Show simple item record

Heterogeneity of tibial plateau cartilage in response to a physiological compressive strain rate

dc.contributor.authorDeneweth, Jessica M.en_US
dc.contributor.authorNewman, Kelly E.en_US
dc.contributor.authorSylvia, Stephen M.en_US
dc.contributor.authorMcLean, Scott G.en_US
dc.contributor.authorArruda, Ellen M.en_US
dc.date.accessioned2013-02-12T19:00:22Z
dc.date.available2014-05-01T14:28:18Zen_US
dc.date.issued2013-03en_US
dc.identifier.citationDeneweth, Jessica M.; Newman, Kelly E.; Sylvia, Stephen M.; McLean, Scott G.; Arruda, Ellen M. (2013). "Heterogeneity of tibial plateau cartilage in response to a physiological compressive strain rate ." Journal of Orthopaedic Research 31(3): 370-375. <http://hdl.handle.net/2027.42/96249>en_US
dc.identifier.issn0736-0266en_US
dc.identifier.issn1554-527Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96249
dc.description.abstractKnowledge of the extent to which tibial plateau cartilage displays non‐uniform mechanical topography under physiologically relevant loading conditions is critical to evaluating the role of biomechanics in knee osteoarthritis. Cartilage explants from 21 tibial plateau sites of eight non‐osteoarthritic female cadaveric knees (age: 41–54; BMI: 14–20) were tested in unconfined compression at 100% strain/s. The elastic tangent modulus at 10% strain ( E 10% ) was calculated for each site and averaged over four geographic regions: not covered by meniscus (I); covered by meniscus—anterior (II); covered by meniscus—exterior (III); and covered by meniscus—posterior (IV). A repeated‐measures mixed model analysis of variance was used to test for effects of plateau, region, and their interaction on E 10% . Effect sizes were calculated for each region pair. E 10% was significantly different ( p  < 0.05) for all regional comparisons, except I–II and III–IV. The regional pattern of variation was consistent across individuals. Moderate to strong effect sizes were evident for regional comparisons other than I–II on the lateral side and III–IV on both sides. Healthy tibial cartilage exhibits significant mechanical heterogeneity that manifests in a common regional pattern across individuals. These findings provide a foundation for evaluating the biomechanical mechanisms of knee osteoarthritis. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 370–375, 2013en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherMechanicsen_US
dc.subject.otherOsteoarthritisen_US
dc.subject.otherCartilageen_US
dc.subject.otherKneeen_US
dc.subject.otherHeterogeneityen_US
dc.titleHeterogeneity of tibial plateau cartilage in response to a physiological compressive strain rateen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Kinesiology, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumProgram in Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumSchool of Kinesiology, University of Michigan, Ann Arbor, Michigan 48109. T: 248‐568‐6369; F: 734‐764‐5237.en_US
dc.identifier.pmid22952052en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96249/1/22226_ftp.pdf
dc.identifier.doi10.1002/jor.22226en_US
dc.identifier.sourceJournal of Orthopaedic Researchen_US
dc.identifier.citedreferenceMa J, Smietana MJ, Kostrominova TY, et al. 2012. Three‐dimensional engineered bone‐ligament‐bone constructs for anterior cruciate ligament replacement. Tissue Eng A 18: 103 – 116.en_US
dc.identifier.citedreferenceCarter DR, Beaupre GS, Wong M, et al. 2004. The mechanobiology of articular cartilage development and degeneration. Clin Orthop Relat Res 462: S69 – S77.en_US
dc.identifier.citedreferenceAndriacchi TP, Briant PL, Bevill SL, et al. 2006. Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthop Relat Res 464: 39 – 44.en_US
dc.identifier.citedreferenceHaughom B, Schairer W, Souza RB, et al. 2012. Abnormal tibiofemoral kinematics following ACL reconstruction are associated with early cartilage matrix degeneration measured by MRI T1 rho. Knee 19: 482 – 487.en_US
dc.identifier.citedreferenceShepherd DE, Seedhom BB. 1999. The ‘instantaneous’ compressive modulus of human articular cartilage in joints of the lower limb. Rheumatology (Oxford) 38: 124 – 132.en_US
dc.identifier.citedreferenceThambyah A, Nather A, Goh J. 2006. Mechanical properties of articular cartilage covered by the meniscus. Osteoarthritis Cartilage 14: 580 – 588.en_US
dc.identifier.citedreferenceYoung AA, Appleyard RC, Smith MM, et al. 2007. Dynamic biomechanics correlate with histopathology in human tibial cartilage: a preliminary study. Clin Orthop Relat Res 462: 212 – 220.en_US
dc.identifier.citedreferenceSwann AC, Seedhom BB. 1993. The stiffness of normal articular cartilage and the predominant acting stress levels: implications for the aetiology of osteoarthrosis. Br J Rheumatol 32: 16 – 25.en_US
dc.identifier.citedreferenceLiu F, Kozanek M, Hosseini A, et al. 2010. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J Biomech 43: 658 – 665.en_US
dc.identifier.citedreferenceBarker MK, Seedhom BB. 2001. The relationship of the compressive modulus of articular cartilage with its deformation response to cyclic loading: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime? Rheumatology (Oxford) 40: 274 – 284.en_US
dc.identifier.citedreferenceLewis RJ, MacFarland AK, Anandavijayan S, et al. 1998. Material properties and biosynthetic activity of articular cartilage from the bovine carpo‐metacarpal joint. Osteoarthritis Cartilage 6: 383 – 392.en_US
dc.identifier.citedreferenceMeachim G. 1972. Light microscopy of Indian ink preparations of fibrillated cartilage. Ann Rheum Dis 31: 457 – 464.en_US
dc.identifier.citedreferenceKrishnan R, Park S, Eckstein F, et al. 2003. Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress. J Biomech Eng 125: 569 – 577.en_US
dc.identifier.citedreferenceRonken S, Arnold MP, Ardura Garcia H, et al. 2012. A comparison of healthy human and swine articular cartilage dynamic indentation mechanics. Biomech Model Mechanobiol 11: 631 – 639.en_US
dc.identifier.citedreferenceSzarko M, Muldrew K, Bertram JE. 2010. Freeze‐thaw treatment effects on the dynamic mechanical properties of articular cartilage. BMC Musculoskelet Disord 11: 231.en_US
dc.identifier.citedreferenceJurvelin JS, Buschmann MD, Hunziker EB. 2003. Mechanical anisotropy of the human knee articular cartilage in compression. Proc Inst Mech Eng H 217: 215 – 219.en_US
dc.identifier.citedreferenceEckstein F, Wirth W, Hudelmaier M, et al. 2008. Patterns of femorotibial cartilage loss in knees with neutral, varus, and valgus alignment. Arthritis Rheum 59: 1563 – 1570.en_US
dc.identifier.citedreferenceCohen J. 1988. Statistical power analysis for the behavioral sciences. Hillsdale, NJ: L. Erlbaum Associates.en_US
dc.identifier.citedreferenceDeneweth JM, Bey MJ, McLean SG, et al. 2010. Tibiofemoral joint kinematics of the ACL‐reconstructed knee during a single‐leg hop landing. Am J Sports Med 38: 1820 – 1828.en_US
dc.identifier.citedreferenceAlmekinders LC, Pandarinath R, Rahusen FT. 2004. Knee stability following anterior cruciate ligament rupture and surgery. The contribution of irreducible tibial subluxation. J Bone Joint Surg Am 86‐A: 983 – 987.en_US
dc.identifier.citedreferenceTashman S, Kolowich P, Collon D, et al. 2007. Dynamic function of the ACL‐reconstructed knee during running. Clin Orthop Relat Res 465: 66 – 73.en_US
dc.identifier.citedreferenceSalmon LJ, Russell VJ, Refshauge K, et al. 2006. Long‐term outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft: minimum 13‐year review. Am J Sports Med 34: 721 – 732.en_US
dc.identifier.citedreferenceOiestad BE, Holm I, Aune AK, et al. 2010. Knee function and prevalence of knee osteoarthritis after anterior cruciate ligament reconstruction: a prospective study with 10 to 15 years of follow‐up. Am J Sports Med 38: 2201 – 2210.en_US
dc.identifier.citedreferenceWirth W, Hellio Le Graverand MP, Wyman BT, et al. 2009. Regional analysis of femorotibial cartilage loss in a subsample from the Osteoarthritis Initiative progression subcohort. Osteoarthritis Cartilage 17: 291 – 297.en_US
dc.identifier.citedreferenceDeneweth JM, Pomeroy S, Sylvia SM, et al. In Progress. Comparison of non‐linear network models for modeling proximal tibial cartilage under physiological strain rates.en_US
dc.identifier.citedreferenceThompson WO, Thaete FL, Fu FH, et al. 1991. Tibial meniscal dynamics using three‐dimensional reconstruction of magnetic resonance images. Am J Sports Med 19: 210 – 215; discussion 215–216.en_US
dc.identifier.citedreferenceOloyede A, Flachsmann R, Broom ND. 1992. The dramatic influence of loading velocity on the compressive response of articular cartilage. Connect Tissue Res 27: 211 – 224.en_US
dc.identifier.citedreferenceAndriacchi TP, Mundermann A, Smith RL, et al. 2004. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng 32: 447 – 457.en_US
dc.identifier.citedreferenceAndriacchi TP, Koo S, Scanlan SF. 2009. Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. J Bone Joint Surg Am 91: 95 – 101.en_US
dc.identifier.citedreferenceAstephen JL, Deluzio KJ, Caldwell GE, et al. 2008. Gait and neuromuscular pattern changes are associated with differences in knee osteoarthritis severity levels. J Biomech 41: 868 – 876.en_US
dc.identifier.citedreferenceFleming BC, Hulstyn MJ, Oksendahl HL, et al. 2005. Ligament injury, reconstruction and osteoarthritis. Curr Opin Orthop 16: 354 – 362.en_US
dc.identifier.citedreferenceRistanis S, Giakas G, Papageorgiou CD, et al. 2003. The effects of anterior cruciate ligament reconstruction on tibial rotation during pivoting after descending stairs. Knee Surg Sports Traumatol Arthrosc 11: 360 – 365.en_US
dc.identifier.citedreferenceSharma L, Song J, Felson DT, et al. 2001. The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 286: 188 – 195.en_US
dc.identifier.citedreferenceChaudhari AM, Briant PL, Bevill SL, et al. 2008. Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Med Sci Sports Exerc 40: 215 – 222.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.