Show simple item record

Experimental reconsideration of the utility of serum starvation as a method for synchronizing mammalian cells

dc.contributor.authorCooper, Stephenen_US
dc.contributor.authorGonzalez‐hernandez, Mariamen_US
dc.date.accessioned2013-02-12T19:00:17Z
dc.date.available2013-02-12T19:00:17Z
dc.date.issued2009-01en_US
dc.identifier.citationCooper, Stephen; Gonzalez‐hernandez, Mariam (2009). "Experimental reconsideration of the utility of serum starvation as a method for synchronizing mammalian cells." Cell Biology International 33(1). <http://hdl.handle.net/2027.42/96238>en_US
dc.identifier.issn1065-6995en_US
dc.identifier.issn1095-8355en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96238
dc.description.abstractAccurate cell‐size determinations support the prediction that serum starvation and related whole‐culture methods cannot synchronize cells. Theoretical considerations predict that whole‐culture methods of synchronization cannot synchronize cells. Upon serum starvation, the fraction of cells with a G1‐phase amount of DNA increased, but the cell‐size distribution is not narrowed. In true synchronization, the cell‐size distribution should be narrower than the cell‐size distribution of the original culture. In contrast, cells produced by a selective (i.e. non‐whole‐culture) method have a specific DNA content, a narrow size distribution, and divide synchronously. The general theory leading to the conclusion that whole‐culture methods for synchronization do not work implies that one can generalize these serum‐starvation results to other cell lines and other whole‐culture methods, to conclude that these methods do not synchronize cells.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherG1 Phaseen_US
dc.subject.otherSerum Starvationen_US
dc.subject.otherMembrane Elutionen_US
dc.subject.otherSynchronizationen_US
dc.subject.otherCell Cycleen_US
dc.titleExperimental reconsideration of the utility of serum starvation as a method for synchronizing mammalian cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109‐0620, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96238/1/j.cellbi.2008.09.009.pdf
dc.identifier.doi10.1016/j.cellbi.2008.09.009en_US
dc.identifier.sourceCell Biology Internationalen_US
dc.identifier.citedreferenceKeyomarsi K. Sandoval L. Band V. Pardee A.B. Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin Cancer Res 51 1991 3602 – 3609.en_US
dc.identifier.citedreferenceCooper S. Shedden K. Microarray analysis of gene expression during the cell cycle Cell Chromosome 2 2003 1 – 12.en_US
dc.identifier.citedreferenceCooper S. Iyer G. Tarquini M. Bissett P. Nocodazole does not synchronize cells: implications for cell‐cycle control and whole‐culture synchronization Cell Tissue Res 324 2006 237 – 242.en_US
dc.identifier.citedreferenceCooper S. Chen K.Z. Ravi S. Thymidine block does not synchronize L1210 mouse leukaemic cells: implications for cell cycle control, cell cycle analysis and whole‐culture synchronization Cell Prolif 41 2008 156 – 167.en_US
dc.identifier.citedreferenceDavis P.K. Ho A. Dowdy S.F. Biological methods for cell‐cycle synchronization of mammalian cells Biotechniques 30 2001 1322 – 1326 1328, 1330‐31.en_US
dc.identifier.citedreferenceDi Matteo G. Fuschi P. Zerfass K. Moretti S. Ricordy R. Cenciarelli C. Tripodi M. Jansen‐Durr P. Lavia P. Transcriptional control of the Htf9‐A/RanBP‐1 gene during the cell cycle Cell Growth Differ 6 1995 1213 – 1224.en_US
dc.identifier.citedreferenceEward K.L. Van Ert M.N. Thornton M. Helmstetter C.E. Cyclin mRNA stability does not vary during the cell cycle Cell Cycle 3 2004 1057 – 1061.en_US
dc.identifier.citedreferenceGong J. Traganos F. Darzynkiewicz Z. Growth imbalance and altered expression of cyclins B1, A, E, and D3 in MOLT‐4 cells synchronized in the cell cycle by inhibitors of DNA replication Cell Growth Differ 6 1995 1485 – 1493.en_US
dc.identifier.citedreferenceHarper J.V. Synchronization of cell populations in G1/S and G2/M phases of the cell cycle Methods Mol Biol 296 2005 157 – 166.en_US
dc.identifier.citedreferenceHelmstetter C. Cooper S. Pierucci O. Revelas E. On the bacterial life sequence Cold Spring Harb Symp Quant Biol 33 1968 809 – 822.en_US
dc.identifier.citedreferenceHelmstetter C.E. Thornton M. Romero A. Eward K.L. Synchrony in human, mouse and bacterial cell cultures – a comparison Cell Cycle 2 2003 42 – 45.en_US
dc.identifier.citedreferenceJansen‐Durr P. Meichle A. Steiner P. Pagano M. Finke K. Botz J. Wessbecher J. Draetta G. Eilers M. Differential modulation of cyclin gene expression by MYC Proc Natl Acad Sci U S A 90 1993 3685 – 3689.en_US
dc.identifier.citedreferenceKung A.L. Sherwood S.W. Schimke R.T. Cell line‐specific differences in the control of cell cycle progression in the absence of mitosis Proc Natl Acad Sci U S A 87 1990 9553 – 9557.en_US
dc.identifier.citedreferenceLaoukili J. Alvarez M. Meijer L.A. Stahl M. Mohammed S. Kleij L. Heck A.J. Medema R.H. Activation of FoxM1 during G2 requires cyclin A/Cdk‐dependent relief of autorepression by the FoxM1 N‐terminal domain Mol Cell Biol 28 2008 3076 – 3087.en_US
dc.identifier.citedreferenceLe Francois B.G. Maroun J.A. Birnboim H.C. Expression of thymidylate synthase in human cells is an early G(1) event regulated by CDK4 and p16INK4A but not E2F Br J Cancer 97 2007 1242 – 1250.en_US
dc.identifier.citedreferenceLiliensiek S.J. Schell K. Howard E. Nealey P. Murphy C.J. Cell sorting but not serum starvation is effective for SV40 human corneal epithelial cell cycle synchronization Exp Eye Res 83 2006 61 – 68.en_US
dc.identifier.citedreferenceLudlow J.W. Glendening C.L. Livingston D.M. DeCaprio J.A. Specific enzymatic dephosphorylation of the retinoblastoma protein Mol Cell Biol 13 1993 367 – 372.en_US
dc.identifier.citedreferenceOuyang B. Lan Z. Meadows J. Pan H. Fukasawa K. Li W. Dai W. Human Bub1: a putative spindle checkpoint kinase closely linked to cell proliferation Cell Growth Differ 9 1998 877 – 885.en_US
dc.identifier.citedreferencePardee A.B. A restriction point for control of normal animal cell proliferation Proc Natl Acad Sci U S A 71 1974 1286 – 1290.en_US
dc.identifier.citedreferenceShedden K. Cooper S. Analysis of cell‐cycle‐specific gene expression in human cells as determined by microarrays and double‐thymidine block synchronization Proc Natl Acad Sci U S A 99 2002 4379 – 4384.en_US
dc.identifier.citedreferenceShedden K. Cooper S. Analysis of cell‐cycle‐specific gene expression in Saccharomyces cerevisiae as determined by Microarrays and Multiple synchronization methods Nucleic Acids Res 30 2002 2920 – 2929.en_US
dc.identifier.citedreferenceThornton M. Eward K.L. Helmstetter C.E. Production of minimally disturbed synchronous cultures of hematopoietic cells Biotechniques 32 2002 1098 – 1105.en_US
dc.identifier.citedreferenceBar‐Joseph Z. Siegfried Z. Brandeis M. Brors B. Lu Y. Eils R. Dynlacht B.D. Simon I. Genome‐wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells Proc Natl Acad Sci U S A 105 2008 955 – 960.en_US
dc.identifier.citedreferenceCho R.J. Huang M. Campbell M.J. Dong H. Steinmetz L. Sapinoso L. Hampton G. Elledge S.J. Davis R.W. Lockhart D.J. Transcriptional regulation and function during the human cell cycle Nat Genet 27 2001 48 – 54.en_US
dc.identifier.citedreferenceCooper S. A unifying model for the G1 period in prokaryotes and eukaryotes Nature 280 1979 17 – 19.en_US
dc.identifier.citedreferenceCooper S. Bacterial growth and division 1991 Academic Press San Diego, CA.en_US
dc.identifier.citedreferenceCooper S. Length extension in growing yeast: is growth exponential? – yes Microbiology 144 1998 263 – 265.en_US
dc.identifier.citedreferenceCooper S. Mammalian cells are not synchronized in G1‐phase by starvation or inhibition: considerations of the fundamental concept of G1‐phase synchronization Cell Prolif 31 1998 9 – 16.en_US
dc.identifier.citedreferenceCooper S. Reappraisal of G1‐phase arrest and synchronization by lovastatin Cell Biol Int 26 2002 715 – 727.en_US
dc.identifier.citedreferenceCooper S. How the change from FLM to FACS affected our understanding of the G1 phase of the cell cycle Cell Cycle 2 2003 157 – 159.en_US
dc.identifier.citedreferenceCooper S. Rethinking synchronization of mammalian cells for cell‐cycle analysis Cell Mol Life Sci 6 2003 1099 – 1106.en_US
dc.identifier.citedreferenceCooper S. Reappraisal of serum starvation, the restriction point, G0, and G1‐phase arrest points FASEB J 17 2003 333 – 340.en_US
dc.identifier.citedreferenceCooper S. Is whole‐culture synchronization biology's ‘Perpetual Motion Machine’? Trends Biotechnol 26 2004 266 – 269.en_US
dc.identifier.citedreferenceCooper S. Rejoinder: whole‐culture synchronization cannot, and does not, synchronize cells Trends Biotechnol 22 2004 274 – 276.en_US
dc.identifier.citedreferenceCooper S. Whole‐culture synchronization cannot, and does not, synchronize cells Trends Biotechnol 22 2004 274 – 276.en_US
dc.identifier.citedreferenceCooper S. Bacterial and eukaryotic checkpoints and restriction points Bioessays 28 2006 1035 – 1039.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.