Show simple item record

Importance of Different Types of Prior Knowledge in Selecting Genome‐Wide Findings for Follow‐Up

dc.contributor.authorMinelli, Cosettaen_US
dc.contributor.authorDe Grandi, Alessandroen_US
dc.contributor.authorWeichenberger, Christian X.en_US
dc.contributor.authorGögele, Martinen_US
dc.contributor.authorModenese, Mirkoen_US
dc.contributor.authorAttia, Johnen_US
dc.contributor.authorBarrett, Jennifer H.en_US
dc.contributor.authorBoehnke, Michaelen_US
dc.contributor.authorBorsani, Giuseppeen_US
dc.contributor.authorCasari, Giorgioen_US
dc.contributor.authorFox, Caroline S.en_US
dc.contributor.authorFreina, Thomasen_US
dc.contributor.authorHicks, Andrew A.en_US
dc.contributor.authorMarroni, Fabioen_US
dc.contributor.authorParmigiani, Giovannien_US
dc.contributor.authorPastore, Andreaen_US
dc.contributor.authorPattaro, Cristianen_US
dc.contributor.authorPfeufer, Arneen_US
dc.contributor.authorRuggeri, Fabrizioen_US
dc.contributor.authorSchwienbacher, Christineen_US
dc.contributor.authorTaliun, Danielen_US
dc.contributor.authorPramstaller, Peter P.en_US
dc.contributor.authorDomingues, Francisco S.en_US
dc.contributor.authorThompson, John R.en_US
dc.date.accessioned2013-02-12T19:00:27Z
dc.date.available2014-04-02T15:08:08Zen_US
dc.date.issued2013-02en_US
dc.identifier.citationMinelli, Cosetta; De Grandi, Alessandro; Weichenberger, Christian X.; Gögele, Martin ; Modenese, Mirko; Attia, John; Barrett, Jennifer H.; Boehnke, Michael; Borsani, Giuseppe; Casari, Giorgio; Fox, Caroline S.; Freina, Thomas; Hicks, Andrew A.; Marroni, Fabio; Parmigiani, Giovanni; Pastore, Andrea; Pattaro, Cristian; Pfeufer, Arne; Ruggeri, Fabrizio; Schwienbacher, Christine; Taliun, Daniel; Pramstaller, Peter P.; Domingues, Francisco S.; Thompson, John R. (2013). "Importance of Different Types of Prior Knowledge in Selecting Genomeâ Wide Findings for Followâ Up." Genetic Epidemiology 37(2): 205-213. <http://hdl.handle.net/2027.42/96262>en_US
dc.identifier.issn0741-0395en_US
dc.identifier.issn1098-2272en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96262
dc.description.abstractBiological plausibility and other prior information could help select genome‐wide association ( GWA ) findings for further follow‐up, but there is no consensus on which types of knowledge should be considered or how to weight them. We used experts’ opinions and empirical evidence to estimate the relative importance of 15 types of information at the single‐nucleotide polymorphism ( SNP ) and gene levels. Opinions were elicited from 10 experts using a two‐round Delphi survey. Empirical evidence was obtained by comparing the frequency of each type of characteristic in SNP s established as being associated with seven disease traits through GWA meta‐analysis and independent replication, with the corresponding frequency in a randomly selected set of SNP s. SNP and gene characteristics were retrieved using a specially developed bioinformatics tool. Both the expert and the empirical evidence rated previous association in a meta‐analysis or more than one study as conferring the highest relative probability of true association, whereas previous association in a single study ranked much lower. High relative probabilities were also observed for location in a functional protein domain, although location in a region evolutionarily conserved in vertebrates was ranked high by the data but not by the experts. Our empirical evidence did not support the importance attributed by the experts to whether the gene encodes a protein in a pathway or shows interactions relevant to the trait. Our findings provide insight into the selection and weighting of different types of knowledge in SNP or gene prioritization, and point to areas requiring further research.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherJessica Kingsleyen_US
dc.subject.otherBioinformatics Databasesen_US
dc.subject.otherGene Prioritizationen_US
dc.subject.otherGenome‐Wide Association Studiesen_US
dc.titleImportance of Different Types of Prior Knowledge in Selecting Genome‐Wide Findings for Follow‐Upen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23307621en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96262/1/gepi21705.pdf
dc.identifier.doi10.1002/gepi.21705en_US
dc.identifier.sourceGenetic Epidemiologyen_US
dc.identifier.citedreferenceRobertson G, Bilenky M, Lin K, He A, Yuen W, Dagpinar M, Varhol R, Teague K, Griffith OL, Zhang X and others. 2006. cisRED: a database system for genome‐scale computational discovery of regulatory elements. Nucleic Acids Res 34: D68 – D73.en_US
dc.identifier.citedreferenceAranda B, Achuthan P, Alam‐Faruque Y, Armean I, Bridge A, Derow C, Feuermann M, Ghanbarian AT, Kerrien S, Khadake J and others. 2010. The IntAct molecular interaction database in 2010. Nucleic Acids Res 38: D525 – D531.en_US
dc.identifier.citedreferenceBlake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT, Mouse Genome Database Group. 2011. The Mouse Genome Database ( MGD ): premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res 39: D842 – D848.en_US
dc.identifier.citedreferenceCantor RM, Lange K, Sinsheimer JS. 2010. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 86: 6 – 22.en_US
dc.identifier.citedreferenceChen J, Aronow BJ, Jegga AG. 2009. Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics 10: 73.en_US
dc.identifier.citedreferenceChen Y, Wang W, Zhou Y, Shields R, Chanda SK, Elston RC, Li J. 2011. In silico gene prioritization by integrating multiple data sources. PLoS One 6: e21137.en_US
dc.identifier.citedreferenceCoronary Artery Disease (C4D) Genetics Consortium. 2011. A genome‐wide association study in E uropeans and S outh A sians identifies five new loci for coronary artery disease. Nat Genet 43: 339 – 344.en_US
dc.identifier.citedreferenceDavies HT, Crombie IK, Tavakoli M. 1998. When can odds ratios mislead? BMJ 316: 989 – 991.en_US
dc.identifier.citedreferenceElbers CC, van Eijk KR, Franke L, Mulder F, van der Schouw YT, Wijmenga C, Onland ‐Moret NC. 2009. Using genome‐wide pathway analysis to unravel the etiology of complex diseases. Genet Epidemiol 33: 419 – 431.en_US
dc.identifier.citedreferenceFinn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K and others. 2010. The Pfam protein families database. Nucleic Acids Res 38: D211 – D222.en_US
dc.identifier.citedreferenceFleiss JL. 1993. The statistical basis of meta‐analysis. Stat Methods Med Res 2: 121 – 145.en_US
dc.identifier.citedreferenceFlicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S and others. 2011. Ensembl 2011. Nucleic Acids Res 39: D800 – D806.en_US
dc.identifier.citedreferenceFranke A, McGovern DP, Barrett JC, Wang K, Radford ‐Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R and others. 2010. Genome‐wide meta‐analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet 42: 1118 – 1125.en_US
dc.identifier.citedreferenceGögele M, Minelli C, Thakkinstian A, Yurkiewich A, Pattaro C, Pramstaller PP, Little J, Attia J, Thompson JR. 2012. Methods for meta‐analyses of genome‐wide association studies: critical assessment of empirical evidence. Am J Epidemiol 175: 739 – 749.en_US
dc.identifier.citedreferenceGreene CS, Penrod NM, Williams SM, Moore JH. 2009. Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS One 4: e5639.en_US
dc.identifier.citedreferenceHardouin SN, Nagy A. 2000. Mouse models for human disease. Clin Genet 57: 237 – 244.en_US
dc.identifier.citedreferenceHiggins JP, Thompson SG, Deeks JJ, Altman DG. 2003. Measuring inconsistency in meta‐analyses. BMJ 327: 557 – 560.en_US
dc.identifier.citedreferenceHindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA. 2009. Potential etiologic and functional implications of genome‐wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106: 9362 – 9367.en_US
dc.identifier.citedreferenceIoannidis JP. 2007. Non‐replication and inconsistency in the genome‐wide association setting. Hum Hered 64: 203 – 213.en_US
dc.identifier.citedreferenceJohn B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. 2004. Human Micro RNA targets. PLoS Biol 2: e363.en_US
dc.identifier.citedreferenceKanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27 – 30.en_US
dc.identifier.citedreferenceKirouac DC, Saez‐Rodriguez J, Swantek J, Burke JM, Lauffenburger DA, Sorger PK. 2012. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks. BMC Syst Biol 6: 29.en_US
dc.identifier.citedreferenceKöttgen A, Pattaro C, Boger CA, Fuchsberger C, Olden M, Glazer NL, Parsa A, Gao X, Yang Q, Smith AV and others. 2010. New loci associated with kidney function and chronic kidney disease. Nat Genet 42: 376 – 384.en_US
dc.identifier.citedreferenceKraft P, Zeggini E, Ioannidis JP. 2009. Replication in genome‐wide association studies. Stat Sci 24: 561 – 573.en_US
dc.identifier.citedreferenceLevenstien MA, Klein RJ. 2011. Predicting functionally important SNP classes based on negative selection. BMC Bioinformatics 12: 26.en_US
dc.identifier.citedreferenceLiu YJ, Papasian CJ, Liu JF, Hamilton J, Deng HW. 2008. Is replication the gold standard for validating genome‐wide association findings? PLoS One 3: e4037.en_US
dc.identifier.citedreferenceMells GF, Floyd JA, Morley KI, Cordell HJ, Franklin CS, Shin SY, Heneghan MA, Neuberger JM, Donaldson PT, Day DB and others. 2011. Genome‐wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet 43: 329 – 332.en_US
dc.identifier.citedreferenceMoreau Y, Tranchevent LC. 2012. Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat Rev Genet 13: 523 – 536.en_US
dc.identifier.citedreferenceParikh H, Lyssenko V, Groop LC. 2009. Prioritizing genes for follow‐up from genome wide association studies using information on gene expression in tissues relevant for type 2 diabetes mellitus. BMC Med Genomics 2: 72.en_US
dc.identifier.citedreferenceRosenthal N, Brown S. 2007. The mouse ascending: perspectives for human‐disease models. Nat Cell Biol 9: 993 – 999.en_US
dc.identifier.citedreferenceSaccone SF, Saccone NL, Swan GE, Madden PA, Goate AM, Rice JP, Bierut LJ. 2008. Systematic biological prioritization after a genome‐wide association study: an application to nicotine dependence. Bioinformatics 24: 1805 – 1811.en_US
dc.identifier.citedreferenceSchunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AF, Barbalic M, Gieger C and others. 2011. Large‐scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 43: 333 – 338.en_US
dc.identifier.citedreferenceSookoian S, Gianotti TF, Schuman M, Pirola CJ. 2009. Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes. Genet Med 11: 338 – 343.en_US
dc.identifier.citedreferenceSpeliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, Lango Allen H, Lindgren CM, Luan J, M ägi R and others. 2010. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42: 937 – 948.en_US
dc.identifier.citedreferenceStabenau A, McVicker G, Melsopp C, Proctor G, Clamp M, Birney E. 2004. The E nsembl core software libraries. Genome Res 14: 929 – 933.en_US
dc.identifier.citedreferenceStahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP, Li Y, Kurreeman FA, Zhernakova A, Hinks A and others. 2010. Genome‐wide association study meta‐analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 42: 508 – 514.en_US
dc.identifier.citedreferenceSu AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G and others. 2004. A gene atlas of the mouse and human protein‐encoding transcriptomes. Proc Natl Acad Sci USA 101: 6062 – 6067.en_US
dc.identifier.citedreferenceThomas DC, Conti DV, Baurley J, Nijhout F, Reed M, Ulrich CM. 2009. Use of pathway information in molecular epidemiology. Hum Genomics 4: 21 – 42.en_US
dc.identifier.citedreferenceThompson JR, Gögele M, Weichenberger CX, Modenese M, Attia J, Barrett JH, Boehnke M, De Grandi A, Domingues FS, Hicks AA and others. 2012. A Bayesian method for calculating the probability of replication by combining SNP information and genome‐wide data. Genet Epidemiol 37: XX – XX.en_US
dc.identifier.citedreferenceVisel A, Minovitsky S, Dubchak I, Pennacchio LA. 2007. VISTA enhancer browser—a database of tissue‐specific human enhancers. Nucleic Acids Res 35: D88 – D92.en_US
dc.identifier.citedreferenceVoight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G and others. 2010. Twelve type 2 diabetes susceptibility loci identified through large‐scale association analysis. Nat Genet 42: 579 – 589.en_US
dc.identifier.citedreferenceWu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW 3rd and others. 2009. Bio GPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10: R130.en_US
dc.identifier.citedreferenceYu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ. 2008. A navigator for human genome epidemiology. Nat Genet 40: 124 – 125.en_US
dc.identifier.citedreferenceZhong H, Yang X, Kaplan LM, Molony C, Schadt EE. 2010. Integrating pathway analysis and genetics of gene expression for genome‐wide association studies. Am J Hum Genet 86: 581 – 591.en_US
dc.identifier.citedreferenceAdler M, Ziglio E. 1996. Gazing into the Oracle: The Delphi Method and Its Application to Social Policy and Public Health. London: Jessica Kingsley.en_US
dc.identifier.citedreferenceAerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, Tranchevent LC, De Moor B, Marynen P, Hassan B and others. 2006. Gene prioritization through genomic data fusion. Nat Biotechnol 24: 537 – 544.en_US
dc.identifier.citedreferenceAkins RB, Tolson H, Cole BR. 2005. Stability of response characteristics of a Delphi panel: application of bootstrap data expansion. BMC Med Res Methodol 5: 37.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.