Moving forward in global‐change ecology: capitalizing on natural variability
dc.contributor.author | Ibáñez, Inés | en_US |
dc.contributor.author | Gornish, Elise S. | en_US |
dc.contributor.author | Buckley, Lauren | en_US |
dc.contributor.author | Debinski, Diane M. | en_US |
dc.contributor.author | Hellmann, Jessica | en_US |
dc.contributor.author | Helmuth, Brian | en_US |
dc.contributor.author | HilleRisLambers, Janneke | en_US |
dc.contributor.author | Latimer, Andrew M. | en_US |
dc.contributor.author | Miller‐rushing, Abraham J. | en_US |
dc.contributor.author | Uriarte, Maria | en_US |
dc.date.accessioned | 2013-02-12T19:00:45Z | |
dc.date.available | 2013-02-12T19:00:45Z | |
dc.date.issued | 2012-01 | en_US |
dc.identifier.citation | Ibáñez, Inés ; Gornish, Elise S.; Buckley, Lauren; Debinski, Diane M.; Hellmann, Jessica; Helmuth, Brian; HilleRisLambers, Janneke; Latimer, Andrew M.; Miller‐rushing, Abraham J. ; Uriarte, Maria (2012). "Moving forward in globalâ change ecology: capitalizing on natural variability." Ecology and Evolution 3(1): 170-181. <http://hdl.handle.net/2027.42/96312> | en_US |
dc.identifier.issn | 2045-7758 | en_US |
dc.identifier.issn | 2045-7758 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/96312 | |
dc.description.abstract | Natural resources managers are being asked to follow practices that accommodate for the impact of climate change on the ecosystems they manage, while global‐ecosystems modelers aim to forecast future responses under different climate scenarios. However, the lack of scientific knowledge about short‐term ecosystem responses to climate change has made it difficult to define set conservation practices or to realistically inform ecosystem models. Until recently, the main goal for ecologists was to study the composition and structure of communities and their implications for ecosystem function, but due to the probable magnitude and irreversibility of climate‐change effects (species extinctions and loss of ecosystem function), a shorter term focus on responses of ecosystems to climate change is needed. We highlight several underutilized approaches for studying the ecological consequences of climate change that capitalize on the natural variability of the climate system at different temporal and spatial scales. For example, studying organismal responses to extreme climatic events can inform about the resilience of populations to global warming and contribute to the assessment of local extinctions. Translocation experiments and gene expression are particular useful to quantitate a species' acclimation potential to global warming. And studies along environmental gradients can guide habitat restoration and protection programs by identifying vulnerable species and sites. These approaches identify the processes and mechanisms underlying species acclimation to changing conditions, combine different analytical approaches, and can be used to improve forecasts of the short‐term impacts of climate change and thus inform conservation practices and ecosystem models in a meaningful way. In this manuscript, we describe several underutilized approaches and techniques to address the study of short‐term species and ecosystem responses to climate change and highlight why these approaches are particularly valuable for generating information relevant for conservation practices and predictive models. These methods optimize the use of available information and can improve the reliability of our predictions by better exploring the range of potential outcomes of species and ecosystem responses to climate change. | en_US |
dc.publisher | Sinauer Associates, Inc. | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Climate Change | en_US |
dc.subject.other | Forecasting | en_US |
dc.subject.other | Range Shifts | en_US |
dc.subject.other | Translocation | en_US |
dc.subject.other | Environmental Gradients | en_US |
dc.title | Moving forward in global‐change ecology: capitalizing on natural variability | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Ecology and Evolutionary Biology | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.identifier.pmid | 23404535 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/96312/1/ece3433.pdf | |
dc.identifier.doi | 10.1002/ece3.433 | en_US |
dc.identifier.source | Ecology and Evolution | en_US |
dc.identifier.citedreference | Ogle, K., and J. J. Barber. 2008. Bayesian data‐model integration in plant physiological and ecosystem ecology. Progr. Bot. 69: 281 – 311. | en_US |
dc.identifier.citedreference | Monaco, C. J., and B. Helmuth. 2011. Tipping points, thresholds and the keystone role of physiology in marine climate change research. Adv. Mar. Biol. 60: 123 – 162. | en_US |
dc.identifier.citedreference | Monahan, W. B. 2009. A mechanistic niche model for measuring species' distributional responses to seasonal temperature gradients. PLoS ONE 4: 7921. | en_US |
dc.identifier.citedreference | Morin, X., and M. J. Lechowicz. 2008. Contemporary perspectives on the niche that can improve models of species range shifts under climate change. Biol. Lett. 4: 573 – 576. | en_US |
dc.identifier.citedreference | Mumby, P. J., I. A. Elliott, C. M. Eakin, W. Skirving, C. B. Paris, H. J. Edwards, et al. 2011. Reserve design for uncertain responses of coral reefs to climate change. Ecol. Lett. 14: 132 – 140. | en_US |
dc.identifier.citedreference | Paine, R. T., M. J. Tagener, and E. A. Johnson. 1998. Compounded perturbations yield ecological surprises. Ecosystems 1: 535 – 545. | en_US |
dc.identifier.citedreference | Parmesan, C., and J. Matthews. 2006. Biological impacts of climate change. Pp. 333 – 360 in M. J. Groom, G. K. Meffe and C. R. Carroll, eds. Principles of conservation biology. Sinauer Associates, Inc., Sunderland. | en_US |
dc.identifier.citedreference | Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37 – 42. | en_US |
dc.identifier.citedreference | Pelini, S. L., J. D. Dzurisin, K. M. Prior, C. M. Williams, T. D. Marsico, B. J. Sinclair, et al. 2009. Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change. Proc. Natl Acad. Sci. USA 106: 11160 – 11165. | en_US |
dc.identifier.citedreference | Pettorelli, N. 2012. Climate change as a main driver of ecological research. J. Appl. Ecol. 49: 542 – 545. | en_US |
dc.identifier.citedreference | Pincebourde, S., E. Sanford, and B. Helmuth. 2008. Body temperature during low tide alters the feeding performance of a top intertidal predator. Limnol. Oceanogr. 53: 1562 – 1573. | en_US |
dc.identifier.citedreference | Pressey, R. L., M. Cabeza, M. E. Watts, R. M. Cowling, and K. A. Wilson. 2007. Conservation planning in a changing world. Trends Ecol. Evol. 22: 583 – 592. | en_US |
dc.identifier.citedreference | Preston, K., J. T. Rotenberry, R. A. Redak, and M. F. Allen. 2008. Habitat shifts of endangered species under altered climate conditions: importance of biotic interactions. Glob. Change Biol. 14: 2501 – 2515. | en_US |
dc.identifier.citedreference | Price, T. D., and M. Kirkpatrick. 2009. Evolutionarily stable range limits set by interspecific competition. Proc. R. Soc. B Biol. Sci. 276: 1429 – 1434. | en_US |
dc.identifier.citedreference | Rissler, L. J., and J. J. Apodaca. 2007. Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the Black Salamander ( Aneides flavipunctatus ). Syst. Biol. 56: 924 – 942. | en_US |
dc.identifier.citedreference | Rutter, M. T., and C. B. Fenster. 2007. Testing for adaptation to climate in Arabidopsis thaliana: a calibrated common garden approach. Ann. Bot. 99: 529 – 536. | en_US |
dc.identifier.citedreference | Sará, G., M. Kearney, and B. Helmuth. 2011. Combining heat‐transfer and energy budget models to predict thermal stress in Mediterranean intertidal mussels. Chem. Ecol. 27: 135 – 145. | en_US |
dc.identifier.citedreference | Sinclair, S. J., M. D. White, and G. R. Newell. 2010. How useful are species distribution models for managing biodiversity under future climates? Ecol. Soc. 15: 8. | en_US |
dc.identifier.citedreference | Skelly, D. K., L. N. Joseph, H. P. Possingham, L. K. Freidenburg, T. J. Farrugia, M. T. Kinnison, et al. 2007. Evolutionary responses to climate change. Conserv. Biol. 21: 1353 – 1355. | en_US |
dc.identifier.citedreference | Stachowicz, J. J., J. R. Terwin, R. B. Whitlatch, and R. W. Osman. 2002. Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc. Natl Acad. Sci. USA 99: 15497 – 15500. | en_US |
dc.identifier.citedreference | Stokstad, E. 2011. Open‐source ecology takes root across the world. Science 334: 308 – 309. | en_US |
dc.identifier.citedreference | Trotter, R. T., N. S. Cobb, and T. G. Whitham. 2002. Herbivory, plant resistance, and climate in the tree ring record: interactions distort climatic reconstructions. Proc. Natl Acad. Sci. USA 99: 10197 – 10202. | en_US |
dc.identifier.citedreference | Urban, M. C., J. J. Tewksbury, and K. S. Sheldon. 2012a. On a collision course: competition and dispersal differences create no‐analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. ???: ??? – ???. doi: 10.1098/rspb.2011.2367. | en_US |
dc.identifier.citedreference | Urban, M. C., L. De Meester, M. Vellend, R. Stoks, and J. Vanoverbeke. 2012b. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective. Evol. Appl. 5: 154 – 167. | en_US |
dc.identifier.citedreference | Williams, J. W., and S. T. Jackson. 2007. Novel climates, no‐analog communities, and ecological surprises. Front. Ecol. Environ. 5: 475 – 485. | en_US |
dc.identifier.citedreference | Zakharov, E. V., and J. J. Hellmann. 2008. Genetic differentiation across a latitudinal gradient in two co‐occurring butterfly species: revealing population differences in a context of climate change. Mol. Ecol. 17: 189 – 208. | en_US |
dc.identifier.citedreference | Zarnetske, P. L., D. K. Skelly, and M. C. Urban. 2012. Biotic multipliers of climate change. Science 336: 1516 – 1518. | en_US |
dc.identifier.citedreference | Zhang, X., M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. F. Hodges, F. Gao, et al. 2003. Monitoring vegetation phenology using MODIS. Remote Sens. 84: 471 – 475. | en_US |
dc.identifier.citedreference | Zimmermann, N. E., N. G. Yoccoz, T. C. Edwards, E. S. Meier, W. Thuiller, A. Guisan, et al. 2009. Climatic extremes improve predictions of spatial patterns of tree species. Proc. Natl Acad. Sci. 106 ( Suppl 2 ): 19723 – 19728. | en_US |
dc.identifier.citedreference | Agrawal, A. A., A. P. Hastings, M. T. J. Johnson, J. L. Maron, and J. Salminen. 2012. Insect herbivores drive real‐time ecological and evolutionary change in plant populations. Science 338: 113 – 116. | en_US |
dc.identifier.citedreference | Angert, A. L., S. N. Sheth, and J. R. Paul. 2011. Incorporating population‐level variation in thermal performance into predictions of geographic range shifts. Integr. Comp. Biol. ???: ??? – ???. doi: 10.1093/icb/icr048, pp 1‐18. | en_US |
dc.identifier.citedreference | Angilletta, M. J., Jr, A. F. Bennett, H. Guderley, C. A. Navas, F. Seebacher, and R. S. Wilson. 2006. Coadaptation: a unifying principle in evolutionary thermal biology. Physiol. Biochem. Zool. 79: 282 – 294. | en_US |
dc.identifier.citedreference | Araujo, M. B., D. Nogues‐Bravo, J. A. F. Diniz‐Filho, A. M. Haywood, P. J. Valdes, and C. Rahbek. 2008. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31: 8 – 15. | en_US |
dc.identifier.citedreference | Beier, C., C. Beierkuhnlein, T. Wohlgemuth, J. Peñuelas, B. Emmett, C. Körner, et al. 2012. Precipitation manipulation experiments – challenges and recommendations for the future. Ecol. Lett. 15: 899 – 911. | en_US |
dc.identifier.citedreference | Beukema, J. J., R. Dekker, and J. M. Jansen. 2009. Some like it cold: populations of the tellinid bivalve Macoma balthica (L.) suffer in various ways from a warming climate. Mar. Ecol. Progr. Ser. 384: 135 – 145. | en_US |
dc.identifier.citedreference | Bolker, B. 2009. Learning hierarchical models: advice for the rest of us. Ecol. Appl. 19: 588 – 592. | en_US |
dc.identifier.citedreference | Brook, B. W., H. R. Akcakaya, D. A. Keith, G. M. Mace, R. G. Pearson, and M. B. Araujo. 2009. Integrating bioclimate with population models to improve forecasts of species extinctions under climate change. Biol. Lett. 23: 723 – 725. | en_US |
dc.identifier.citedreference | Buckley, L. B. 2008. Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am. Nat. 171: E1 – E19. | en_US |
dc.identifier.citedreference | Buckley, L. B., and J. G. Kingsolver. 2012. The demographic impacts of shifts in climate means and extremes on alpine butterflies. Funct. Ecol. 26: 969 – 977. | en_US |
dc.identifier.citedreference | Buckley, L. B., M. C. Urban, M. J. Angilletta, L. G. Crozier, L. J. Rissler, and M. W. Sears. 2010. Can mechanism inform species' distribution models? Ecol. Lett. 13: 1041 – 1054. | en_US |
dc.identifier.citedreference | Buckley, L. B., S. A. Waaser, H. J. MacLean, and R. Fox. 2011. Does including physiology improve species distribution model predictions of responses to recent climate change? Ecology 92: 2214 – 2221. | en_US |
dc.identifier.citedreference | Chambers, J. Q., G. P. Asner, D. C. Morton, L. O. Anderson, S. S. Saatchi, F. D. B. Espirito‐Santo, et al. 2007. Regional ecosystem structure and function: ecological insights from remote sensing of tropical forests. Trends Ecol. Evol. 22: 414 – 423. | en_US |
dc.identifier.citedreference | Chown, S. L., and J. S. Terblanche. 2007. Physiological diversity in insects: ecological and evolutionary contexts. Adv. Insect Phys. 33: 50 – 152. | en_US |
dc.identifier.citedreference | Chown, S. L., A. A. Hoffmann, T. N. Kristensen, M. J. Angilletta, N. C. Stenseth, and C. Pertoldi. 2010. Adapting to climate change: a perspective from evolutionary physiology. Clim. Res. 43: 3 – 15. | en_US |
dc.identifier.citedreference | Clark, J. S. 2005. Why environmental scientists are becoming Bayesians. Ecol. Lett. 8: 2 – 14. | en_US |
dc.identifier.citedreference | Clark, J. S., D. M. Bell, M. Hersch, and L. Nichols. 2011. Climate change vulnerability of forest biodiversity: climate and competition tracking of demographic rates. Glob. Change Biol. 17: 1834 – 1849. | en_US |
dc.identifier.citedreference | Crain, C. M., K. Kroeker, and B. Halpern. 2008. Interactive and cumulative effects of multiple stressors in marine systems. Ecol. Lett. 12: 1304 – 1315. | en_US |
dc.identifier.citedreference | Crozier, L. G. 2004. Field transplants reveal summer constraints on a butterfly range expansion. Oecologia 141: 148 – 157. | en_US |
dc.identifier.citedreference | Crozier, L., and G. Dwyer. 2006. Combining population‐dynamic and ecophysiological models to predict climate‐induced insect range shifts. Am. Nat. 167: 853 – 866. | en_US |
dc.identifier.citedreference | Davis, M. B., R. G. Shaw, and J. R. Etterson. 2005. Evolutionary responses to changing climate. Ecology 86: 1704 – 1714. | en_US |
dc.identifier.citedreference | Debinski, D. M., R. E. VanNimwegen, and M. E. Jakubauskas. 2006. Quantifying relationships between bird and butterfly community shifts and environmental change. Ecol. Appl. 16: 380 – 393. | en_US |
dc.identifier.citedreference | Debinski, D. M., H. Wickham, K. Kindscher, J. C. Caruthers, and M. Germino. 2010. Montane meadow change during drought varies with background hydrologic regime and plant functional group. Ecology 91: 1672 – 1681. | en_US |
dc.identifier.citedreference | Deutsch, C. A., J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, D. C. Haak, et al. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105: 6668 – 6672. | en_US |
dc.identifier.citedreference | Gallien, L., T. Munkemuller, C. H. Albert, I. Boulangeat, and W. Thuiller. 2010. Predicting potential distributions of invasive species: where to go from here? Divers. Distrib. 16: 331 – 342. | en_US |
dc.identifier.citedreference | Gaston, K. J., S. L. Chown, P. Calosi, J. Bernardo, D. T. Bilton, A. Clarke, et al. 2009. Macrophysiology: a conceptual reunification. Am. Nat. 174: 595 – 612. | en_US |
dc.identifier.citedreference | Gilman, S. E., M. C. Urban, J. Tewksbury, G. W. Gilchrist, and R. D. Holt. 2010. A framework for community interactions under climate change. Trends Ecol. Evol. 25: 325 – 331. | en_US |
dc.identifier.citedreference | Gornish, E. S., and T. E. Miller. 2010. Effects of storm frequency on dune vegetation. Glob. Change Biol. 16: 2668 – 2675. | en_US |
dc.identifier.citedreference | Grace, J. B., S. Harrison, and E. Damschen. 2011. Local richness along gradients in the Siskiyou herb flora: R. H. Whittaker revisited. Ecology 9: 108 – 120. | en_US |
dc.identifier.citedreference | Harley, C. D. G. 2011. Climate change, keystone predation, and biodiversity loss. Science 334: 1124 – 1127. | en_US |
dc.identifier.citedreference | Helmuth, B., C. D. G. Harley, P. M. Halpin, M. O'Donnell, G. E. Hofmann, and C. A. Blanchette. 2002. Climate change and latitudinal patterns of intertidal thermal stress. Science 298: 1015 – 1017. | en_US |
dc.identifier.citedreference | Helmuth, B., J. G. Kingsolver, and E. Carrington. 2005. Biophysics, physiological ecology, and climate change: does mechanism matter? Annu. Rev. Physiol. 67: 177 – 201. | en_US |
dc.identifier.citedreference | Helmuth, B., B. R. Broitman, L. Yamane, S. E. Gilman, K. Mach, K. A. S. Mislan, et al. 2010. Organismal climatology: analyzing environmental variability at scales relevant to physiological stress. J. Exp. Biol. 213: 995 – 1003. | en_US |
dc.identifier.citedreference | Hoffmann, A. A., R. J. Hallas, J. A. Dean, and M. Schiffer. 2003. Low potential for climatic stress adaptation in a rainforest Drosophila species. Science 301: 1000 – 1102. | en_US |
dc.identifier.citedreference | Honnay, O., K. Verheyen, J. Butaye, H. Jacquemyn, B. Bossuyt, and M. Hermy. 2002. Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecol. Lett. 5: 525 – 530. | en_US |
dc.identifier.citedreference | Huey, R. B., G. W. Gilchrist, M. L. Carlson, D. Berrigan, and L. Serra. 2000. Rapid evolution of a geographic cline in size in an introduced fly. Science 287: 308 – 309. | en_US |
dc.identifier.citedreference | Hugall, A., C. Moritz, A. Moussalli, and J. Stanisic. 2002. Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). Proc. Natl Acad. Sci. USA 99: 6112 – 6117. | en_US |
dc.identifier.citedreference | Ibáñez, I., J. S. Clark, S. LaDeau, and J. HilleRisLambers. 2007. Exploiting temporal variability to understand tree recruitment response to climate change. Ecol. Monogr. 77: 163 – 177. | en_US |
dc.identifier.citedreference | Ibáñez, I., J. S. Clark, and M. C. Dietze. 2008. Evaluating the sources of potential migrant species. Implications under climate change. Ecol. Appl. 18: 1664 – 1678. | en_US |
dc.identifier.citedreference | Ibáñez, I., R. B. Primack, A. J. Miller‐Rushing, E. Ellwood, H. Higuchi, S. D. Lee, et al. 2010. Forecasting phenology under global warming. Philos. Trans. R. Soc. B Biol. Sci. 365: 3247 – 3260. | en_US |
dc.identifier.citedreference | Jarema, S. I., J. Samson, B. J. Mcgill, and M. M. Humphries. 2009. Variation in abundance across a species' range predicts climate change responses in the range interior will exceed those at the edge: a case study with North American beaver. Glob. Change Biol. 15: 508 – 522. | en_US |
dc.identifier.citedreference | Jump, A. S., and J. Penuelas. 2005. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8: 1010 – 1020. | en_US |
dc.identifier.citedreference | Kearney, M., and W. Porter. 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecol. Lett. 12: 334 – 350. | en_US |
dc.identifier.citedreference | Kearney, M., W. P. Porter, C. Williams, S. Ritchie, and A. A. Hoffmann. 2009a. Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 23: 528 – 538. | en_US |
dc.identifier.citedreference | Kearney, M., R. Shine, and W. P. Porter. 2009b. The potential for behavioral thermoregulation to buffer “cold‐blooded” animals against climate warming. Proc. Natl Acad. Sci. USA 106: 3835 – 3840. | en_US |
dc.identifier.citedreference | Kearney, M., E. Ferguson, S. Fumei, A. Gallacher, P. Mitchell, and R. Woodford. 2011. A cost‐effective method of assessing thermal habitat quality for endotherms. Austral Ecol. 36: 1442 – 9985. | en_US |
dc.identifier.citedreference | Kerr, J. T., H. Kharouba, and D. J. Currie. 2007. The macroecological contribution to global change solutions. Science 316: 1581 – 1584. | en_US |
dc.identifier.citedreference | Kolbe, J. J., M. Kearney, and R. Shine. 2010. Modeling the consequences of thermal trait variation for the cane toad invasion of Australia. Ecol. Appl. 20: 2273 – 2285. | en_US |
dc.identifier.citedreference | Latimer, A. L., S. Wu, A. E. Gelfand, and J. Silander. 2006. Building statistical models to analyze species distributions. Ecol. Appl. 16: 33 – 50. | en_US |
dc.identifier.citedreference | Lau, J. A., and J. T. Lennon. 2012. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc. Natl Acad. Sci. 109: 14058 – 14062. | en_US |
dc.identifier.citedreference | Lavergne, S., N. Mouquet, W. Thuiller, and O. Ronce. 2010. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 41: 321 – 350. | en_US |
dc.identifier.citedreference | Lenoir, J., J. C. Gegout, P. A. Marquet, P. de Ruffray, and H. Brisse. 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320: 1768 – 1771. | en_US |
dc.identifier.citedreference | Leuzinger, S., Y. Q. Luo, C. Beier, W. Dieleman, S. Vicca, and C. Korner. 2011. Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol. Evol. 26: 236 – 241. | en_US |
dc.identifier.citedreference | Marsico, T. D., and J. J. Hellmann. 2009. Dispersal limitation inferred from an experimental translocation of Lomatium ( Apiaceae ) species outside their geographic ranges. Oikos 118: 1783 – 1792. | en_US |
dc.identifier.citedreference | Menzel, A., T. H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, et al. 2006. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12: 1969 – 1976. | en_US |
dc.identifier.citedreference | Miller‐Rushing, A. J., and R. B. Primack. 2008. Global warming and flowering times in Thoreau's concord: a community perspective. Ecology 89: 332 – 341. | en_US |
dc.identifier.citedreference | Mislan, K. A. S., and D. S. Wethey. 2011. Gridded meteorological data as resource for mechanistic ecology in coastal environments. Ecol. Appl. 21: 2679 – 2690. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.