Show simple item record

Diminished trk A receptor signaling reveals cholinergic‐attentional vulnerability of aging

dc.contributor.authorParikh, Vinayen_US
dc.contributor.authorHowe, William M.en_US
dc.contributor.authorWelchko, Ryan M.en_US
dc.contributor.authorNaughton, Sean X.en_US
dc.contributor.authorD'Amore, Drew E.en_US
dc.contributor.authorHan, Daniel H.en_US
dc.contributor.authorDeo, Monikaen_US
dc.contributor.authorTurner, David L.en_US
dc.contributor.authorSarter, Martinen_US
dc.date.accessioned2013-02-12T19:01:04Z
dc.date.available2014-03-03T15:09:25Zen_US
dc.date.issued2013-01en_US
dc.identifier.citationParikh, Vinay; Howe, William M.; Welchko, Ryan M.; Naughton, Sean X.; D'Amore, Drew E.; Han, Daniel H.; Deo, Monika; Turner, David L.; Sarter, Martin (2013). "Diminished trk A receptor signaling reveals cholinergic‐attentional vulnerability of aging." European Journal of Neuroscience (2): 278-293. <http://hdl.handle.net/2027.42/96365>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96365
dc.description.abstractThe cellular mechanisms underlying the exceptional vulnerability of the basal forebrain ( BF ) cholinergic neurons during pathological aging have remained elusive. Here we employed an adeno‐associated viral vector‐based RNA interference ( AAV ‐ RNA i) strategy to suppress the expression of tropomyosin‐related kinase A (trk A ) receptors by cholinergic neurons in the nucleus basalis of M eynert/substantia innominata ( nMB / SI ) of adult and aged rats. Suppression of trk A receptor expression impaired attentional performance selectively in aged rats. Performance correlated with trk A levels in the nMB / SI . trk A knockdown neither affected nMB / SI cholinergic cell counts nor the decrease in cholinergic cell size observed in aged rats. However, trk A suppression augmented an age‐related decrease in the density of cortical cholinergic processes and attenuated the capacity of cholinergic neurons to release acetylcholine ( AC h). The capacity of cortical synapses to release AC h in vivo was also lower in aged/trk A ‐ AAV ‐infused rats than in aged or young controls, and it correlated with their attentional performance. Furthermore, age‐related increases in cortical pro NGF and p75 receptor levels interacted with the vector‐induced loss of trk A receptors to shift NGF signaling toward p75‐mediated suppression of the cholinergic phenotype, thereby attenuating cholinergic function and impairing attentional performance. These effects model the abnormal trophic regulation of cholinergic neurons and cognitive impairments in patients with early A lzheimer's disease. This rat model is useful for identifying the mechanisms rendering aging cholinergic neurons vulnerable as well as for studying the neuropathological mechanisms that are triggered by disrupted trophic signaling. The cellular mechanisms underlying the exceptional vulnerability of the basal forebrain ( BF ) cholinergic neurons during pathological aging have remained elusive. Here we employed an adeno‐associated viral vector‐based RNA interference ( AAV ‐ RNA i) strategy to suppress the expression of trk A receptors by cholinergic neurons in the nucleus basalis of M eynert/substantia innominata (n MB / SI ) of adult and aged rats. This study provides novel evidence that reduced trkA receptors is not sufficient to trigger cholinergic dysfunction. Rather, aging interacts with disrupted trkA signaling to escalate the vulnerability of BF cholinergic neurons and the manifestation of age‐related attentional impairments.en_US
dc.publisherElsevieren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAcetylcholineen_US
dc.subject.otherRatsen_US
dc.subject.otherRNA Ien_US
dc.subject.otherTrophicen_US
dc.subject.otherCognitionen_US
dc.titleDiminished trk A receptor signaling reveals cholinergic‐attentional vulnerability of agingen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23228124en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96365/1/ejn12090-sup-0001-SupportingInformation.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96365/2/ejn12090.pdf
dc.identifier.doi10.1111/ejn.12090en_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceParikh, V., Ji, J., Decker, M.W. & Sarter, M. ( 2010 ) Prefrontal beta2 subunit‐containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J. Neurosci., 30, 3518 – 3530.en_US
dc.identifier.citedreferenceParikh, V. & Sarter, M. ( 2006 ) Cortical choline transporter function measured in vivo using choline‐sensitive microelectrodes: clearance of endogenous and exogenous choline and effects of removal of cholinergic terminals. J. Neurochem., 97, 488 – 503.en_US
dc.identifier.citedreferenceParikh, V. & Sarter, M. ( 2008 ) Cholinergic mediation of attention: contributions of phasic and tonic increases in prefrontal cholinergic activity. Ann. NY Acad. Sci., 1129, 225 – 235.en_US
dc.identifier.citedreferenceParikh, V. & Sarter, M. ( 2010 ). Cognitive decline in laboratory animals: models, measures, and validity. In Koob, G., Thompson, R.F. & LeMoal, M. (Eds), Encyclopedia of Behavioral Neuroscience, Vol. 1. Elsevier, Amsterdam, pp. 294 – 301.en_US
dc.identifier.citedreferenceParikh, V., Kozak, R., Martinez, V. & Sarter, M. ( 2007 ) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron, 56, 141 – 154.en_US
dc.identifier.citedreferenceParikh, V., Man, K., Decker, M.W. & Sarter, M. ( 2008 ) Glutamatergic contributions to nicotinic acetylcholine receptor agonist‐evoked cholinergic transients in the prefrontal cortex. J. Neurosci., 28, 3769 – 3780.en_US
dc.identifier.citedreferencePaxinos, G. & Watson, C. ( 2007 ) The Rat Brain in Stereotaxic Coordinates, Hard Cover Edition. Academic Press, San Diego, CA.en_US
dc.identifier.citedreferencePeel, A.L., Zolotukhin, S., Schrimsher, G.W., Muzyczka, N. & Reier, P.J. ( 1997 ) Efficient transduction of green fluorescent protein in spinal cord neurons using adeno‐associated virus vectors containing cell type‐specific promoters. Gene Ther., 4, 16 – 24.en_US
dc.identifier.citedreferencePeng, S., Wuu, J., Mufson, E.J. & Fahnestock, M. ( 2004 ) Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. J. Neuropathol. Exp. Neurol., 63, 641 – 649.en_US
dc.identifier.citedreferencePongrac, J.L. & Rylett, R.J. ( 1998 ) NGF‐induction of the expression of ChAT mRNA in PC12 cells and primary cultures of embryonic rat basal forebrain. Brain Res. Mol. Brain Res., 62, 25 – 34.en_US
dc.identifier.citedreferenceReynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W.S. & Khvorova, A. ( 2004 ) Rational siRNA design for RNA interference. Nat. Biotechnol., 22, 326 – 330.en_US
dc.identifier.citedreferenceRoux, P.P. & Barker, P.A. ( 2002 ) Neurotrophin signaling through the p75 neurotrophin receptor. Prog. Neurobiol., 67, 203 – 233.en_US
dc.identifier.citedreferenceSanchez‐Ortiz, E., Yui, D., Song, D., Li, Y., Rubenstein, L., Reichardt, F. & Parada, L.F. ( 2012 ) TrkA gene ablation in basal forebrain results in dysfunction of the cholinergic circuitry. J. Neurosci., 32, 4065 – 4079.en_US
dc.identifier.citedreferenceSaragovi, H.U. ( 2005 ) Progression of age‐associated cognitive impairment correlates with quantitative and qualitative loss of TrkA receptor protein in nucleus basalis and cortex. J. Neurochem., 95, 1472 – 1480.en_US
dc.identifier.citedreferenceSarter, M. & Bruno, J.P. ( 1998 ) Age‐related changes in rodent cortical acetylcholine and cognition: main effects of age versus age as an intervening variable. Brain Res. Brain Res. Rev., 27, 143 – 156.en_US
dc.identifier.citedreferenceSarter, M. & Bruno, J.P. ( 2004 ) Developmental origins of the age‐related decline in cortical cholinergic function and associated cognitive abilities. Neurobiol. Aging, 25, 1127 – 1139.en_US
dc.identifier.citedreferenceSarter, M. & Parikh, V. ( 2005 ) Choline transporters, cholinergic transmission and cognition. Nat. Rev. Neurosci., 6, 48 – 56.en_US
dc.identifier.citedreferenceSchor, N.F. ( 2005 ) The p75 neurotrophin receptor in human development and disease. Prog. Neurobiol., 77, 201 – 214.en_US
dc.identifier.citedreferenceSobottka, B., Reinhardt, D., Brockhaus, M., Jacobsen, H. & Metzger, F. ( 2008 ) ProNGF inhibits NGF‐mediated TrkA activation in PC12 cells. J. Neurochem., 107, 1294 – 1303.en_US
dc.identifier.citedreferenceSobreviela, T., Clary, D.O., Reichardt, L.F., Brandabur, M.M., Kordower, J.H. & Mufson, E.J. ( 1994 ) TrkA‐immunoreactive profiles in the central nervous system: colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase, and serotonin. J. Comp. Neurol., 350, 587 – 611.en_US
dc.identifier.citedreferenceSofroniew, M.V., Howe, C.L. & Mobley, W.C. ( 2001 ) Nerve growth factor signaling, neuroprotection, and neural repair. Ann. Rev. Neurosci., 24, 1217 – 1281.en_US
dc.identifier.citedreferenceSt Peters, M., Demeter, E., Lustig, C., Bruno, J.P. & Sarter, M. ( 2011 ) Enhanced control of attention by stimulating mesolimbic‐corticopetal cholinergic circuitry. J. Neurosci., 31, 9760 – 9771.en_US
dc.identifier.citedreferenceSzutowicz, A., Madziar, B., Pawełczyk, T., Tomaszewicz, M. & Bielarczyk, H. ( 2004 ) Effects of NGF on acetylcholine, acetyl‐CoA metabolism, and viability of differentiated and non‐differentiated cholinergic neuroblastoma cells. J. Neurochem., 90, 952 – 961.en_US
dc.identifier.citedreferenceTaylor, J., Chung, K.H., Figueroa, C., Zurawski, J., Dickson, H.M., Brace, E.J., Avery, A.W., Turner, D.L. & Vojtek, A.B. ( 2008 ) The scaffold protein POSH regulates axon outgrowth. Mol. Biol. Cell, 19, 5181 – 5192.en_US
dc.identifier.citedreferenceTerry, A.V., Kutiyanawalla, A. & Pillai, A. ( 2011 ) Age‐dependent alterations in nerve growth factor (NGF)‐related proteins, sortilin, and learning and memory in rats. Physiol. Behav., 102, 149 – 157.en_US
dc.identifier.citedreferenceVerbeke, G. & Molenberghs, G. ( 2009 ) Linear Mixed Models for Longitudinal Data. Springer, New York.en_US
dc.identifier.citedreferenceVolosin, M., Song, W., Almeida, R.D., Kaplan, D.R., Hempstead, B.L. & Friedman, W.J. ( 2006 ) Interaction of survival and death signaling in basal forebrain neurons: roles of neurotrophins and proneurotrophins. J. Neurosci., 26, 7756 – 7766.en_US
dc.identifier.citedreferenceWest, M.J., Slomianka, L. & Gundersen, H.J. ( 1991 ) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat. Rec., 231, 482 – 497.en_US
dc.identifier.citedreferenceAl‐Shawi, R., Hafner, A., Chun, S., Raza, S., Crutcher, K., Thrasivoulou, C., Simons, P. & Cowen, T. ( 2007 ) ProNGF, sortilin, and age‐related neurodegeneration. Ann. NY Acad. Sci., 1119, 208 – 215.en_US
dc.identifier.citedreferenceAl‐Shawi, R., Hafner, A., Olson, J., Chun, S., Raza, S., Thrasivoulou, C., Lovestone, S., Killick, R., Simons, P. & Cowen, T. ( 2008 ) Neurotoxic and neurotrophic roles of proNGF and the receptor sortilin in the adult and ageing nervous system. Eur. J. Neurosci., 27, 2103 – 2114.en_US
dc.identifier.citedreferenceApparsundaram, S., Martinez, V., Parikh, V., Kozak, R. & Sarter, M. ( 2005 ) Increased capacity and density of choline transporters situated in synaptic membranes of the right medial prefrontal cortex of attentional task‐performing rats. J. Neurosci., 25, 3851 – 3856.en_US
dc.identifier.citedreferenceBurk, J.A., Herzog, C.D., Porter, M.C. & Sarter, M. ( 2002 ) Interactions between aging and cortical cholinergic deafferentation on attention. Neurobiol. Aging, 23, 467 – 477.en_US
dc.identifier.citedreferenceCeni, C., Kommaddi, R.P., Thomas, R., Vereker, E., Liu, X., McPherson, P.S., Ritter, B. & Barker, P.A. ( 2010 ) The p75NTR intracellular domain generated by neurotrophin‐induced receptor cleavage potentiates Trk signaling. J. Cell Sci., 123, 2299 – 2307.en_US
dc.identifier.citedreferenceChao, M.V. ( 2003 ) Neurotrophins and their receptors: a convergence point for many signaling pathways. Nat. Rev. Neurosci., 4, 299 – 309.en_US
dc.identifier.citedreferenceChu, Y., Cochran, E.J., Bennett, D.A., Mufson, E.J. & Kordower, J.H. ( 2001 ) Down‐regulation of trkA mRNA within nucleus basalis neurons in individuals with mild cognitive impairment and Alzheimer's disease. J. Comp. Neurol., 437, 296 – 307.en_US
dc.identifier.citedreferenceChung, K.H., Hart, C.C., Al‐Bassam, S., Avery, A., Taylor, J., Patel, P.D., Vojtek, A.B. & Turner, D.L. ( 2006 ) Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR‐155. Nucleic Acids Res., 34, e53.en_US
dc.identifier.citedreferenceClewes, O., Fahey, M.S., Tyler, S.J., Watson, J.J., Seok, H., Catania, C., Cho, K., Dawbarn, D. & Allen, S.J. ( 2008 ) Human ProNGF: biological effects and binding profiles at TrkA, P75NTR and sortilin. J. Neurochem., 107, 1124 – 1135.en_US
dc.identifier.citedreferenceCostantini, C., Weindruch, R., Della Valle, G. & Puglielli, L. ( 2005 ) A TrkA‐to‐p75NTR molecular switch activates amyloid beta‐peptide generation during aging. Biochem. J., 391, 59 – 67.en_US
dc.identifier.citedreferenceCostantini, C., Scrable, H. & Puglielli, L. ( 2006 ) An aging pathway controls the TrkA to p75NTR receptor switch and amyloid beta‐peptide generation. EMBO J., 25, 1997 – 2006.en_US
dc.identifier.citedreferenceCoulson, E.J., May, L.M., Sykes, A.M. & Hamlin, A.S. ( 2009 ) The role of the p75 neurotrophin receptor in cholinergic dysfunction in Alzheimer's disease. Neuroscientist, 15, 317 – 323.en_US
dc.identifier.citedreferenceCounts, S.E. & Mufson, E.J. ( 2005 ) The role of nerve growth factor receptors in cholinergic basal forebrain degeneration in prodromal Alzheimer disease. J. Neuropathol. Exp. Neurol., 64, 263 – 272.en_US
dc.identifier.citedreferenceCounts, S.E., Nadeem, M., Wuu, J., Ginsberg, S.D., Saragovi, H.U. & Mufson, E.J. ( 2004 ) Reduction of cortical TrkA but not p75(NTR) protein in early‐stage Alzheimer's disease. Ann. Neurol., 56, 520 – 531.en_US
dc.identifier.citedreferenceDas, K.P., Freudenrich, T.M. & Mundy, W.R. ( 2004 ) Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures. Neurotoxicol. Teratol., 26, 397 – 406.en_US
dc.identifier.citedreferenceDemeter, E., Sarter, M. & Lustig, C. ( 2008 ) Rats and humans paying attention: cross‐species task development for translational research. Neuropsychology, 22, 787 – 799.en_US
dc.identifier.citedreferenceDickson, H.M., Zurawski, J., Zhang, H., Turner, D.L. & Vojtek, A.B. ( 2010 ) POSH is an intracellular signal transducer for the axon outgrowth inhibitor Nogo66. J. Neurosci., 30, 13319 – 13325.en_US
dc.identifier.citedreferencevon Engelhardt, J., Eliava, M., Meyer, A.H., Rozov, A. & Monyer, H. ( 2007 ) Functional characterization of intrinsic cholinergic interneurons in the cortex. J. Neurosci., 27, 5633 – 5642.en_US
dc.identifier.citedreferenceEveritt, B.J. & Robbins, T.W. ( 1997 ) Central cholinergic systems and cognition. Ann. Rev. Psychol., 48, 649 – 684.en_US
dc.identifier.citedreferenceFagan, A.M., Garber, M., Barbacid, M., Silos‐Santiago, I. & Holtzman, D.M. ( 1997 ) A role for TrkA during maturation of striatal and basal forebrain cholinergic neurons in vivo. J. Neurosci., 17, 7644 – 7654.en_US
dc.identifier.citedreferenceFerguson, S.M. & Blakely, R.D. ( 2004 ) The choline transporter resurfaces: new roles for synaptic vesicles? Mol. Interv., 4, 22 – 37.en_US
dc.identifier.citedreferenceFortress, A.M., Buhusi, M., Helke, K.L. & Granholm, A.C. ( 2011 ) Cholinergic degeneration and alterations in the TrkA and p75NTR balance as a result of Pro‐NGF injection into aged rats. J. Aging Res., 2011, 460543.en_US
dc.identifier.citedreferenceGarofalo, L., Ribeiro‐da‐Silva, A. & Cuello, A.C. ( 1992 ) Nerve growth factor‐induced synaptogenesis and hypertrophy of cortical cholinergic terminals. Proc. Natl. Acad. Sci. USA, 89, 2639 – 2643.en_US
dc.identifier.citedreferenceGinsberg, S.D., Che, S., Wuu, J., Counts, S.E. & Mufson, E.J. ( 2006 ) Down regulation of trk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer's disease. J. Neurochem., 97, 475 – 487.en_US
dc.identifier.citedreferenceGreenwald, A.G., Gonzalez, R., Harris, R.J. & Guthrie, D. ( 1996 ) Effect sizes and P values: what should be reported and what should be replicated? Psychophysiology, 33, 175 – 183.en_US
dc.identifier.citedreferenceHartikka, J. & Hefti, F. ( 1988 ) Comparison of nerve growth factor's effects on development of septum, striatum, and nucleus basalis cholinergic neurons in vitro. J. Neurosci. Res., 21, 352 – 364.en_US
dc.identifier.citedreferenceHasselmo, M.E. & Sarter, M. ( 2011 ) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacol., 36, 52 – 73.en_US
dc.identifier.citedreferenceHeckers, S., Ohtake, T., Wiley, R.G., Lappi, D.A., Geula, C. & Mesulam, M.M. ( 1994 ) Complete and selective cholinergic denervation of rat neocortex and hippocampus but not amygdala by an immunotoxin against the p75 NGF receptor. J. Neurosci., 14, 1271 – 1289.en_US
dc.identifier.citedreferenceHoltzman, D.M., Kilbridge, J., Li, Y., Cunningham, E.T., Lenn, N.J., Clary, D.O., Reichardt, L.F. & Mobley, W.C. ( 1995 ) TrkA expression in the CNS: evidence for the existence of several novel NGF‐responsive CNS neurons. J. Neurosci., 15, 1567 – 1576.en_US
dc.identifier.citedreferenceHommel, J.D., Sears, R.M., Georgescu, D., Simmons, D.L. & DiLeone, R.J. ( 2003 ) Local gene knockdown in the brain using viral‐mediated RNA interference. Nat. Med., 9, 1539 – 1544.en_US
dc.identifier.citedreferenceHowe, W.M., Ji, J., Parikh, V., Williams, S., Mocaër, E., Trocmé‐Thibierge, C. & Sarter, M. ( 2010 ) Enhancement of attentional performance by selective stimulation of alpha4beta2* nAChRs: underlying cholinergic mechanisms. Neuropsychopharmacol., 35, 1391 – 1401.en_US
dc.identifier.citedreferenceHuang, E.J. & Reichardt, L.F. ( 2003 ) Trk receptors: roles in neuronal signal transduction. Ann. Rev. Biochem., 72, 609 – 642.en_US
dc.identifier.citedreferenceJansen, P., Giehl, K., Nyengaard, J.R., Teng, K., Lioubinski, O., Sjoegaard, S.S., Breiderhoff, T., Gotthardt, M., Lin, F., Eilers, A., Petersen, C.M., Lewin, G.R., Hempstead, B.L., Willnow, T.E. & Nykjaer, A. ( 2007 ) Roles for the pro‐neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat. Neurosci., 10, 1449 – 1457.en_US
dc.identifier.citedreferenceKaplan, D.R. & Miller, F.D. ( 1997 ) Signal transduction by the neurotrophin receptors. Curr. Opin. Cell Biol., 9, 213 – 221.en_US
dc.identifier.citedreferenceKoornneef, A., van Logtenstein, R., Timmermans, E., Pisas, L., Blits, B., Abad, X., Fortes, P., Petry, H., Konstantinova, P. & Ritsema, T. ( 2011 ) AAV‐mediated in vivo knockdown of luciferase using combinatorial RNAi and U1i. Gene Ther., 18, 929 – 935.en_US
dc.identifier.citedreferenceKozak, R., Martinez, V., Young, D., Brown, H., Bruno, J.P. & Sarter, M. ( 2007 ) Toward a neuro‐cognitive animal model of the cognitive symptoms of schizophrenia: disruption of cortical cholinergic neurotransmission following repeated amphetamine exposure in attentional task‐performing, but not non‐performing, rats. Neuropsychopharmacol., 32, 2074 – 2086.en_US
dc.identifier.citedreferenceLi, Y., Holtzman, D.M., Kromer, L.F., Kaplan, D.R., Chua‐Couzens, J., Clary, D.O., Knüsel, B. & Mobley, W.C. ( 1995 ) Regulation of TrkA and ChAT expression in developing rat basal forebrain: evidence that both exogenous and endogenous NGF regulate differentiation of cholinergic neurons. J. Neurosci., 15, 2888 – 2905.en_US
dc.identifier.citedreferenceLuck, S.J., Ford, J.M., Sarter, M. & Lustig, C. ( 2012 ) CNTRICS final biomarker selection: control of attention. Schizophr. Bull., 38, 53 – 61.en_US
dc.identifier.citedreferenceLuther, J.A. & Birren, S.J. ( 2009 ) p75 and TrkA signaling regulates sympathetic neuronal firing patterns via differential modulation of voltage‐gated currents. J. Neurosci., 29, 5411 – 5424.en_US
dc.identifier.citedreferenceMadziar, B., Shah, S., Brock, M., Burke, R., Lopez‐Coviella, I., Nickel, A.C., Cakal, E.B., Blusztajn, J.K. & Berse, B. ( 2008 ) Nerve growth factor regulates the expression of the cholinergic locus and the high‐affinity choline transporter via the Akt/PKB signaling pathway. J. Neurochem., 107, 1284 – 1293.en_US
dc.identifier.citedreferenceMcGaughy, J., Kaiser, T. & Sarter, M. ( 1996 ) Behavioral vigilance following infusions of 192 IgG‐saporin into the basal forebrain: selectivity of the behavioral impairment and relation to cortical AChE‐positive fiber density. Behav. Neurosci., 110, 247 – 265.en_US
dc.identifier.citedreferenceMesulam, M. ( 2004 ) The cholinergic lesion of Alzheimer's disease: pivotal factor or side show? Learn. Memory, 11, 43 – 49.en_US
dc.identifier.citedreferenceMesulam, M., Shaw, P., Mash, D. & Weintraub, S. ( 2004 ) Cholinergic nucleus basalis tauopathy emerges early in the aging‐MCI‐AD continuum. Ann. Neurol., 55, 815 – 828.en_US
dc.identifier.citedreferenceMobley, W.C., Rutkowski, J.L., Tennekoon, G.I., Gemski, J., Buchanan, K. & Johnston, M.V. ( 1986 ) Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurons. Brain Res., 387, 53 – 62.en_US
dc.identifier.citedreferenceMufson, E.J., Conner, J.M. & Kordower, J.H. ( 1995 ) Nerve growth factor in Alzheimer's disease: defective retrograde transport to nucleus basalis. Neuroreport, 6, 1063 – 1066.en_US
dc.identifier.citedreferenceMufson, E.J., Ma, S.Y., Cochran, E.J., Bennett, D.A., Beckett, L.A., Jaffar, S., Saragovi, H.U. & Kordower, J.H. ( 2000 ) Loss of nucleus basalis neurons containing trkA immunoreactivity in individuals with mild cognitive impairment and early Alzheimer's disease. J. Comp. Neurol., 427, 19 – 30.en_US
dc.identifier.citedreferenceMufson, E.J., Counts, S.E., Fahnestock, M. & Ginsberg, S.D. ( 2007 ) Cholinotrophic molecular substrates of mild cognitive impairment in the elderly. Curr. Alzheimer Res., 4, 340 – 350.en_US
dc.identifier.citedreferenceNistiar, F., Racz, O., Lukacinova, A., Hubkova, B., Novakova, J., Lovasova, E. & Sedlakova, E. ( 2012 ) Age dependency on some physiological and biochemical parameters of male Wistar rats in controlled environment. J. Environ. Sci. Health A. Tox. Hazard. Subst. Environ. Eng., 47, 1224 – 1233.en_US
dc.identifier.citedreferenceOda, Y. & Nakanishi, I. ( 2000 ) The distribution of cholinergic neurons in the human central nervous system. Histol. Histopathol., 15, 825 – 834.en_US
dc.identifier.citedreferenceOosawa, H., Fujii, T. & Kawashima, K. ( 1999 ) Nerve growth factor increases the synthesis and release of acetylcholine and the expression of vesicular acetylcholine transporter in primary cultured rat embryonic septal cells. J. Neurosci. Res., 57, 381 – 387.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.