London, Ser. A, 434, 149, doi: 10.1098/rspa.1991.0086.en_US
dc.identifier.citedreferenceGoertz, C. K., and W. Baumjohann ( 1991 ), On the thermodynamics of the plasma sheet, J. Geophys. Res., 96, 20,991, doi: 10.1029/91JA02128.en_US
dc.identifier.citedreferenceGoldstein, M. L., D. A. Roberts, and W. H. Matthaeus ( 1995 ), Magnetohydrodynamic turbulence in the solar wind, Annu. Rev. Astron. Astrophys., 33, 283, doi: 10.1146/annurev.aa.33.090195.001435.en_US
dc.identifier.citedreferenceGosling, J. T. ( 1999 ), On the determination of electron polytrope indices within coronal mass ejections in the solar wind, J. Geophys. Res., 104, 19,851, doi: 10.1029/1999JA900254.en_US
dc.identifier.citedreferenceGosling, J. T., J. R. Asbridge, S. J. Bame, and W. C. Feldman ( 1978 ), Solar wind stream interfaces, J. Geophys. Res., 83, 1401, doi: 10.1029/JA083iA04p01401.en_US
dc.identifier.citedreferenceHartmann, H., J. J. Derksen, and H. E. A. van den Akker ( 2006 ), Mixing times in a turbulent stirred tank by means of LES, AIChE J., 52, 3696, doi: 10.1002/aic.10997.en_US
dc.identifier.citedreferenceHewish, A. ( 1958 ), The scattering of radio waves in the solar corona, Mon. Not. R. Astron. Soc., 118, 534.en_US
dc.identifier.citedreferenceHolzer, M., and E. D. Siggia ( 1994 ), Turbulent mixing of a passive scalar, Phys. Fluids, 6, 1820, doi: 10.1063/1.868243.en_US
dc.identifier.citedreferenceHorbury, T. S., and J. M. Schmidt ( 1999 ), Development and effects of turbulence in connection with CIRs, Space Sci. Rev., 89, 61, doi: 10.1023/A:1005260331464.en_US
dc.identifier.citedreferenceHuq, P., and R. E. Britter ( 1995 ), Mixing due to grid‐generated turbulence of a two‐layer scalar profile, J. Fluid Mech., 285, 17, doi: 10.1017/S0022112095000449.en_US
dc.identifier.citedreferenceJoshi, B., and A. Joshi ( 2004 ), The north‐south asymmetry of soft X‐ray flare index during solar cycles 21, 22, and 23, Sol. Phys., 219, 343, doi: 10.1023/B:SOLA.0000022977.95023.a7.en_US
dc.identifier.citedreferenceKepko, L., and H. E. Spence ( 2003 ), Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations, J. Geophys. Res., 108 ( A6 ), 1257, doi: 10.1029/2002JA009676.en_US
dc.identifier.citedreferenceKerstein, A. R. ( 1991 ), Linear‐eddy modeling of turbulent transport. Part V. Geometry of scalar interfaces, Phys. Fluids A, 3, 1110, doi: 10.1063/1.858092.en_US
dc.identifier.citedreferenceKlein, L., R. Bruno, B. Bavassano, and H. Rosenbauer ( 1993 ), Anisotropy and minimum variance of magnetohydrodynamic fluctuations in the inner heliosphere, J. Geophys. Res., 98, 17,461, doi: 10.1029/93JA01522.en_US
dc.identifier.citedreferenceKramers, H., G. M. Baars, and W. H. Knoll ( 1953 ), A comparative study of the rate of mixing in stirred tanks, Chem. Eng. Sci., 2, 35, doi: 10.1016/0009‐2509(53)80006‐0.en_US
dc.identifier.citedreferenceKresta, S. M., and R. S. Brodkey ( 2003 ), Turbulence in mixing applications, in Handbook of Industrial Mixing, edited by E. L. Paul, V. A. Atiemo‐Obeng, and S. M. Kresta, p. 19, Wiley‐Interscience, Hoboken, N. J., doi: 10.1002/0471451452.ch2.en_US
dc.identifier.citedreferenceKulsrud, R. M. ( 1983 ), MHD description of plasmas, in Handbook of Plasma Physics: Basic Plasma Physics, edited by M. N. Rosenbluth and R. Z. Sagdeev, p. 123, North‐Holland, Amsterdam.en_US
dc.identifier.citedreferenceLee, S. K., L. Djenidi, and R. A. Antonia ( 2010 ), Decay of a passive scalar in stretched grid turbulence, paper presented at 17th Australasian Fluid Mechanics Conference, Aust. Fluids Mech. Soc., Aukland, New Zealand.en_US
dc.identifier.citedreferenceLi, G., B. Miao, Q. Hu, and G. Qin ( 2011 ), Effect of current sheets on the solar wind magnetic field power spectrum from the Ulysses observations: From Kraichnan to Kolmogorov scaling, Phys. Rev. Lett., 106, 125001, doi: 10.1103/PhysRevLett.106.125001.en_US
dc.identifier.citedreferenceLiepmann, H. W. ( 1979 ), The rise and fall of ideas in turbulence, Am. Sci., 67, 221.en_US
dc.identifier.citedreferenceLivescu, D., and J. R. Ristorcelli ( 2008 ), Variable‐density mixing in buoyancy‐driven turbulence, J. Fluid Mech., 605, 145, doi: 10.1017/S0022112008001481.en_US
dc.identifier.citedreferenceLivescu, D., F. A. Jaberi, and C. K. Madnia ( 2000 ), Passive‐scalar wake behind a line source in grid turbulence, J. Fluid Mech., 416, 117, doi: 10.1017/S0022112000008910.en_US
dc.identifier.citedreferenceLuttrell, A. H., and A. K. Richter ( 1988 ), The role of Alfvénic fluctuations in MHD turbulence evolution between 0.3 and 1 AU, in Proceedings of the Sixth International Solar Wind Conference, Tech. Note 306, edited by V. J. Pizzo, T. E. Holzer, and D. G. Sime, p., 335, Natl. Cent. for Atmos. Res., Boulder, Colo.en_US
dc.identifier.citedreferenceMariani, F. B., B. Bavassano, and U. Villante ( 1983 ), A statistical study of MHD discontinuities in the inner solar system: Helios 1 and 2, Sol. Phys., 83, 349, doi: 10.1007/BF00148285en_US
dc.identifier.citedreferenceMarsch, E., and C.‐Y. Tu ( 1990 a), On the radial evolution of MHD turbulence in the inner heliosphere, J. Geophys. Res., 95, 8211, doi: 10.1029/JA095iA06p08211.en_US
dc.identifier.citedreferenceMarsch, E., and C.‐Y. Tu ( 1990 b), Spectral and spatial evolution of compressible turbulence in the inner solar wind, J. Geophys. Res., 95, 11,945, doi: 10.1029/JA095iA08p11945.en_US
dc.identifier.citedreferenceMarsch, E., W. G. Pilipp, K. M. Thieme, and H. Rosenbauer ( 1989 ), Cooling of solar wind electrons inside 0.3 AU, J. Geophys. Res., 94, 6893, doi: 10.1029/JA094iA06p06893.en_US
dc.identifier.citedreferenceMatsumoto, Y., and M. Hoshino ( 2006 ), Turbulent mixing and transport of collisionless plasmas across a stratified velocity shear layer, J. Geophys. Res., 111, A05213, doi: 10.1029/2004JA010988.en_US
dc.identifier.citedreferenceMatthaeus, W. H., C. W. Smith, and S. Oughton ( 1998 ), Dynamical age of solar wind turbulence in the outer heliosphere, J. Geophys. Res., 103, 6495, doi: 10.1029/97JA03729.en_US
dc.identifier.citedreferenceMcKelvey, K. N., H.‐N. Yieh, S. Zakanycz, and R. S. Brodkey ( 1975 ), Turbulent motion, mixing, and kinetics in a chemical reactor configuration, AIChE J., 21, 1165, doi: 10.1002/aic.690210617.en_US
dc.identifier.citedreferenceMiller, P. L., and P. E. Dimotakis ( 1991 ), Stochastic geometric properties of scalar interfaces in turbulent jets, Phys. Fluids A, 3, 168, doi: 10.1063/1.857876.en_US
dc.identifier.citedreferenceMiura, A., and P. L. Pritchett ( 1982 ), Nonlocal stability analysis of the MHD Kelvin‐Helmholtz instability in a compressible plasma, J. Geophys. Res., 87, 7431, doi: 10.1029/JA087iA09p07431.en_US
dc.identifier.citedreferenceNeugebauer, M., P. C. Liewer, B. E. Goldstein, X. Zhou, and J. T. Steinberg ( 2004 ), Solar wind stream interaction regions without sector boundaries, J. Geophys. Res., 109, A10102, doi: 10.1029/2004JA010456.en_US
dc.identifier.citedreferenceNewman, G. R., Z. Warhaft, and J. M. Lumley ( 1977 ), The decay of temperature fluctuations in isotropic turbulence, paper presented at Sixth Australian Hydraulics and Fluid Mechanics Conference, U.S. Environ. Prot. Agency, Adelaide, Australia.en_US
dc.identifier.citedreferenceNorwood, K. W., and A. B. Metzner ( 1960 ), Flow patterns and mixing rates in agitated vessels, AIChE J., 6, 432, doi: 10.1002/aic.690060317.en_US
dc.identifier.citedreferenceOfman, L. ( 2004 ), The origin of the slow solar wind in coronal streamers, Adv. Space Res., 33, 681, doi: 10.1016/S0273‐1177(03)00235‐7.en_US
dc.identifier.citedreferenceOgilvie, K. W., M. A. Coplan, D. A. Roberts, and F. Ipavich ( 2007 ), Solar wind structure suggested by bimodal correlations of solar wind speed and density between the spacecraft SOHO and Wind, J. Geophys. Res., 112, A08104, doi: 10.1029/2007JA012248.en_US
dc.identifier.citedreferenceOsherovich, V. A., J. Fainberg, R. G. Stone, R. J. MacDowall, and D. Berdichevsky ( 1997 ), Self‐similar evolution of interplanetary magnetic clouds and Ulysses measurements of the polytropic index inside the cloud, Eur. Space Agency Spec. Publ., ESA SP‐415, 171.en_US
dc.identifier.citedreferenceOttino, J. M. ( 1990 ), Mixing, chaotic advection, and turbulence, Annu. Rev. Fluid Mech., 22, 207, doi: 10.1146/annurev.fl.22.010190.001231.en_US
dc.identifier.citedreferenceOttino, J. M., C. W. Leong, H. Rising, and P. D. Swanson ( 1988 ), Morphological structures produced by mixing in chaotic flows, Nature, 333, 419, doi: 10.1038/333419a0.en_US
dc.identifier.citedreferenceOwens, M. J., R. T. Wicks, and T. S. Horbury ( 2011 ), Magnetic discontinuities in the near‐Earth solar wind: Evidence of in‐transit turbulence or remnants of coronal structure?, Sol. Phys., 269, 411, doi: 10.1007/s11207‐010‐9695‐0.en_US
dc.identifier.citedreferencePagel, A. C., N. U. Crooker, T. H. Zurbuchen, and J. T. Gosling ( 2004 ), Correlation of solar wind entropy and oxygen ion charge state ratio, J. Geophys. Res., 109, A01113, doi: 10.1029/2003JA010010.en_US
dc.identifier.citedreferencePaul, E. L., V. A. Atiemo‐Obeng, and S. M. Kresta (Eds.) ( 2003 ), Handbook of Industrial Mixing, Wiley‐Interscience, Hoboken, N. J., doi: 10.1002/0471451452.en_US
dc.identifier.citedreferencePizzo, V. ( 1978 ), A three‐dimensional model of corotating streams in the solar wind: 1. Theoretical foundations, J. Geophys. Res., 83, 5563, doi: 10.1029/JA083iA12p05563.en_US
dc.identifier.citedreferencePrasad, R. R., and K. R. Sreenivasan ( 1989 ), Scalar interfaces in digital images of turbulent flows, Exp. Fluids, 7, 259, doi: 10.1007/BF00198005.en_US
dc.identifier.citedreferencePrasad, R. R., and K. R. Sreenivasan ( 1990 ), The measurement of interpretation of fractal dimensions of the scalar interface in turbulent flows, Phys. Fluids A, 2, 792, doi: 10.1063/1.857733.en_US
dc.identifier.citedreferenceProchazka, J., and J. Landau ( 1961 ), Studies on mixing. XII. Homogenation of miscible liquids in the turbulent region, Collect. Czech. Chem. Commun., 26, 2961.en_US
dc.identifier.citedreferenceRehme, K. ( 1992 ), The structure of turbulence in rod bundles and the implications on natural mixing between the subchannels, Int. J. Heat Mass Transfer, 35, 567, doi: 10.1016/0017‐9310(92)90291‐Y.en_US
dc.identifier.citedreferenceReisenfeld, D. B., D. J. McComas, and J. T. Steinberg ( 1999 ), Evidence of a solar origin for pressure balance structures in the high‐latitude solar wind, Geophys. Res. Lett., 26, 1805, doi: 10.1029/1999GL900368.en_US
dc.identifier.citedreferenceRichardson, J. D., and K. I. Paularena ( 1998 ), The orientation of plasma structure in the solar wind, Geophys. Res. Lett., 25, 2097, doi: 10.1029/98GL01520.en_US
dc.identifier.citedreferenceRichardson, J. D., and K. I. Paularena ( 2001 ), Plasma and magnetic field correlations in the solar wind, J. Geophys. Res., 106, 239, doi: 10.1029/2000JA000071.en_US
dc.identifier.citedreferenceRidley, A. J. ( 2000 ), Estimations of the uncertainty in timing the relationship between magnetospheric and solar wind processes, J. Atmos. Sol. Terr. Phys., 62, 757, doi: 10.1016/S1364‐6826(00)00057‐2.en_US
dc.identifier.citedreferenceRoberts, D. A. ( 2010 ), The evolution of the spectrum of solar wind magnetic and velocity fluctuations from 0.3 to 5 AU, J. Geophys. Res., 115, A12101, doi: 10.1029/2009JA015120.en_US
dc.identifier.citedreferenceRoberts, D. A., M. L. Goldstein, W. H. Matthaeus, and S. Ghosh ( 1992 ), Velocity shear generation of solar wind turbulence, J. Geophys. Res., 97, 17,115, doi: 10.1029/92JA01144.en_US
dc.identifier.citedreferenceRosenbauer, H., R. Schwenn, E. Marsch, B. Meyer, H. Miggenrieder, M. D. Montgomery, K. H. Muhlhauser, W. Pilipp, W. Voges, and S. M. Zink ( 1977 ), A survey on initial results of the Helios plasma experiment, J. Geophys. Res., 42, 561.en_US
dc.identifier.citedreferenceSari, J. W., and N. F. Ness ( 1969 ), Power spectra of the interplanetary magnetic field, Sol. Phys., 8, 155, doi: 10.1007/BF00150667.en_US
dc.identifier.citedreferenceSchindler, K., and J. Birn ( 1978 ), Magnetospheric physics, Phys. Rep., 47, 109, doi: 10.1016/0370‐1573(78)90016‐9.en_US
dc.identifier.citedreferenceSchwenn, R. ( 1990 ), Large scale structure of the interplanetary medium, in Physics of the Inner Heliosphere I, edited by R. Schwenn and E. Marsch, p. 99, Springer, Berlin.en_US
dc.identifier.citedreferenceSchwenn, R., K.‐H. Muhlhauser, E. Marsch, and H. Rosenbauer ( 1981 ), Two states of the solar wind at the time of solar activity minimum: II. Radial gradients of plasma parameters in fast and slow streams, in Solar Wind Four, MPAE‐W‐100‐81‐31, p., 126, Max Planck Inst. fur Aeron., Lindau, Germany.en_US
dc.identifier.citedreferenceSeale, W. J. ( 1979 ), Turbulent diffusion of heat between connected flow passages, Nucl. Eng. Design, 54, 197, doi: 10.1016/0029‐5493(79)90167‐5.en_US
dc.identifier.citedreferenceShraiman, B. I., and E. D. Siggia ( 2000 ), Scalar turbulence, Nature, 405, 639, doi: 10.1038/35015000.en_US
dc.identifier.citedreferenceSiscoe, G. L., L. Davis, P. J. Coleman, E. J. Smith, and D. E. Jones ( 1968 ), Power spectra and discontinuities of the interplanetary magnetic field: Mariner 4, J. Geophys. Res., 73, 61, doi: 10.1029/JA073i001p00061.en_US
dc.identifier.citedreferenceSreenivasan, K. R., and R. A. Antonia ( 1997 ), The phenomenology of small‐scale turbulence, Annu. Rev. Fluid Mech., 29, 435, doi: 10.1146/annurev.fluid.29.1.435.en_US
dc.identifier.citedreferenceSreenivasan, K. R., S. Tavoularis, R. Henry, and S. Corrsin ( 1980 ), Temperature fluctuations in grid‐generated turbulence, J. Fluid Mech., 100, 597, doi: 10.1017/S0022112080001309.en_US
dc.identifier.citedreferenceSreenivasan, K. R., A. Prabhu, and R. Narasimha ( 1983 ), Zero‐crossings in turbulent signals, J. Fluid Mech., 137, 251, doi: 10.1017/S0022112083002396.en_US
dc.identifier.citedreferenceStapountzis, H., B. L. Sawford, J. C. R. Hunt, and R. E. Britter ( 1986 ), Structure of the temperature field downwind of a line source in grid turbulence, J. Fluid Mech., 165, 401, doi: 10.1017/S0022112086003154.en_US
dc.identifier.citedreferenceThieme, K. M., E. Marsch, and R. Schwenn ( 1988 ), Relationship between structures in the solar wind and their source regions in the corona, in Proceedings of the Sixth International Solar Wind Conference, Tech. Note 306, edited by V. J. Pizzo, T. Holzer, and D. G. Sime, p., 317, Natl. Cent. for Atmos. Res., Boulder, Colo.en_US
dc.identifier.citedreferenceThieme, K. M., R. Schwenn, and E. Marsch ( 1989 ), Are structures in high‐speed streams signatures of coronal fine structures?, Adv. Space Res., 9 ( 4 ), 127, doi: 10.1016/0273‐1177(89)90105‐1.en_US
dc.identifier.citedreferenceThieme, K. M., E. Marsch, and R. Schwenn ( 1990 ), Spatial structures in high‐speed streams as signatures of fine structures in coronal holes, Ann. Geophys., 8, 713.en_US
dc.identifier.citedreferenceTu, C.‐Y., and E. Marsch ( 1991 ), A case study of very low cross‐helicity fluctuations in the solar wind, Ann. Geophys., 9, 319.en_US
dc.identifier.citedreferenceTu, C.‐Y., and E. Marsch ( 1994 ), On the nature of compressive fluctuations in the solar wind, J. Geophys. Res., 99, 21,481, doi: 10.1029/94JA00843.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.