Show simple item record

A reducing redox environment promotes C2C12 myogenesis: Implications for regeneration in aged muscle

dc.contributor.authorHansen, Jason M.en_US
dc.contributor.authorKlass, Markusen_US
dc.contributor.authorHarris, Craigen_US
dc.contributor.authorCsete, Marieen_US
dc.date.accessioned2013-02-12T19:00:22Z
dc.date.available2013-02-12T19:00:22Z
dc.date.issued2007-06en_US
dc.identifier.citationHansen, Jason M.; Klass, Markus; Harris, Craig; Csete, Marie (2007). "A reducing redox environment promotes C2C12 myogenesis: Implications for regeneration in aged muscle." Cell Biology International 31(6). <http://hdl.handle.net/2027.42/96248>en_US
dc.identifier.issn1065-6995en_US
dc.identifier.issn1095-8355en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96248
dc.description.abstractIntracellular redox potential of skeletal muscle becomes progressively more oxidized with aging, negatively impacting regenerative ability. We examined the effects of oxidizing redox potential on terminal differentiation of cultured C2C12 myoblasts. Redox potentials were manipulated by changing the culture O 2 environment, by free radical scavenging, or addition of H 2 O 2. Intracellular reactive oxygen species (ROS) production was higher in 20% environmental O 2 and in this condition, redox potential became progressively oxidized compared to cultures in 6% O 2. Treatment with a ROS trapping agent (phenyl‐ N‐tert ‐butylnitrone, PBN) caused reducing redox potentials and enhanced C2C12 differentiation, while addition of 25 micromolar H 2 O 2 to cells in 20% O 2 dramatically slowed differentiation. Under these most oxidative conditions, quantitative PCR showed a significant decrease in myogenic basic helix—loop—helix transcription factor expression compared to cultures treated with PBN or grown in 6% O 2 . Thus, oxidative intracellular environments impair myoblast differentiation, while reducing environments favor myogenesis.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherRedox Potentialen_US
dc.subject.otherMyogeninen_US
dc.subject.otherMyoblasten_US
dc.subject.otherMuscle Agingen_US
dc.subject.otherC2C12 Myoblasten_US
dc.titleA reducing redox environment promotes C2C12 myogenesis: Implications for regeneration in aged muscleen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumToxicology Program, Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Anesthesiology, School of Medicine, Emory University, 1462 Clifton Road NE, Suite 420, Atlanta, GA 30322, USAen_US
dc.identifier.pmid17241791en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96248/1/j.cellbi.2006.11.027.pdf
dc.identifier.doi10.1016/j.cellbi.2006.11.027en_US
dc.identifier.sourceCell Biology Internationalen_US
dc.identifier.citedreferenceE. Pineda‐Molina, P. Klatt, J. Vazquez, A. Marina, M. Garcia de Lacoba, D. Perez‐Sala, et al. Glutathionylation of the p5‐subunit of NF‐κB: a Mechanism for redox‐induced inhibition of DNA binding. Biochemistry 40 47 2001 14134 – 14142.en_US
dc.identifier.citedreferenceM.L. Hamilton, H. Van Remmen, J.A. Drake, H. Yang, Z.M. Guo, K. Kewitt, et al. Does oxidative damage to DNA increase with age?. Proc Natl Acad Sci 98 18 2001 10469 – 10474.en_US
dc.identifier.citedreferenceC. Harris Glutathione biosynthesis in the postimplantation rat conceptus in vitro. Toxicol Appl Pharmacol 120 2 1993 247 – 256.en_US
dc.identifier.citedreferenceG.A. Hazelton, C.A. Lang Glutathione peroxidase and reductase activities in the aging mouse. Mech Ageing Dev 29 1 1985 71 – 81.en_US
dc.identifier.citedreferenceD.P. Jones, V.C. Mody Jr., J.L. Carlson, M.J. Lynn, P. Sternberg Jr. Redox analysis of human plasma allows separation of pro‐oxidant events of aging from decline in antioxidant defenses. Free Radic Biol Med 33 9 2002 1290 – 1300.en_US
dc.identifier.citedreferenceA. Keren, Y. Tamir, E. Bengal The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol Cell Endocrinol 252 1–2 2006 224 – 230.en_US
dc.identifier.citedreferenceS.S. Kim, S. Rhee, K.H. Lee, J.H. Kim, H.S. Kim, M.S. Kang, et al. Inhibitors of the proteasome block the myogenic differentiation of rat L6 myoblasts. FEBS Lett 433 1–2 1998 47 – 50.en_US
dc.identifier.citedreferenceW.G. Kirlin, J. Cai, S.A. Thompson, D. Diaz, T.J. Kavanagh, D.P. Jones Glutathione redox potential in response to differentiation and enzyme inducers. Free Radic Biol Med 27 11–12 1999 1208 – 1218.en_US
dc.identifier.citedreferenceC.P. LeBel, H. Ischiropoulos, S.C. Bondy Evaluation of the probe 2′,7′‐dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5 2 1992 227 – 231.en_US
dc.identifier.citedreferenceS. Lee, H.S. Shin, P.K. Shireman, A. Vasilaki, H. Van Remmen, M. Csete Glutathione‐peroxidase‐1 null muscle progenitor cells are globally defective. Free Radic Biol Med 41 7 2006 1174 – 1184.en_US
dc.identifier.citedreferenceP. Mecocci, G. Fano, S. Fulle, U. MacGarvey, L. Shinobu, M.C. Polidori, et al. Age‐dependent increases in oxidative damage to DNA, lipids and proteins in human skeletal muscle. Free Radic Biol Med 26 3–4 1999 303 – 308.en_US
dc.identifier.citedreferenceG.L. Newton, R.C. Fahey Determination of biothiols by bromobimane labeling and high‐performance liquid chromatography. Methods Enzymol 251 1985 148 – 166.en_US
dc.identifier.citedreferenceN. Noy, H. Schwartz, A. Gafni Age‐related changes in the redox status of rat muscle cells and their role in enzyme‐aging. Mech Ageing Dev 29 1 1985 63 – 69.en_US
dc.identifier.citedreferenceO. Pansarasa, L. Castagna, B. Colombi, J. Vecchiet, G. Felzani, F. Marzatico Age and sex differences in human skeletal muscle: role of reactive oxygen species. Free Radic Res 33 3 2000 287 – 293.en_US
dc.identifier.citedreferenceJ.C. Pfau, J.C. Schneider, A.J. Archer, J. Sentissi, F.J. Leyva, J. Cramton Environmental oxygen tension affects phenotype in cultured bone marrow‐derived macrophages. Am J Physiol Lung Cell Mol Physiol 286 2 2004 L354 – L362.en_US
dc.identifier.citedreferenceN.L. Reynaert, A. Van Der Vliet, A.S. Guala, T. McGovern, M. Hristova, C. Pantano, et al. Dynamic redox control of NK‐kappaB through glutaredoxin‐regulated S‐glutathionylation of inhibitory kappB kinase beta. Proc Natl Acad Sci USA 103 35 2006 13086 – 13091.en_US
dc.identifier.citedreferenceM.A. Rudnicki, T. Braun, S. Hinuma, R. Jaenisch Inactivation of MyoD in mice leads to up‐regulation of the myogenic HLH gene Myf‐5 and results in apparently normal muscle development. Cell 71 3 1992 383 – 390.en_US
dc.identifier.citedreferenceF.Q. Schafer, G.R. Buettner Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30 1 2001 1191 – 1212.en_US
dc.identifier.citedreferenceC.K. Sen, L. Packer Antioxidant and redox regulation of gene transcription. FASEB J 10 7 1996 709 – 720.en_US
dc.identifier.citedreferenceB. Su, S. Mitra, H. Gregg, S. Flavahan, M.A. Chotani, K.R. Clark, et al. Redox regulation of vascular smooth muscle cell differentiation. Circ Res 89 1 2001 39 – 46.en_US
dc.identifier.citedreferenceS. Takahashi, M. Zeydel Gamma‐glutamyl transpeptidase and glutathione in aging IMR‐90 fibroblasts and in differentiating 3T3 L1 preadipocytes. Arch Biochem Biophys 214 1 1982 260 – 267.en_US
dc.identifier.citedreferenceJ.M. Taylor‐Jones, R.E. McGehee, T.A. Rando, B. Lecka‐Czernik, D.A. Lipschitz, C.A. Peterson Activation of an adipogenic program in adult myoblasts with age. Mech Ageing Dev 123 6 2002 649 – 661.en_US
dc.identifier.citedreferenceH. Wang, J.A. Joseph Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Rad Biol Med 27 5–6 1999 612 – 616.en_US
dc.identifier.citedreferenceD. Yaffe, O. Saxel A myogenic cell line with altered serum requirements for differentiation. Differentiation 7 3 1977 159 – 166.en_US
dc.identifier.citedreferenceK. Yun, B. Wold Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr Opin Cell Biol 8 6 1996 877 – 889.en_US
dc.identifier.citedreferenceA.K. Balin, R.G. Allen Molecular bases of biologic aging. Clin Geriatr Med 5 1 1989 1 – 21.en_US
dc.identifier.citedreferenceJ.R. Beauchamp, L. Heslop, D.S. Yu, S. Tajbakhsh, R.G. Kelly, A. Wernig, et al. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151 6 2000 1221 – 1234.en_US
dc.identifier.citedreferenceC.A. Berkes, S.J. Tapscott MyoD and the transcriptional role of myogenesis. Semin Cell Biol 16 4–5 2005 585 – 595.en_US
dc.identifier.citedreferenceM.M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding. Anal Biochemy 72 1976 248 – 254.en_US
dc.identifier.citedreferenceM.V. Chakravarthy, E.E. Spangenburg, F.W. Booth Culture in low levels of oxygen enhances in vitro proliferation potential of satellite cells from old skeletal muscles. Cell Mol Life Sci 58 8 2001 1150 – 1158.en_US
dc.identifier.citedreferenceD.D.W. Cornelison, B.J. Wold Single‐cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191 2 1997 270 – 283.en_US
dc.identifier.citedreferenceI.A. Cotgreave, R.G. Gerdes Recent trends in glutathione biochemistry—glutathione‐protein interactions: a molecular link between oxidative stress and cell proliferation?. BiochemBiophys Res Commun 242 1 1998 1 – 9.en_US
dc.identifier.citedreferenceM. Csete, J. Walikonis, N. Slawny, Y. Wei, S. Korsnes, J.C. Doyle, et al. Oxygen‐mediated regulation of skeletal muscle satellite cell proliferation and adipogenesis in culture. J Cell Physiol 189 2 2001 189 – 196.en_US
dc.identifier.citedreferenceS. Dedieu, G. Mazeres, P. Cottin, J.J. Brustis Involvement of myogenic regulator factors during fusion in the cell line C2C12. Int JDev Biol 46 2 2002 235 – 241.en_US
dc.identifier.citedreferenceJ.A. Faulkner, S.V. Brooks, E. Zerba Muscle atrophy and weakness with aging: contraction‐induced injury as an underlying mechanism. J Gerontol A50 1995 124 – 129.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.