Show simple item record

Signatures of two distinct driving mechanisms in the evolution of coronal mass ejections in the lower corona

dc.contributor.authorLoesch, C.en_US
dc.contributor.authorOpher, M.en_US
dc.contributor.authorAlves, M. V.en_US
dc.contributor.authorEvans, R. M.en_US
dc.contributor.authorManchester, W. B.en_US
dc.date.accessioned2013-01-03T19:45:32Z
dc.date.available2013-01-03T19:45:32Z
dc.date.issued2011-04en_US
dc.identifier.citationLoesch, C.; Opher, M.; Alves, M. V.; Evans, R. M.; Manchester, W. B. (2011). "Signatures of two distinct driving mechanisms in the evolution of coronal mass ejections in the lower corona." Journal of Geophysical Research: Space Physics 116(A4): n/a-n/a. <http://hdl.handle.net/2027.42/95565>en_US
dc.identifier.issn0148-0227en_US
dc.identifier.issn2156-2202en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95565
dc.publisherAGUen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherFlux Ropeen_US
dc.subject.otherMagnetic Field Configurationen_US
dc.subject.otherMagnetohydrodynamic Simulationsen_US
dc.subject.otherCoronal Mass Ejectionen_US
dc.subject.otherSolar Coronaen_US
dc.subject.otherInterplanetary Shocksen_US
dc.titleSignatures of two distinct driving mechanisms in the evolution of coronal mass ejections in the lower coronaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95565/1/jgra20700.pdf
dc.identifier.doi10.1029/2010JA015582en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceSheeley, N. R. Jr., R. A. Howard, D. J. Michels, M. J. Koomen, R. Schwenn, K. H. Muehlhaeuser, and H. Rosenbauer ( 1985 ), Coronal mass ejections and interplanetary shocks, J. Geophys. Res., 90, 163 – 175, doi: 10.1029/JA090iA01p00163.en_US
dc.identifier.citedreferenceManchester, W. B., A. J. Ridley, T. I. Gombosi, and D. L. De Zeeuw ( 2006 ), Modeling the Sun‐to‐Earth propagation of a very fast CME, Adv. Space Res., 38 ( 2 ), 253 – 262, doi: 10.1016/j.asr.2005.09.044.en_US
dc.identifier.citedreferenceManchester, W. B., A. Vourlidas, T. Gábor, N. Lugaz, I. I. Roussev, I. V. Sokolov, T. I. Gombosi, D. L. De Zeeuw, and M. Opher ( 2008 ), Three‐dimensional MHD simulation of the 2003 October 28 coronal mass ejection: Comparison with LASCO coronagraph observations, Astrophys. J., 684, 1448 – 1460, doi: 10.1086/590231.en_US
dc.identifier.citedreferenceMancuso, S., and A. Bemporad ( 2009 ), Interpretation of the SOHO/UVCS observations of two CME‐driven shocks, Adv. Space Res., 44 ( 4 ), 451 – 456, doi: 10.1016/j.asr.2009.03.021.en_US
dc.identifier.citedreferenceOdstrcil, D., J. A. Linker, R. Lionello, Z. Mikić, P. Riley, V. J. Pizzo, and J. G. Luhmann ( 2002 ), Merging of coronal and heliospheric numerical two‐dimensional MHD models, J. Geophys. Res., 107 ( A12 ), 1493, doi: 10.1029/2002JA009334.en_US
dc.identifier.citedreferenceRoussev, I. I., T. G. Forbes, T. I. Gombosi, I. V. Sokolov, D. L. De Zeeuw, and J. Birn ( 2003 a), A three‐dimensional flux rope model for coronal mass ejections based on a loss of equilibrium, Astrophys. J., 588, L45 – L48, doi: 10.1086/375442.en_US
dc.identifier.citedreferenceRoussev, I. I., T. I. Gombosi, I. V. Sokolov, M. Velli, W. Manchester IV, D. L. Dezeeuw, P. Liewer, G. Tóth, and J. Luhmann ( 2003 b), A three‐dimensional model of the solar wind incorporating solar magnetogram observations, Astrophys. J., 595, L57 – L61, doi: 10.1086/378878.en_US
dc.identifier.citedreferenceRoussev, I. I., I. V. Sokolov, T. G. Forbes, T. I. Gombosi, M. A. Lee, and J. I. Sakai ( 2004 ), A numerical model of a coronal mass ejection: Shock development with implications for the acceleration of GeV protons, Astrophys. J., 605, L73 – L76, doi: 10.1086/392504.en_US
dc.identifier.citedreferenceSiscoe, G., and D. Odstrcil ( 2008 ), Ways in which ICME sheaths differ from magnetosheaths, J. Geophys. Res., 113, A00B07, doi: 10.1029/2008JA013142.en_US
dc.identifier.citedreferenceSpruit, H. C. ( 1981 ), Motion of magnetic flux tubes in the solar convection zone and chromosphere, Astron. Astrophys., 98, 155 – 160.en_US
dc.identifier.citedreferenceSt. Cyr, O. C., J. T. Burkepile, A. J. Hundhausen, and A. R. Lecinski ( 1999 ), A comparison of ground‐based and spacecraft observations of coronal mass ejections from 1980–1989, J. Geophys. Res., 104, 12,493 – 12,506, doi: 10.1029/1999JA900045.en_US
dc.identifier.citedreferenceTitov, V. S., and P. Démoulin ( 1999 ), Basic topology of twisted magnetic configuration in solar flares, Astron. Astrophys., 351, 707 – 720.en_US
dc.identifier.citedreferenceTorok, T., and B. Kliem ( 2005 ), Confined and ejective eruptions of kink‐unstable flux ropes, Astrophys. J., 630, L97 – L100, doi: 10.1086/462412.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space weather modeling framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.en_US
dc.identifier.citedreferenceTsurutani, B. T., W. D. Gonzalez, F. Tang, S.‐I. Akasofu, and E. J. Smith ( 1988 ), Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979), J. Geophys. Res., 93, 8591 – 8531, doi: 10.1029/JA093iA08p08519.en_US
dc.identifier.citedreferenceVourlidas, A., D. Buzasi, R. A. Howard, and E. Esfandiari ( 2002 ), Mass and energy properties of LASCO CMEs, in Solar Variability: From Core to Outer Frontiers, vol. 1, edited by A. Wilson, pp. 91 – 94, Eur. Space Agency, Noordwijk, Netherlands.en_US
dc.identifier.citedreferenceVrsnak, B. ( 2001 ), Dynamics of solar coronal eruptions, J. Geophys. Res., 106, 25,249 – 25,260, doi: 10.1029/2000JA004007.en_US
dc.identifier.citedreferenceVrsnak, B., V. Ruzdjak, and B. Rompolt ( 1991 ), Stability of prominences exposing helical‐like patterns, Sol. Phys., 136, 151 – 167, doi: 10.1007/BF00151701.en_US
dc.identifier.citedreferenceWang, R., and J. Wang ( 2006 ), Spectra and solar energetic protons over 20 GeV in Bastille Day event, Astroparticle Phys., 25 ( 1 ), 41 – 46, doi: 10.1016/j.astropartphys.2005.11.002.en_US
dc.identifier.citedreferenceWatari, S., and T. Detman ( 1998 ), In situ local shock speed and transit shock speed, Ann. Geophys., 16 ( 4 ), 370 – 375, doi: 10.1007/s005850050607.en_US
dc.identifier.citedreferenceWu, S. T., W. P. Guo, D. J. Michels, and L. F. Burlaga ( 1999 ), MHD description of the dynamical relationships between a flux rope, streamer, coronal mass ejection, and magnetic cloud: An analysis of the January 1997 Sun‐Earth connection event, J. Geophys. Res., 104, 14,789 – 14,802, doi: 10.1029/1999JA900099.en_US
dc.identifier.citedreferenceWu, S. T., M. D. Andrews, and S. P. Plunkett ( 2001 ), Numerical magnetohydrodynamic (MHD) modeling of coronal mass ejections (CMEs), Space Sci. Rev., 95 ( 1–2 ), 191 – 213.en_US
dc.identifier.citedreferenceZhang, J., and K. P. Dere ( 2006 ), A statistical study of main and residual accelerations of coronal mass ejections, Astrophys. J., 649, 1100 – 1109, doi: 10.1086/506903.en_US
dc.identifier.citedreferenceZhang, J., W. Poomvises, and I. G. Richardson ( 2008 ), Sizes and relative geoeffectiveness of interplanetary coronal mass ejections and the preceding shock sheaths during intense storms in 1996–2005, Geophys. Res. Lett., 35, L02109, doi: 10.1029/2007GL032045.en_US
dc.identifier.citedreferenceAntiochos, S. K., C. R. DeVore, and J. A. Klimchuk ( 1999 ), A model for solar coronal mass ejections, Astrophys. J., 510, 485 – 493.en_US
dc.identifier.citedreferenceArge, C. N., and V. J. Pizzo ( 2000 ), Improvement in the prediction of solar wind conditions using near‐real time solar magnetic field updates, J. Geophys. Res., 105, 10465 – 10480, doi: 10.1029/1999JA900262.en_US
dc.identifier.citedreferenceArge, C. N., J. G. Luhmann, D. Odstrcil, C. J. Schrijver, and Y. Li ( 2004 ), Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME, J. Atmos. Sol. Terr. Phys., 66 ( 15–16 ), 1295 – 1309, doi: 10.1016/j.jastp.2004.03.018.en_US
dc.identifier.citedreferenceBurlaga, L. F. ( 1988 ), Magnetic clouds and force‐free fields with constant alpha, J. Geophys. Res., 93, 7217 – 7224, doi: 10.1029/JA093iA07p07217.en_US
dc.identifier.citedreferenceCane, H. V., N. R. Sheeley, and R. A. Howard ( 1987 ), Energetic interplanetary shocks, radio emission, and coronal mass ejections, J. Geophys. Res., 92, 9869 – 9874, doi: 10.1029/JA092iA09p09869.en_US
dc.identifier.citedreferenceCargill, P. J., J. Chen, D. S. Spicer, and S. T. Zalesak ( 1996 ), Magnetohydrodynamic simulations of the motion of magnetic flux tubes through a magnetized plasma, J. Geophys. Res., 101, 4855 – 4870, doi: 10.1029/95JA03769.en_US
dc.identifier.citedreferenceChen, J. ( 1989 ), Effects of toroidal forces in current loops embedded in a background plasma, Astrophys. J., 338, 453 – 470, doi: 10.1086/167211.en_US
dc.identifier.citedreferenceChen, J. ( 1996 ), Theory of prominence eruption and propagation: Interplanetary consequences, J. Geophys. Res., 101, 27,499 – 27,520, doi: 10.1029/96JA02644.en_US
dc.identifier.citedreferenceChen, J., and J. Krall ( 2003 ), Acceleration of coronal mass ejections, J. Geophys. Res., 108 ( A11 ), 1410, doi: 10.1029/2003JA009849.en_US
dc.identifier.citedreferenceCohen, O., et al. ( 2007 ), A semiempirical magnetohydrodynamical model of the solar wind, Astrophys. J., 654, L163 – L166, doi: 10.1086/511154.en_US
dc.identifier.citedreferenceCohen, O., I. V. Sokolov, I. I. Roussev, and T. I. Gombosi ( 2008 ), Validation of a synoptic solar wind model, J. Geophys. Res., 113, A03104, doi: 10.1029/2007JA012797.en_US
dc.identifier.citedreferenceDas, I., M. Opher, R. M. Evans, C. Loesch, and T. I. Gombosi ( 2011 ), Evolution of piled up compressions in modeled CME sheaths and the resulting sheath structures, Astrophys. J., 729, 112 – 118, doi: 10.1088/0004-637X/729/112.en_US
dc.identifier.citedreferenceDasso, S., M. S. Nakwacki, P. Demoulin, and C. H. Mandrini ( 2007 ), Progressive transformation of a flux rope to an ICME. Comparative analysis using the direct and fitted expansion methods, Sol. Phys., 244, 115 – 137, doi: 10.1007/s11207-007-9034-2.en_US
dc.identifier.citedreferenceEvans, R. M., M. Opher, V. Jatenco‐Pereira, and T. I. Gombosi ( 2009 ), Surface Alfvén wave damping in a 3D simulation of the solar wind, Astrophys. J., 730, 179 – 186, doi: 10.1088/0004-637X/703/1/179.en_US
dc.identifier.citedreferenceEvans, R. M., M. Opher, and T. I. Gombosi ( 2011 ), Learning from the outer heliosphere: Interplanetary coronal mass ejection sheath flows and the ejecta orientation in the lower corona, Astrophys. J., 728, 41 – 47, doi: 10.1088/0004-637X/1/41.en_US
dc.identifier.citedreferenceForbes, T. G., and E. R. Priest ( 1995 ), Photospheric magnetic field evolution and eruptive flares, Astrophys. J., 446, 377 – 389, doi: 10.1086/175797.en_US
dc.identifier.citedreferenceForbes, T. G., et al. ( 2006 ), CME theory and models, Space Sci. Rev., 123 ( 1–3 ), 251 – 302, doi: 10.1007/s11214-006-9019-8.en_US
dc.identifier.citedreferenceGibson, S. E., and B. C. Low ( 1998 ), A time‐dependent three‐dimensional magnetohydrodynamic model of the coronal mass ejection, Astrophys. J., 493, 460 – 473, doi: 10.1086/305107.en_US
dc.identifier.citedreferenceHoward, T. A., C. D. Fry, J. C. Johnston, and D. F. Webb ( 2007 ), On the evolution of coronal mass ejections in the interplanetary medium, Astrophys. J., 667, 610 – 625, doi: 10.1086/519758.en_US
dc.identifier.citedreferenceHundhausen, A. J. ( 1997 ), An introduction, in Coronal Mass Ejections, edited by N. Crooker, J. Joselyn, and J. Feyman, pp. 1 – 7, AGU, Washington, D. C.,en_US
dc.identifier.citedreferenceJacobs, C., I. I. Roussev, N. Lugaz, and S. Poedts ( 2009 ), The internal structure of coronal mass ejections: Are all regular magnetic clouds flux ropes? Astrophys. J., 695, L171 – L175, doi: 10.1088/0004-637X/695/2/L171.en_US
dc.identifier.citedreferenceKivelson, M. G., and C. T. Russel (Eds.) ( 1995 ), Introduction to Space Physics, 1st ed., 568 pp., Cambridge Univ. Press, New York.en_US
dc.identifier.citedreferenceKrall, N. A., and A. W. Trivelpiece (Eds.) ( 1973 ), Principles of Plasma Physics, 1st ed., 568 pp., McGraw‐Hill, Tokyo.en_US
dc.identifier.citedreferenceLe, G. M., and Y. B. Han ( 2005 ), Analysis of the acceleration process of SEPs by an interplanetary shock for Bastille Day event, in Coronal and Stellar Mass Ejections: Proceedings of the IAU Symposium 226, edited by K. Dere, J. Wang, and Y. Yan, pp. 346 – 349, Cambridge Univ. Press, Cambridge, U. K.,en_US
dc.identifier.citedreferenceLinker, J. A., and Z. Mikić ( 1995 ), Disruption of a helmet streamer by photospheric shear, Astrophys. J., 438, L45 – L48, doi: 10.1086/187711.en_US
dc.identifier.citedreferenceLiu, Y., J. D. Richardson, J. W. Belcher, J. C. Kasper, and R. M. Skoug ( 2006 ), Plasma depletion and mirror waves ahead of interplanetary coronal mass ejections, J. Geophys. Res., 111, A09108, doi: 10.1029/2006JA011723.en_US
dc.identifier.citedreferenceLiu, Y. C.‐M., M. Opher, O. Cohen, P. C. Liewer, and T. I. Gombosi ( 2008 a), A simulation of a coronal mass ejection propagation and shock evolution in the lower solar corona, Astrophys. J., 680, 757 – 763, doi: 10.1086/587867.en_US
dc.identifier.citedreferenceLiu, Y., W. B. Manchester, J. D. Richardson, J. G. Luhmann, R. P. Lin, and S. D. Bale ( 2008 b), Deflection flows ahead of ICMEs as an indicator of curvature and geoeffectiveness, J. Geophys. Res., 113, A00B03, doi: 10.1029/2007JA012996.en_US
dc.identifier.citedreferenceLugaz, N., W. B. Manchester, I. I. Roussev, G. Tóth, and T. I. Gombosi ( 2007 ), Numerical investigation of the homologous coronal mass ejection events from active region 9236, Astrophys. J., 659, 788 – 800, doi: 10.1086/512005.en_US
dc.identifier.citedreferenceLugaz, N., A. Vourlidas, I. I. Roussev, and H. Morgan ( 2009 ), Solar‐terrestrial simulation in the STEREO era: The 24–25 January 2007 eruptions, Sol. Phys., 256, 269 – 284, doi: 10.1007/s11207-009-9339-4.en_US
dc.identifier.citedreferenceLynch, B. J., Y. Li, A. F. R. Thernisien, E. Robbrecht, G. H. Fisher, J. G. Luhmann, and A. Vourlidas ( 2010 ), Sun to 1 AU propagation and evolution of a slow streamer‐blowout coronal mass ejection, J. Geophys. Res., 115, A07106, doi: 10.1029/2009JA015099.en_US
dc.identifier.citedreferenceMacQueen, R. M., and R. R. Fisher ( 1983 ), The kinematics of solar inner coronal transients, Sol. Phys., 89, 89 – 102, doi: 10.1007/BF00211955.en_US
dc.identifier.citedreferenceManchester, W. ( 2003 ), Buoyant disruption of magnetic arcades with self‐induced shearing, J. Geophys. Res., 108 ( A4 ), 1162, doi: 10.1029/2002JA009252.en_US
dc.identifier.citedreferenceManchester, W. ( 2007 ), Solar atmospheric dynamic coupling due to shear motions driven by the Lorentz force, Astrophys. J., 666, 532 – 540, doi: 10.1086/520493.en_US
dc.identifier.citedreferenceManchester, W., T. I. Gombosi, I. Roussev, D. L. De Zeeuw, I. V. Sokolov, K. G. Powell, G. Tóth, and M. Opher ( 2004 a), Three‐dimensional MHD simulation of a flux rope driven CME, J. Geophys. Res., 109, A01102, doi: 10.1029/2002JA009672.en_US
dc.identifier.citedreferenceManchester, W. B., T. I. Gombosi, I. Roussev, A. Ridley, D. L. De Zeeuw, I. V. Sokolov, K. G. Powell, and G. Tóth ( 2004 b), Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation, J. Geophys. Res., 109, A02107, doi: 10.1029/2003JA010150.en_US
dc.identifier.citedreferenceManchester, W. B., T. I. Gombosi, D. L. De Zeeuw, and Y. Fan ( 2004 c), Eruption of a buoyantly emerging magnetic flux rope, Astrophys. J., 610, 588 – 596, doi: 10.1086/421516.en_US
dc.identifier.citedreferenceManchester, W. B., T. I. Gombosi, D. L. De Zeeuw, I. V. Sokolov, I. I. Roussev, K. G. Powell, J. Kóta, G. Tóth, and T. H. Zurbuchen ( 2005 ), Coronal mass ejection shock and sheath structures relevant to particle acceleration, Astrophys. J., 622, 1225 – 1239, doi: 10.1086/427768.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.