Show simple item record

A Versatile Multicomponent Assembly via β‐cyclodextrin Host–Guest Chemistry on Graphene for Biomedical Applications

dc.contributor.authorDong, Haiqingen_US
dc.contributor.authorLi, Yongyongen_US
dc.contributor.authorYu, Jinhaien_US
dc.contributor.authorSong, Yanyanen_US
dc.contributor.authorCai, Xiaojunen_US
dc.contributor.authorLiu, Jiaqiangen_US
dc.contributor.authorZhang, Jiamingen_US
dc.contributor.authorEwing, Rodney C.en_US
dc.contributor.authorShi, Dongluen_US
dc.date.accessioned2013-02-12T19:01:05Z
dc.date.available2014-04-02T15:08:08Zen_US
dc.date.issued2013-02-11en_US
dc.identifier.citationDong, Haiqing; Li, Yongyong; Yu, Jinhai; Song, Yanyan; Cai, Xiaojun; Liu, Jiaqiang; Zhang, Jiaming; Ewing, Rodney C.; Shi, Donglu (2013). "A Versatile Multicomponent Assembly via β‐cyclodextrin Host–Guest Chemistry on Graphene for Biomedical Applications." Small 9(3): 446-456. <http://hdl.handle.net/2027.42/96367>en_US
dc.identifier.issn1613-6810en_US
dc.identifier.issn1613-6829en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96367
dc.description.abstractA multi‐component nanosystem based on graphene and comprising individual cyclodextrins at its surface is assembled, creating hybrid structures enabling new and important functionalities: optical imaging, drug storage, and cell targeting for medical diagnosis and treatment. These nanohybrids are part of a universal system of interchangeable units, capable of mutilple functionalities. The surface components, made of individual β‐cyclodextrin molecules, are the “hosts” for functional units, which may be used as imaging agents, for anti‐cancer drug delivery, and as tumor‐specific ligands. Specifically, individual β‐cyclodextrin (β‐CD), with a known capability to host various molecules, is considered a module unit that is assembled onto graphene nanosheet (GNS). The cyclodextrin‐functionalized graphene nanosheet (GNS/β‐CD) enables “host–guest” chemistry between the nanohybrid and functional “payloads”. The structure, composition, and morphology of the graphene nanosheet hybrid have been investigated. The nanohybrid, GNS/β‐CD, is highly dispersive in various physiological solutions, reflecting the high biostability of cyclodextrin. Regarding the host capability, the nanohybrid is fully capable of selectively accommodating various biological and functional agents in a controlled fashion, including the antivirus drug amantadine, fluorescent dye [5(6)‐carboxyfluorescein], and Arg‐Gly‐Asp (RGD) peptide‐targeting ligands assisted by an adamantine linker. The loading ratio of 5(6)‐carboxyfluorescein is as high as 110% with a drug concentration of 0.45 mg mL −1 . The cyclic RGD‐functionalized nanohybrid exhibits remarkable targeting for HeLa cells. A unique carrier system is engineered from β‐cyclodextrin (β‐CD) as a unit module assembled in a multiple fashion onto graphene nanosheets (GNS). Such carrier is capable of accommodating a variety of functional or biological “guest” molecules, providing needed functionalities such as fluorescence for in vivo imaging, anticancer drug for therapy, or target moieties for cell targeting.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherGrapheneen_US
dc.subject.otherBiomedical Applicationsen_US
dc.subject.otherCyclodextrinsen_US
dc.subject.otherHost–Guesten_US
dc.titleA Versatile Multicomponent Assembly via β‐cyclodextrin Host–Guest Chemistry on Graphene for Biomedical Applicationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, USAen_US
dc.contributor.affiliationotherSchool of Electronic and Computing Systems, University of Cincinnati, Cincinnati, OH 45221, USAen_US
dc.contributor.affiliationotherThe Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200092, P.R. Chinaen_US
dc.contributor.affiliationotherThe Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200092, P.R. China.en_US
dc.identifier.pmid23047287en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96367/1/446_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96367/2/smll_201201003_sm_suppl.pdf
dc.identifier.doi10.1002/smll.201201003en_US
dc.identifier.sourceSmallen_US
dc.identifier.citedreferenceS. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.en_US
dc.identifier.citedreferenceX. M. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, H. J. Dai, Nano Res. 2008, 1, 203.en_US
dc.identifier.citedreferenceX. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G. L. Zhang, F. B. Zhang, Adv. Mater. 2008, 20, 4490.en_US
dc.identifier.citedreferenceY. Si, E. T. Samulski, Nano Lett. 2008, 8, 1679.en_US
dc.identifier.citedreferenceZ. Liu, J. T. Robinson, X. M. Sun, H. J. Dai, J. Am. Chem. Soc. 2008, 130, 10876.en_US
dc.identifier.citedreferenceH. Q. Dong, Z. L. Zhao, H. Y. Wen, Y. Y. Li, F. F. Guo, A. J. Shen, P. Frank, C. Lin, D. L. Shi, Sci. China Chem. 2010, 53, 2265.en_US
dc.identifier.citedreferenceK. Yang, J. M. Wan, S. A. Zhang, Y. J. Zhang, S. T. Lee, Z. A. Liu, ACS Nano 2011, 5, 516.en_US
dc.identifier.citedreferenceH. Q. Hu, J. H. Yu, Y.Y. Li, J. Zhao, H. Q. Dong, J. Biomed. Mater. Res. A 2011, 100A, 141.en_US
dc.identifier.citedreferenceV. K. Rana, M. C. Choi, J. Y. Kong, G. Y. Kim, M. J. Kim, S. H. Kim, S. Mishra, R. P. Singh, C. S. Ha, Macromol. Mater. Eng. 2011, 296, 131.en_US
dc.identifier.citedreferenceS. Zhang, K. Yang, L. Feng, Z. Liu, Carbon 2011, 49, 4040.en_US
dc.identifier.citedreferenceY. Guo, S. Guo, J. Ren, Y. Zhai, S. Dong, E. Wang, ACS Nano 2010, 4, 4001.en_US
dc.identifier.citedreferenceJ. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, X. Zhang, Chem. Mater. 2010, 22, 2213.en_US
dc.identifier.citedreferenceK. P. Liu, J. J. Zhang, F. F. Cheng, T. T. Zheng, C. M. Wang, J. J. Zhu, J. Mater. Chem. 2011, 21, 1 2034.en_US
dc.identifier.citedreferenceH. Y. Wen, C. Y. Dong, H. Q. Dong, A. J. Shen, W. J. Xia, X. J. Cai, Y. Y. Song, X. Q. Li, Y. Y. Li, D. Shi, Small 2012, 8, 760.en_US
dc.identifier.citedreferenceM. V. Rekharsky, Y. Inoue, Chem. Rev. 1998, 98, 1875.en_US
dc.identifier.citedreferenceA. Harada, A. Hashidzume, Y. Takashima, Adv. Polym. Sci. 2006, 201, 1.en_US
dc.identifier.citedreferenceH. Q. Dong, Y. Y. Li, L. Li, D. L. Shi, Prog. Chem. 2011, 23, 914.en_US
dc.identifier.citedreferenceH. Q. Dong, Y. Y. Li, H. Y. Wen, M. Xu, L. J. Liu, Z. Q. Li, F. F. Guo, D. Shi, Macromol. Rapid Commun. 2011, 32, 540.en_US
dc.identifier.citedreferenceC. Z. Zhu, S. J. Guo, Y. X. Fang, S. J. Dong, ACS Nano 2010, 4, 2429.en_US
dc.identifier.citedreferenceA. C. Ferrari, J. Robertson, Phys. Rev. B 2000, 61, 14095.en_US
dc.identifier.citedreferenceV. López, R. S. Sundaram, C. Gómez‐Navarro, D. Olea, M. Burghard, J. Gómez‐Herrero, F. Zamora, K. Kern, Adv. Mater. 2009, 21, 4683.en_US
dc.identifier.citedreferenceD. R. Dreyer, H. P. Jia, C. W. Bielawski, Angew. Chem. 2010, 122, 6965.en_US
dc.identifier.citedreferenceD. R. Dreyer, S. Murali, Y. Zhu, R. S. Ruoff, C. W. Bielawski, J. Mater. Chem. 2011, 21, 3443.en_US
dc.identifier.citedreferenceA. Buchsteiner, A. Lerf, J. Pieper, J. Phys. Chem. B 2006, 110, 22328.en_US
dc.identifier.citedreferenceS. Park, J. H. An, R. D. Piner, I. Jung, D. X. Yang, A. Velamakanni, S. T. Nguyen, R. S. Ruoff, Chem. Mater. 2008, 20, 6592.en_US
dc.identifier.citedreferenceN. W. S. Kam, Z. Liu, H. J. Dai, J. Am.Chem. Soc. 2005, 127, 12492.en_US
dc.identifier.citedreferenceK. H. Liao, Y. S. Lin, C. W. Macosko, C. L. Haynes, ACS Appl. Mater. Inter. 2011, 3, 2607.en_US
dc.identifier.citedreferenceY. Ohtani, T. Irie, K. Uekama, K. Fukenaga, J. Pitha, Eur. J. Biochem. 1989, 186, 17.en_US
dc.identifier.citedreferenceM. Oba, S. Fukushima, N. Kanayama, K. Aoyagi, N. Nishiyama, H. Koyama, K. Kataoka, Bioconj. Chem. 2007, 18, 1415.en_US
dc.identifier.citedreferenceL. Zhang, J. J. Liang, Y. Huang, Y. F. Ma, Y. Wang, Y. S. Chen, Carbon 2009, 47, 3365.en_US
dc.identifier.citedreferenceX. Zhang, J. Yin, C. Peng, W. Hu, Z. Zhu, W. Li, C. Fan, Q. Huang, Carbon 2011, 49, 986.en_US
dc.identifier.citedreferenceS. K. Singh, M. K. Singh, P. P. Kulkarni, V. K. Sonkar, J. J. A. Gracio, D. Dash, ACS Nano 2012, 6, 2731.en_US
dc.identifier.citedreferenceY. Guo, D. L. Shi, H. S. Cho, Z. Y. Dong, A. Kulkarni, G. M. Pauletti, W. Wang, J. Lian, W. Liu, L. Ren, Q. Q. Zhang, G. K. Liu, C. Huth, L. M. Wang, R. C. Ewing, Adv. Funct. Mater. 2008, 18, 2489.en_US
dc.identifier.citedreferenceD. L. Shi, N. M. Bedford, H. S. Cho, Small 2011, 7, 2549.en_US
dc.identifier.citedreferenceY. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, Y. H. Lin, Electroanal. 2010, 22, 1027.en_US
dc.identifier.citedreferenceY. Wang, Z. Li, J. Wang, J. Li, Y. Lin, Trends Biotechnol. 2011, 29, 205.en_US
dc.identifier.citedreferenceL. Feng, Z. Liu, Nanomedicine 2011, 6, 317.en_US
dc.identifier.citedreferenceL. M. Zhang, J. G. Xia, Q. H. Zhao, L. W. Liu, Z. J. Zhang, Small 2010, 6, 537.en_US
dc.identifier.citedreferenceX. Y. Yang, X. Y. Zhang, Y. F. Ma, Y. Huang, Y. S. Wang, Y. S. Chen, J. Mater. Chem. 2009, 19, 2710.en_US
dc.identifier.citedreferenceY. Yang, Y. M. Zhang, Y. Chen, D. Zhao, J. T. Chen, Y. Liu, Chem. Eur. J. 2012, 18, 4208.en_US
dc.identifier.citedreferenceK. J. Huang, D. J. Niu, J. Y. Sun, C. H. Han, Z. W. Wu, Y. L. Li, X. Q. Xiong, Colloid Surf. B 2011, 82, 543.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.