Show simple item record

Functional perfusion imaging using pseudocontinuous arterial spin labeling with low‐flip‐angle segmented 3D spiral readouts

dc.contributor.authorNielsen, Jon‐fredriken_US
dc.contributor.authorHernandez‐garcia, Luisen_US
dc.date.accessioned2013-02-12T19:00:46Z
dc.date.available2014-04-02T15:08:08Zen_US
dc.date.issued2013-02en_US
dc.identifier.citationNielsen, Jon‐fredrik ; Hernandez‐garcia, Luis (2013). "Functional perfusion imaging using pseudocontinuous arterial spin labeling with lowâ flipâ angle segmented 3D spiral readouts." Magnetic Resonance in Medicine 69(2): 382-390. <http://hdl.handle.net/2027.42/96313>en_US
dc.identifier.issn0740-3194en_US
dc.identifier.issn1522-2594en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96313
dc.description.abstractArterial spin labeling (ASL) provides quantitative and reproducible measurements of regional cerebral blood flow, and is therefore an attractive method for functional MRI. However, most existing ASL functional MRI protocols are based on either two‐dimensional (2D) multislice or 3D spin‐echo and suffer from very low image signal‐to‐noise ratio or through‐plane blurring. 3D ASL with multishot (segmented) readouts can improve the signal‐to‐noise ratio efficiency relative to 2D multislice and does not suffer from T 2 ‐blurring. However, segmented readouts require lower imaging flip‐angles and may increase the susceptibility to temporal signal fluctuations (e.g., due to physiology) relative to 2D multislice. In this article, we characterize the temporal signal‐to‐noise ratio of a segmented 3D spiral ASL sequence, and investigate the effects of radiofrequency phase cycling scheme and flip‐angle schedule on image properties. We show that radiofrequency‐spoiling is essential in segmented 3D spiral ASL, and that 3D ASL can improve temporal signal‐to‐noise ratio 2‐fold relative to 2D multislice when using a simple polynomial (cubic) flip‐angle schedule. Functional MRI results using the proposed optimized segmented 3D spiral ASL protocol show excellent activation in the visual cortex. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherArterial Spin Labelingen_US
dc.subject.other3D Arterial Spin Labelingen_US
dc.subject.otherRadiofrequency‐Spoilingen_US
dc.subject.other2D Versus 3Den_US
dc.titleFunctional perfusion imaging using pseudocontinuous arterial spin labeling with low‐flip‐angle segmented 3D spiral readoutsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother1067 B.I.R.B., 2360 Bonisteel Ave, Ann Arbor, MI 48109 ‐ 2108en_US
dc.identifier.pmid22488451en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96313/1/24261_ftp.pdf
dc.identifier.doi10.1002/mrm.24261en_US
dc.identifier.sourceMagnetic Resonance in Medicineen_US
dc.identifier.citedreferenceHu Y, Glover GH. Three‐dimensional spiral technique for high‐resolution functional MRI. Magn Reson Med 2007; 58: 947 – 951.en_US
dc.identifier.citedreferencePerthen JE, Bydder M, Restom K, Liu TT. SNR and functional sensitivity of BOLD and perfusion‐based fMRI using arterial spin labeling with spiral SENSE at 3 T. Magn Reson Imaging 2008; 26: 513 – 522.en_US
dc.identifier.citedreferenceYang Y, Gu H, Stein EA. Simultaneous MRI acquisition of blood volume, blood flow, and blood oxygenation information during brain activation. Magn Reson Med 2004; 52: 1407 – 1417.en_US
dc.identifier.citedreferenceHernandez‐Garcia L, Vazquez AL, Rowe DB. Complex‐valued analysis of arterial spin labeling‐based functional magnetic resonance imaging signals. Magn Reson Med 2009; 62: 1597 – 1608.en_US
dc.identifier.citedreferenceGünther M, Oshio K, Feinberg DA. Single‐shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 2005; 54: 491 – 498.en_US
dc.identifier.citedreferenceTalagala SL, Ye FQ, Ledden PJ, Chesnick S. Whole‐brain 3D perfusion MRI at 3.0 T using CASL with a separate labeling coil. Magn Reson Med 2004; 52: 131 – 140.en_US
dc.identifier.citedreferenceTalagala SL, Slavin GS, Ostuni J, Chesnick S. CASL perfusion MRI with non‐segmented low flip angle 3D EPI. In Proceedings of the 14th Annual Meeting of ISMRM, Seattle, Washington, USA, 2006. p. 3422.en_US
dc.identifier.citedreferenceGai ND, Talagala SL, Butman JA. Whole‐brain cerebral blood flow mapping using 3D echo planar imaging and pulsed arterial tagging. J Magn Reson Imaging 2011; 33: 287 – 295.en_US
dc.identifier.citedreferenceFernández‐Seara MA, Wang Z, Wang J, Rao HY, Guenther M, Feinberg DA, Detre JA. Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3T. Magn Reson Med 2005; 54: 1241 – 1247.en_US
dc.identifier.citedreferenceDuhamel G, Alsop DC. Single‐shot susceptibility insensitive whole brain 3D fMRI with ASL. In Proceedings of the 12th Annual Meeting of ISMRM, Kyoto, Japan, 2004. p. 518.en_US
dc.identifier.citedreferenceDai W, Garcia D, Bazelaire C, Alsop DC. Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008; 60: 1488 – 1497.en_US
dc.identifier.citedreferenceScheffler K. A pictorial description of steady‐states in rapid magnetic resonance imaging. Concepts Magn Reson 1999; 11: 291 – 304.en_US
dc.identifier.citedreferenceZur Y, Wood ML, Neuringer LJ. Spoiling of transverse magnetization in steady‐state sequences. Magn Reson Med 1991; 21: 251 – 263.en_US
dc.identifier.citedreferenceAlsop DC, Detre JA. Reduced transit‐time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996; 16: 1236 – 1249.en_US
dc.identifier.citedreferenceWang J, Alsop DC, Li L, Listerud J, Gonzalez‐At JB, Schnall MD, Detre JA. Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla. Magn Reson Med 2002; 48: 242 – 254.en_US
dc.identifier.citedreferenceJahanian H, Noll DC, Hernandez‐Garcia L. B0 field inhomogeneity considerations in pseudo‐continuous arterial spin labeling (pCASL): effects on tagging efficiency and correction strategy. NMR Biomed, 2011; 24: 1202 – 1209.en_US
dc.identifier.citedreferencePress WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes in C: the art of scientific computing. New York: Cambridge University Press; 1992.en_US
dc.identifier.citedreferenceRaj D, Anderson AW, Gore JC. Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes. Phys Med Biol 2001; 46: 3331 – 3340.en_US
dc.identifier.citedreferenceEpstein FH, Brookeman JR. Spoiling of transverse magnetization in gradient‐echo (GRE) imaging during the approach to steady state. Magn Reson Med 1996; 35: 237 – 245.en_US
dc.identifier.citedreferenceSmith T, Zun Z, Wong EC, Nayak KS. Design and use of variable flip angle schedules in transient balanced SSFP subtractive imaging. Magn Reson Med 2010; 63: 537 – 542.en_US
dc.identifier.citedreferenceDetre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med 1992; 23: 37 – 45.en_US
dc.identifier.citedreferenceGolay X, Hendrikse J, Lim TC. Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 2004; 15: 10 – 27.en_US
dc.identifier.citedreferenceJiang L, Kim M, Chodkowski B, Donahue MJ, Pekar JJ, Zijl PC, Albert M. Reliability and reproducibility of perfusion MRI in cognitively normal subjects. Magn Reson Imaging 2010; 28: 1283 – 1289.en_US
dc.identifier.citedreferencePetersen ET, Mouridsen K, Golay X. The quasar reproducibility study, part ii: results from a multi‐center arterial spin labeling test‐retest study. Neuroimage 2010; 49: 104 – 113.en_US
dc.identifier.citedreferenceWang Y, Saykin AJ, Pfeuffer J, Lin C, Mosier KM, Shen L, Kim S, Hutchins GD. Regional reproducibility of pulsed arterial spin labeling perfusion imaging at 3T. Neuroimage 2011; 54: 1188 – 1195.en_US
dc.identifier.citedreferenceAguirre GK, Zarahn E, D'esposito M. The variability of human, BOLD hemodynamic responses. Neuroimage 1998; 8: 360 – 369.en_US
dc.identifier.citedreferenceDeibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin‐labeling in routine clinical practice, part 1: technique and artifacts. Am J Neuroradiol 2008; 29: 1228 – 1234.en_US
dc.identifier.citedreferenceDeibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin‐labeling in routine clinical practice, part 2: hypoperfusion patterns. Am J Neuroradiol 2008; 29: 1235 – 1241.en_US
dc.identifier.citedreferenceDeibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin‐labeling in routine clinical practice, part 3: hyperperfusion patterns. Am J Neuroradiol 2008; 29: 1428 – 1435.en_US
dc.identifier.citedreferenceWang Z, Fernández‐Seara M, Alsop DC, Liu WC, Flax JF, Benasich AA, Detre JA. Assessment of functional development in normal infant brain using arterial spin labeled perfusion MRI. Neuroimage 2008; 39: 973 – 978.en_US
dc.identifier.citedreferenceDetre JA, Wang J, Wang Z, Rao H. Arterial spin‐labeled perfusion MRI in basic and clinical neuroscience. Curr Opin Neurol 2009; 22: 348 – 355.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.