Show simple item record

Sparse Encoding of Signals through Structured Random Sampling.

dc.contributor.authorYenduri, Praveen Kumaren_US
dc.date.accessioned2013-02-04T18:04:00Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2013-02-04T18:04:00Z
dc.date.issued2012en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95970
dc.description.abstractThe novel paradigm of compressive sampling/sensing (CS), which aims to achieve simultaneous acquisition and compression of signals, has received significant research interest in recent years. CS has been widely applied in many areas and several novel algorithms have been developed over the past few years. However, practical implementation of CS systems remains somewhat limited. This is due to the limited scope of many algorithms in literature when it comes to the employed measurement architectures. In several CS techniques, a key problem is that physical constraints typically make it infeasible to actually implement many of the random projections described in the algorithms. Also, most methods focus only on discrete measurements of the signal, which is not always practicable. Therefore, innovative and practical sampling systems must be carefully designed to effectively exploit CS theory in practice. This work focuses on developing techniques that randomly sample in time, that are also characterized by the presence of some structure in the sampling pattern. The structure is leveraged to enable a feasible implementation of acquisition hardware, while the randomness ensures recovery of sparse signals via greedy pursuit algorithms. In certain cases, the presence of a predefined structure in the sampling pattern can be further exploited to obtain other advantages such as reducing the run-time of reconstruction algorithms. The main theme in the thesis is to develop algorithms that bridge the gap between theory and practice of structured random sampling. The work is motivated by several application problems where structured random sampling offers attractive solutions. One of the applications involves development of a low-power architecture for analog-to-digital conversion (ADC), that incorporates time-domain processing and random sampling techniques, improving energy efficiency in both ways. Similar techniques in structured random sampling are employed to develop a novel low-rate neuron model which encodes information present in sensory stimuli at a rate that is proportional to the actual amount of information present in the signal rather than its duration. Along with techniques borrowed from theoretical computer science, structured random sampling has been successfully employed in designing a novel, distributive, spectrum sensing scheme for application in wide-band cognitive radios.en_US
dc.language.isoen_USen_US
dc.subjectStructured Random Samplingen_US
dc.subjectCompressive Sensingen_US
dc.subjectLow Power Compressive Sampling Time Based Analog to Digital Converter (ADC)en_US
dc.subjectLow Rate Time Encoding Model of an Integrate-and-Fire Neuronen_US
dc.subjectCompressive, Collaborative Spectrum Sensing for Wideband Cognitive Radiosen_US
dc.subjectContinuous Resource Efficient Fast Fourier Samplingen_US
dc.titleSparse Encoding of Signals through Structured Random Sampling.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineering-Systemsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberGilbert, Anna Catherineen_US
dc.contributor.committeememberZhang, Junen_US
dc.contributor.committeememberScott, Clayton D.en_US
dc.contributor.committeememberFlynn, Michaelen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95970/1/ypkumar_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.