Show simple item record

In situ measures of methanotroph activity in upland soils: A reaction‐diffusion model and field observation of water stress

dc.contributor.authorvon Fischer, Joseph C.en_US
dc.contributor.authorButters, Gregoryen_US
dc.contributor.authorDuchateau, Paul C.en_US
dc.contributor.authorThelwell, Roger J.en_US
dc.contributor.authorSiller, Richarden_US
dc.date.accessioned2013-02-12T19:01:19Z
dc.date.available2013-02-12T19:01:19Z
dc.date.issued2009-03en_US
dc.identifier.citationvon Fischer, Joseph C.; Butters, Gregory; Duchateau, Paul C.; Thelwell, Roger J.; Siller, Richard (2009). "In situ measures of methanotroph activity in upland soils: A reaction‐diffusion model and field observation of water stress." Journal of Geophysical Research: Biogeosciences 114(G1): n/a-n/a. <http://hdl.handle.net/2027.42/96406>en_US
dc.identifier.issn0148-0227en_US
dc.identifier.issn2156-2202en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96406
dc.publisherClarendon Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherDiffusionen_US
dc.subject.otherSoilen_US
dc.subject.otherMethaneen_US
dc.titleIn situ measures of methanotroph activity in upland soils: A reaction‐diffusion model and field observation of water stressen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumAlso at Department of Biology, University of Michigan, Ann Arbor, Michigan, USA.en_US
dc.contributor.affiliationotherNow at Department of Mathematics and Statistics, James Madison University, Harrisonburg, Virginia, USA.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96406/1/jgrg418.pdf
dc.identifier.doi10.1029/2008JG000731en_US
dc.identifier.sourceJournal of Geophysical Research: Biogeosciencesen_US
dc.identifier.citedreferenceMosier, A., W. Parton, and S. Phongpan ( 1998 ), Long‐term large N and immediate small N addition effects on trace gas fluxes in the Colorado shortgrass steppe, Biol. Fertil. Soils, 28 ( 1 ), 44 – 50, doi: 10.1007/s003740050461.en_US
dc.identifier.citedreferenceHillel, D. ( 1982 ), Introduction to Soil Physics, 365 pp., Academic, San Diego, Calif.,en_US
dc.identifier.citedreferenceHorz, H. P., V. Rich, S. Avrahami, and B. J. M. Bohannan ( 2005 ), Methane‐oxidizing bacteria in a California upland grassland soil: Diversity and response to simulated global change, Appl. Environ. Microbiol., 71 ( 5 ), 2642 – 2652, doi: 10.1128/AEM.71.5.2642-2652.2005.en_US
dc.identifier.citedreferenceJost, W. ( 1960 ), Diffusion in Solids, Liquids and Gases, 558 pp., Academic, San Diego, Calif.,en_US
dc.identifier.citedreferenceJury, W. A., and R. Horton ( 2004 ), Soil Physics, 370 pp., John Wiley, Hoboken, N. J.,en_US
dc.identifier.citedreferenceKing, G. M. ( 1997 ), Responses of atmospheric methane consumption by soils to global climate change, Global Change Biol., 3, 351 – 362, doi: 10.1046/j.1365-2486.1997.00090.x.en_US
dc.identifier.citedreferenceKnief, C., A. Lipski, and P. Dunfield ( 2003 ), Diversity and activity of methanotrophic bacteria in different upland soils, Appl. Environ. Microbiol., 69 ( 11 ), 6703 – 6714, doi: 10.1128/AEM.69.11.6703-6714.2003.en_US
dc.identifier.citedreferenceLivingston, G. P., and G. L. Hutchinson ( 1995 ), Enclosure‐based measurement of trace gas exchange: Applications and sources of error, in Biogenic Trace Gases: Measuring Emissions From Soil and Water, edited by P. A. Matson, and R. C. Hariss, 394 pp., Blackwell Sci. Ltd., Cambridge, UK.en_US
dc.identifier.citedreferenceMadsen, E. L. ( 1998 ), Epistemology of environmental microbiology, Environ. Sci. Technol., 32, 429 – 439, doi: 10.1021/es970551y.en_US
dc.identifier.citedreferenceMillington, R. J., and J. P. Quirk ( 1961 ), Permeability of porous solids, Trans. Faraday Soc., 57, 1200 – 1207, doi: 10.1039/tf9615701200.en_US
dc.identifier.citedreferenceMosier, A. R., L. K. Klemedtsson, R. A. Sommerfeld, and R. C. Musselman ( 1993 ), Methane and nitrous oxide flux in a Wyoming subalpine meadow, Global Biogeochem. Cycles, 7 ( 4 ), 771 – 784, doi: 10.1029/93GB02561.en_US
dc.identifier.citedreferenceMosier, A. R., W. J. Parton, D. W. Valentine, D. S. Ojima, D. S. Schimel, and J. A. Delgado ( 1996 ), CH 4 and N 2 O fluxes in the Colorado shortgrass steppe: 1. Impact of landscape and nitrogen addition, Global Biogeochem. Cycles, 10 ( 3 ), 387 – 399, doi: 10.1029/96GB01454.en_US
dc.identifier.citedreferenceMosier, A., W. Parton, D. Valentine, D. Ojima, D. Schimel, and O. Heinemeyer ( 1997 ), CH 4 and N 2 O fluxes in the Colorado shortgrass steppe: 2. Long‐term impact of land use change, Global Biogeochem. Cycles, 11 ( 1 ), 29 – 42, doi: 10.1029/96GB03612.en_US
dc.identifier.citedreferenceMosier, A. R., J. A. Morgan, J. Y. King, D. LeCain, and D. G. Milchunas ( 2002 ), Soil‐atmosphere exchange of CH 4, CO 2, NO x, and N 2 O in the Colorado shortgrass steppe under elevated CO 2, Plant Soil, 240 ( 2 ), 201 – 211, doi: 10.1023/A:1015783801324.en_US
dc.identifier.citedreferenceRadajewski, S., G. Webstera, D. Reayb, S. Morris, P. Ineson, D. Nedwell, J. Prosser, and J. Murrell ( 2002 ), Identification of active methylotroph populations in an acidic forest soil by stable‐isotope probing, Microbiology, 148 ( 8 ), 2331 – 2342.en_US
dc.identifier.citedreferenceReay, D. S., D. B. Nedwell, and N. McNamara ( 2001 ), Physical determinants of methane oxidation capacity in a temperate soil, Water Air Soil Pollut. Focus, 1 ( 5 ), 401 – 414, doi: 10.1023/A:1013121010356.en_US
dc.identifier.citedreferenceRolston, D. E., R. D. Glauz, G. L. Grundmann, and D. T. Louie ( 1991 ), Evaluation of an in situ method for measurement of gas diffusivity in surface soils, Soil Sci. Soc. Am. J., 55, 1536 – 1542.en_US
dc.identifier.citedreferenceRoslev, P., N. Iversen, and K. Henriksen ( 1997 ), Oxidation and assimilation of atmospheric methane by soil methane oxidizers, Appl. Environ. Microbiol., 63 ( 3 ), 874 – 880.en_US
dc.identifier.citedreferenceSchimel, J. P. ( 2001 ), Biogeochemical cycles: Implicit vs. explicit microbiology, in Global Biogeochemical Cycles in the Climate System, edited by E. D. Schultze et al., pp. 177 – 183, Academic, San Diego, Calif.,en_US
dc.identifier.citedreferenceSimunek, J., D. Jacques, M. T. van Genuchten, and D. Mallants ( 2006 ), Multicomponent geochemical transport modeling using Hydrus‐1D and HP1, J. Am. Water Resour. Assoc., 42 ( 6 ), 1537 – 1547, doi: 10.1111/j.1752-1688.2006.tb06019.x.en_US
dc.identifier.citedreferenceSmith, K. A., T. Ball, F. Conen, K. E. Dobbie, J. Massheder, and A. Rey ( 2003 ), Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes, Eur. J. Soil Sci., 54 ( 4 ), 779 – 791, doi: 10.1046/j.1351-0754.2003.0567.x.en_US
dc.identifier.citedreferenceSnover, A. K., and P. D. Quay ( 2000 ), Hydrogen and carbon kinetic isotope effects during soil uptake of atmospheric methane, Global Biogeochem. Cycles, 14 ( 1 ), 25 – 39, doi: 10.1029/1999GB900089.en_US
dc.identifier.citedreferencevon Fischer, J. C., and L. O. Hedin ( 2002 ), Separating methane production and consumption with a field‐based isotope pool dilution technique, Global Biogeochem. Cycles, 16 ( 3 ), 1034, doi: 10.1029/2001GB001448.en_US
dc.identifier.citedreferenceBall, B. C., K. A. Smith, L. Klemedtsson, R. Brumme, B. K. Sitaula, S. Hansen, A. Prieme, J. MacDonald, and G. W. Horgan ( 1997 ), The influence of soil gas transport properties on methane oxidation in a selection of northern European soils, J. Geophys. Res., 102 ( D19 ), 23,309 – 23,317, doi: 10.1029/97JD01663.en_US
dc.identifier.citedreferenceBender, M., and R. Conrad ( 1992 ), Kinetics of CH 4 oxidation in oxic soils exposed to ambient air or high CH 4 mixing ratios, FEMS Microbiol. Ecol., 101, 261 – 270.en_US
dc.identifier.citedreferenceCarslaw, H. S., and J. C. Jaeger ( 1959 ), Conduction of Heat in Solids, 2nd ed., 510 pp., Clarendon Press, Oxford.en_US
dc.identifier.citedreferenceConrad, R. ( 1999 ), Soil microorganisms oxidizing atmospheric trace gases, Indian J. Microbiol., 39, 193 – 203.en_US
dc.identifier.citedreferenceDunfield, P., and R. Conrad ( 2000 ), Starvation alters the apparent half‐saturation constant for methane in the type II methanotroph methylocystis strain LR1, Appl. Environ. Microbiol., 66 ( 9 ), 4136 – 4138, doi: 10.1128/AEM.66.9.4136-4138.en_US
dc.identifier.citedreferenceEpstein, H. E., I. C. Burke, A. R. Mosier, and G. L. Hutchinson ( 1998 ), Plant functional type effects on trace gas fluxes in the shortgrass steppe, Biogeochemistry, 42 ( 1–2 ), 145 – 168, doi: 10.1023/A:1005959001235.en_US
dc.identifier.citedreferenceFenchel, T., G. M. King, and T. H. Blackburn ( 1998 ), Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling, 307 pp., Academic, San Diego, Calif.,en_US
dc.identifier.citedreferenceGreen, J. L., B. J. M. Bohannan, and R. J. Whitaker ( 2008 ), Microbial biogeography: From taxonomy to traits, Science, 320 ( 5879 ), 1039 – 1043, doi: 10.1126/science.1153475.en_US
dc.identifier.citedreferenceGulledge, J., and J. Schimel ( 1998 a), Low‐concentration kinetics of atmospheric CH 4 oxidation in soil and mechanism of NH 4 + inhibition, Appl. Environ. Microbiol., 64 ( 11 ), 4291 – 4298.en_US
dc.identifier.citedreferenceGulledge, J., and J. P. Schimel ( 1998 b), Moisture control over atmospheric methane consumption and CO 2 production in diverse Alaskan soils, Soil Biol. Biochem., 30 ( 8–9 ), 1127 – 1132, doi: 10.1016/S0038-0717(97)00209-5.en_US
dc.identifier.citedreferenceHealy, R., R. Striegl, T. Russell, G. Hutchinson, and G. Livingston ( 1996 ), Numerical evaluation of static‐chamber measurements of soil–atmosphere gas exchange: Identification of physical processes, Soil Sci. Soc. Am. J., 60 ( 3 ), 740 – 747.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.