Show simple item record

Concordance in hippocampal and fecal Nr3c1 methylation is moderated by maternal behavior in the mouse

dc.contributor.authorLiberman, Shayna A.en_US
dc.contributor.authorMashoodh, Rahiaen_US
dc.contributor.authorThompson, Robert C.en_US
dc.contributor.authorDolinoy, Dana C.en_US
dc.contributor.authorChampagne, Frances A.en_US
dc.date.accessioned2013-01-03T19:46:41Z
dc.date.available2014-01-07T14:51:07Zen_US
dc.date.issued2012-12en_US
dc.identifier.citationLiberman, Shayna A.; Mashoodh, Rahia; Thompson, Robert C.; Dolinoy, Dana C.; Champagne, Frances A. (2012). "Concordance in hippocampal and fecal Nr3c1 methylation is moderated by maternal behavior in the mouse." Ecology and Evolution 2(12): 3123-3131. <http://hdl.handle.net/2027.42/95656>en_US
dc.identifier.issn2045-7758en_US
dc.identifier.issn2045-7758en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95656
dc.description.abstractRecent advances in genomic technologies now enable a reunion of molecular and evolutionary biology. Researchers investigating naturally living animal populations are thus increasingly able to capitalize upon genomic technologies to connect molecular findings with multiple levels of biological organization. Using this vertical approach in the laboratory, epigenetic gene regulation has emerged as an important mechanism integrating genotype and phenotype. To connect phenotype to population fitness, however, this same vertical approach must now be applied to naturally living populations. A major obstacle to studying epigenetics in noninvasive samples is tissue specificity of epigenetic marks. Here, using the mouse as a proof‐of‐principle model, we present the first known attempt to validate an epigenetic assay for use in noninvasive samples. Specifically, we compare DNA methylation of the NGFI‐A (nerve growth factor‐inducible protein A) binding site in the promoter of the glucocorticoid receptor ( Nr3c1 ) gene between central (hippocampal) and peripheral noninvasive (fecal) tissues in juvenile Balb/c mice that had received varying levels of postnatal maternal care. Our results indicate that while hippocampal DNA methylation profiles correspond to maternal behavior, fecal DNA methylation levels do not. Moreover, concordance in methylation levels between these tissues within individuals only emerges after accounting for the effects of postnatal maternal care. Thus, although these findings may be specific to the Nr3c1 gene, we urge caution when interpreting DNA methylation patterns from noninvasive tissues, and offer suggestions for further research in this field. A major obstacle to studying epigenetics in noninvasive samples is tissue specificity of epigenetic marks. Here, we compare DNA methylation of the NGFI‐A (nerve growth factor‐inducible protein A) binding site in the promoter of the glucocorticoid receptor ( Nr3c1 ) gene between central (hippocampal) and peripheral noninvasive (fecal) tissues in juvenile Balb/c mice that had received varying levels of postnatal maternal care. Our results indicate that concordance in methylation levels between these tissues within individuals only emerges after accounting for the effects of postnatal maternal care and that maternally induced variation in DNA methylation is limited to the brain.en_US
dc.publisherThe MIT Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMaternal Behavioren_US
dc.subject.otherGlucocorticoid Receptoren_US
dc.subject.otherMouseen_US
dc.subject.otherFecal Samplesen_US
dc.subject.otherDNA Methylationen_US
dc.titleConcordance in hippocampal and fecal Nr3c1 methylation is moderated by maternal behavior in the mouseen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23301177en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95656/1/ece3416.pdf
dc.identifier.doi10.1002/ece3.416en_US
dc.identifier.sourceEcology and Evolutionen_US
dc.identifier.citedreferencePiertney, S. B., and L. M. Webster. 2010. Characterising functionally important and ecologically meaningful genetic diversity using a candidate gene approach. Genetica 138: 419 – 432.en_US
dc.identifier.citedreferenceHead, J. A., D. C. Dolinoy, and N. Basu. 2012. Epigenetics for ecotoxicologists. Environ. Toxicol. Chem. 31: 221 – 227.en_US
dc.identifier.citedreferenceJablonka, E., and M. J. Lamb. 2005. Evolution in four dimensions: genetic, epigenetic, behavioral, and symbolic variation in the history of life. The MIT Press, Cambridge, MA.en_US
dc.identifier.citedreferenceJirtle, R. L., and M. K. Skinner. 2007. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8: 253 – 262.en_US
dc.identifier.citedreferenceKarimi, M., S. Johansson, D. Stach, M. Corcoran, D. Grandér, M. Schalling, et al. 2006. LUMA (LUminometric Methylation Assay) – a high throughput method to the analysis of genomic DNA methylation. Exp. Cell Res. 312: 1989 – 1995.en_US
dc.identifier.citedreferenceKinnally, E. L., C. Feinberg, D. Kim, K. Ferguson, R. Leibel, J. D. Coplan, et al. 2011. DNA methylation as a risk factor in the effects of early life stress. Brain Behav. Immun. 25: 1548 – 1553.en_US
dc.identifier.citedreferenceLedón‐Rettig, C. C., C. L. Richards, and L. B. Martin. In press. Epigenetics for behavioral ecologists. Behav. Ecol.en_US
dc.identifier.citedreferenceLi, E. 2002. Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3: 662.en_US
dc.identifier.citedreferenceMartin, L. B., A. L. Liebl, J. H. Trotter, C. L. Richards, K. McCoy, and M. W. McCoy. 2011. Integrator networks: illuminating the black box linking genotype and phenotype. Integr. Comp. Biol. 51: 514 – 527.en_US
dc.identifier.citedreferenceMatzke, M. A., and J. A. Birchler. 2005. RNAi‐mediated pathways in the nucleus. Nat. Rev. Genet. 6: 24 – 35.en_US
dc.identifier.citedreferenceMilosavljevic, A. 2011. Emerging patterns of epigenomic variation. Trends Genet. 27: 242 – 250.en_US
dc.identifier.citedreferenceOberlander, T. F., J. Weinberg, M. Papsdorf, R. Grunau, S. Misri, and A. M. Devlin. 2008. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene ( NR3C1 ) and infant cortisol stress responses. Epigenetics 3: 97 – 106.en_US
dc.identifier.citedreferencePaxinos, G., and K. B. J. Franklin. 2004. The mouse brain in stereotaxic coordinates. Gulf Professional Publishing, Amsterdam; Boston, MA.en_US
dc.identifier.citedreferencePerry, G. H., J. C. Marioni, P. Melsted, and Y. Gilad. 2010. Genomic‐scale capture and sequencing of endogenous DNA from feces. Mol. Ecol. 19: 5332 – 5344.en_US
dc.identifier.citedreferenceReik, W., W. Dean, and J. Walter. 2001. Epigenetic reprogramming in mammalian development. Science 293: 1089 – 1093.en_US
dc.identifier.citedreferenceSchrey, A. W., C. A. Coon, M. T. Grispo, M. Awad, T. Imboma, E. D. McCoy, et al. 2012. Epigenetic variation may compensate for decreased genetic variation with introductions: a case study using house sparrows ( Passer domesticus ) on two continents. Genet. Res. Int. 2012: 979751.en_US
dc.identifier.citedreferenceThornton, J. W. 2001. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc. Natl. Acad. Sci. USA 98: 5671 – 5676.en_US
dc.identifier.citedreferenceTost, J., and I. G. Gut. 2007. DNA methylation analysis by pyrosequencing. Nat. Protoc. 2: 2265 – 2275.en_US
dc.identifier.citedreferenceTurner, J. D., and C. P. Muller. 2005. Structure of the glucocorticoid receptor (NR3C1) gene 5′ untranslated region: identification, and tissue distribution of multiple new human exon 1. J. Mol. Endocrinol. 35: 283 – 292.en_US
dc.identifier.citedreferenceVerhoeven, K. J., J. J. Jansen, P. J. van Dijk, and A. Biere. 2010. Stress‐induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. 185: 1108 – 1118.en_US
dc.identifier.citedreferenceWaterland, R. A., and R. L. Jirtle. 2003. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23: 5293 – 5300.en_US
dc.identifier.citedreferenceWaterland, R. A., R. Kellermayer, E. Laritsky, P. Rayco‐Solon, R. A. Harris, M. Travisano, et al. 2010. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet. 6: e1001252.en_US
dc.identifier.citedreferenceWeaver, I. C., N. Cervoni, F. A. Champagne, A. C. D'Alessio, S. Sharma, J. R. Seckl, et al. 2004. Epigenetic programming by maternal behavior. Nat. Neurosci. 7: 847 – 854.en_US
dc.identifier.citedreferenceWeinhouse, C., O. S. Anderson, T. R. Jones, J. Kim, S. A. Liberman, M. S. Nahar, et al. 2011. An expression microarray approach for the identification of metastable epialleles in the mouse genome. Epigenetics 6: 1105 – 1113.en_US
dc.identifier.citedreferenceBeja‐Pereira, A., R. Oliveira, P. C. Alves, M. K. Schwartz, G. Luikart, and USDA FS. 2009. Advancing ecological understandings through technological transformations in noninvasive genetics. Mol. Ecol. Resour. 9: 1279 – 1301.en_US
dc.identifier.citedreferenceBossdorf, O., C. L. Richards, and M. Pigliucci. 2008. Epigenetics for ecologists. Ecol. Lett. 11: 106 – 115.en_US
dc.identifier.citedreferenceBradley, B. J., and R. R. Lawler. 2011. Linking genotypes, phenotypes, and fitness in wild primate populations. Evol. Anthropol. 20: 104 – 119.en_US
dc.identifier.citedreferenceChampagne, F. A. 2010. Epigenetic influence of social experiences across the lifespan. Dev. Psychobiol. 52: 299 – 311.en_US
dc.identifier.citedreferenceChampagne, F. A., J. P. Curley, E. B. Keverne, and P. P. Bateson. 2007. Natural variations in postpartum maternal care in inbred and outbred mice. Physiol. Behav. 91: 325 – 334.en_US
dc.identifier.citedreferenceDalziel, A. C., S. M. Rogers, and P. M. Schulte. 2009. Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology. Mol. Ecol. 18: 4997 – 5017.en_US
dc.identifier.citedreferenceDanchin, É., A. Charmantier, F. A. Champagne, A. Mesoudi, B. Pujol, and S. Blanchet. 2011. Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat. Rev. Genet. 12: 475 – 486.en_US
dc.identifier.citedreferenceDe Bustos, C., E. Ramos, J. M. Young, R. K. Tran, U. Menzel, C. F. Langford, et al. 2009. Tissue‐specific variation in DNA methylation levels along human chromosome 1. Epigenetics Chromatin 2: 7.en_US
dc.identifier.citedreferenceDean, A. M., and J. W. Thornton. 2007. Mechanistic approaches to the study of evolution: the functional synthesis. Nat. Rev. Genet. 8: 675 – 688.en_US
dc.identifier.citedreferenceDolinoy, D. C., J. R. Weidman, R. A. Waterland, and R. L. Jirtle. 2006. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect. 114: 567 – 572.en_US
dc.identifier.citedreferenceEckhardt, F., J. Lewin, R. Cortese, V. K. Rakyan, J. Attwood, M. Burger, et al. 2006. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38: 1378 – 1385.en_US
dc.identifier.citedreferenceEllegren, H., and B. C. Sheldon. 2008. Genetic basis of fitness differences in natural populations. Nature 452: 169 – 175.en_US
dc.identifier.citedreferenceFeinberg, A. P., and R. A. Irizarry. 2010. Evolution in health and medicine Sackler colloquium: stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc. Natl. Acad. Sci. USA 107 ( Suppl. 1 ): 1757 – 1764.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.