Show simple item record

Disturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate forest

dc.contributor.authorNave, L. E.en_US
dc.contributor.authorGough, C. M.en_US
dc.contributor.authorMaurer, K. D.en_US
dc.contributor.authorBohrer, G.en_US
dc.contributor.authorHardiman, B. S.en_US
dc.contributor.authorLe Moine, J.en_US
dc.contributor.authorMunoz, A. B.en_US
dc.contributor.authorNadelhoffer, K. J.en_US
dc.contributor.authorSparks, J. P.en_US
dc.contributor.authorStrahm, B. D.en_US
dc.contributor.authorVogel, C. S.en_US
dc.contributor.authorCurtis, P. S.en_US
dc.date.accessioned2013-02-12T19:01:22Z
dc.date.available2013-02-12T19:01:22Z
dc.date.issued2011-12en_US
dc.identifier.citationNave, L. E.; Gough, C. M.; Maurer, K. D.; Bohrer, G.; Hardiman, B. S.; Le Moine, J.; Munoz, A. B.; Nadelhoffer, K. J.; Sparks, J. P.; Strahm, B. D.; Vogel, C. S.; Curtis, P. S. (2011). "Disturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate forest." Journal of Geophysical Research: Biogeosciences 116(G4): n/a-n/a. <http://hdl.handle.net/2027.42/96419>en_US
dc.identifier.issn0148-0227en_US
dc.identifier.issn2156-2202en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96419
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherU.S. Dept. Agric., Forest Serviceen_US
dc.subject.otherDecouplingen_US
dc.subject.otherCarbon Storageen_US
dc.subject.otherDisturbanceen_US
dc.subject.otherForesten_US
dc.subject.otherNitrogen Retentionen_US
dc.subject.otherResilienceen_US
dc.titleDisturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate foresten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumAlso at University of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, Michigan, USA.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96419/1/jgrg864.pdf
dc.identifier.doi10.1029/2011JG001758en_US
dc.identifier.sourceJournal of Geophysical Research: Biogeosciencesen_US
dc.identifier.citedreferencePalik, B. J., and K. S. Pregitzer ( 1993 ), The vertical development of early successional forests in northern Michigan, USA, J. Ecol., 81, 271 – 285, doi: 10.2307/2261497.en_US
dc.identifier.citedreferenceNilsson, L. O., H. Wallander, E. Bååth, and U. Falkengren‐Grerup ( 2006 ), Soil N chemistry in oak forests along a nitrogen deposition gradient, Biogeochemistry, 80, 43 – 55, doi: 10.1007/s10533-005-6220-x.en_US
dc.identifier.citedreferenceNuckolls, A. E., N. Wurzburger, C. R. Ford, R. L. Hendrick, J. M. Vose, and B. D. Kloeppel ( 2009 ), Hemlock declines rapidly with hemlock woolly adelgid infestation: Impacts on the carbon cycle of southern Appalachian forests, Ecosystems N. Y, 12, 179 – 190, doi: 10.1007/s10021-008-9215-3.en_US
dc.identifier.citedreferenceOverpeck, J. T., D. Rind, and R. Goldberg ( 1990 ), Climate‐induced changes in forest disturbance and vegetation, Nature, 343, 51 – 53, doi: 10.1038/343051a0.en_US
dc.identifier.citedreferencePapale, D., and A. Valentini ( 2003 ), A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization, Global Change Biol., 9, 525 – 535, doi: 10.1046/j.1365-2486.2003.00609.x.en_US
dc.identifier.citedreferencePapale, D., et al. ( 2006 ), Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and uncertainty estimation, Biogeosciences, 3, 571 – 583, doi: 10.5194/bg-3-571-2006.en_US
dc.identifier.citedreferencePardo, L. H., H. F. Hemond, J. P. Montoya, T. J. Fahey, and T. G. Siccama ( 2002 ), Response of the natural abundance of 15 N in forest soils and foliage to high nitrate loss following clear‐cutting, Can. J. For. Res., 32, 1126 – 1136, doi: 10.1139/x02-041.en_US
dc.identifier.citedreferencePaul, K. I., P. J. Polglase, J. G. Nyakuengama, and P. K. Khanna ( 2002 ), Change in soil carbon following afforestation, For. Ecol. Manage., 168, 241 – 257, doi: 10.1016/S0378-1127(01)00740-X.en_US
dc.identifier.citedreferencePregitzer, K. S., and E. S. Euskirchen ( 2004 ), Carbon cycling and storage in world forests: Biome patterns related to forest age, Global Change Biol., 10, 2052 – 2077, doi: 10.1111/j.1365-2486.2004.00866.x.en_US
dc.identifier.citedreferenceReich, P. B., D. W. Peterson, D. A. Wedin, and K. Wrage ( 2001 ), Fire and vegetation effects on productivity and nitrogen cycling across a forest‐grassland continuum, Ecology, 82, 1703 – 1719, doi: 10.1890/0012-9658(2001)082[1703:FAVEOP]2.0.CO;2.en_US
dc.identifier.citedreferenceReichstein, M., et al. ( 2005 ), On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm, Global Change Biol., 11, 1424 – 1439, doi: 10.1111/j.1365-2486.2005.001002.x.en_US
dc.identifier.citedreferenceRussow, R., O. Spott, and C. F. Stange ( 2008 ), Evaluation of nitrate and ammonium as sources of NO and N 2 O emissions from black earth soils [Haplic Chernozem] based on 15 N field experiments, Soil Biol. Biochem., 40, 380 – 391, doi: 10.1016/j.soilbio.2007.08.020.en_US
dc.identifier.citedreferenceScharenbroch, B. C., and J. G. Bockheim ( 2008 ), The effects of gap disturbance on nitrogen cycling and retention in late‐successional northern hardwood‐hemlock forests, Biogeochemistry, 87, 231 – 245, doi: 10.1007/s10533-008-9180-0.en_US
dc.identifier.citedreferenceSchmid, H. P., H.‐B. Su, C. S. Vogel, and P. S. Curtis ( 2003 ), Ecosystem‐atmosphere exchange of carbon dioxide over a mixed hardwood forest in northern lower Michigan, J. Geophys. Res., 108 ( D14 ), 4417, doi: 10.1029/2002JD003011.en_US
dc.identifier.citedreferenceScott‐Denton, L. E., T. N. Rosenstiel, and R. K. Monson ( 2006 ), Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration, Global Change Biol., 12, 205 – 216, doi: 10.1111/j.1365-2486.2005.01064.x.en_US
dc.identifier.citedreferenceSmaill, S. J., P. W. Clinton, and R. B. Allen ( 2009 ), Inter‐specific variation in foliar nutritional responses to disturbance by small coupe harvesting varies with landscape position, For. Ecol. Manage., 258, 2382 – 2387, doi: 10.1016/j.foreco.2009.08.014.en_US
dc.identifier.citedreferenceSparks, J. P., and J. R. Ehleringer ( 1997 ), Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects, Oecologia, 109, 362 – 367, doi: 10.1007/s004420050094.en_US
dc.identifier.citedreferenceSprugel, D. G. ( 1984 ), Density, biomass, productivity, and nutrient‐cycling changes during stand development in wave‐regenerated balsam fir forests, Ecol. Monogr., 54, 165 – 186, doi: 10.2307/1942660.en_US
dc.identifier.citedreferenceStearns, F., and G. E. Likens ( 2002 ), One hundred years of recovery of a pine forest in northern Wisconsin, The Am. Midland Natural., 148, 2 – 19, doi: 10.1674/0003-0031(2002)148[0002:OHYORO]2.0.CO;2.en_US
dc.identifier.citedreferenceSullivan, B., T. E. Kolb, S. C. Hart, J. P. Kaye, S. Dore, and M. Montes‐Helu ( 2008 ), Thinning reduces soil carbon dioxide but not methane flux from southwestern USA ponderosa pine forests, For. Ecol. Manage., 255, 4047 – 4055, doi: 10.1016/j.foreco.2008.03.051.en_US
dc.identifier.citedreferenceSwank, W. T., J. M. Vose, and K. J. Elliott ( 2001 ), Long‐term hydrologic and water quality responses following commercial clearcutting of mixed hardwoods on a southern Appalachian catchment, For. Ecol. Manage., 143, 163 – 178, doi: 10.1016/S0378-1127(00)00515-6.en_US
dc.identifier.citedreferenceThornton, P. E., et al. ( 2002 ), Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests, Agric. For. Meteorol., 113, 185 – 222, doi: 10.1016/S0168-1923(02)00108-9.en_US
dc.identifier.citedreferenceTian, D.‐L., W.‐D. Yan, W.‐X. Kang, X.‐W. Deng, and G.‐J. Wang ( 2009 ), Influence of thinning on soil CO 2 efflux in Chinese fir plantations, Pedosphere, 19, 273 – 280, doi: 10.1016/S1002-0160(09)60118-1.en_US
dc.identifier.citedreferenceVitousek, P. M., and R. W. Howarth ( 1991 ), Nitrogen limitation on land and in the sea ‐ How can it occur? Biogeochemistry, 13, 87 – 115, doi: 10.1007/BF00002772.en_US
dc.identifier.citedreferenceWebb, T., and P. J. Bartlein ( 1992 ), Global changes during the last 3 million years: Climatic controls and biotic responses, Annu. Rev. Ecol. Syst., 23, 141 – 173, doi: 10.1146/annurev.es.23.110192.001041.en_US
dc.identifier.citedreferenceWestbrook, C. J., and K. J. Devito ( 2004 ), Gross nitrogen transformations in soils from uncut and cut boreal upland and peatland coniferous forest stands, Biogeochemistry, 68, 33 – 50, doi: 10.1023/B:BIOG.0000025739.04821.8e.en_US
dc.identifier.citedreferenceWirth, C., E.‐D. Schulze, B. Lühker, S. Grigoriev, M. Siry, G. Hardes, W. Ziegler, M. Backor, G. Bauer, and N. N. Vygodskaya ( 2002 ), Fire and site type effects on the long‐term carbon and nitrogen balance in pristine Siberian Scots pine forests, Plant Soil, 242, 41 – 63, doi: 10.1023/A:1020813505203.en_US
dc.identifier.citedreferenceWolter, P. T., and M. A. White ( 2002 ), Recent forest cover type transitions and landscape structural changes in northeast Minnesota, USA, Landscape Ecol., 17, 133 – 155, doi: 10.1023/A:1016522509857.en_US
dc.identifier.citedreferenceZak, D. R., G. E. Host, and K. S. Pregitzer ( 1989 ), Regional variability in nitrogen mineralization, nitrification, and overstory biomass in northern Lower Michigan, Can. J. For. Res., 19, 1521 – 1526, doi: 10.1139/x89-231.en_US
dc.identifier.citedreferenceZeller, B., J. Liu, N. Buchmann, and A. Richter ( 2008 ), Tree girdling increases soil N mineralisation in two spruce stands, Soil Biol. Biochem., 40, 1155 – 1166, doi: 10.1016/j.soilbio.2007.12.009.en_US
dc.identifier.citedreferenceZwieniecki, M. A., L. Hutyra, M. V. Thompson, and N. M. Holbrook ( 2000 ), Dynamic changes in petiole specific conductivity in red maple ( Acer rubrum L.), tulip tree ( Liriodendron tulipifera L.) and northern fox grape, ( Vitis labrusca L.), Plant Cell Environ., 23, 407 – 414, doi: 10.1046/j.1365-3040.2000.00554.x.en_US
dc.identifier.citedreferenceZwieniecki, M. A., P. J. Melcher, T. S. Field, and N. M. Holbrook ( 2004 ), A potential role for xylem‐phloem interactions in the hydraulic architecture of trees: Effects of phloem girdling on xylem hydraulic conductance, Tree Physiol., 24, 911 – 917, doi: 10.1093/treephys/24.8.911.en_US
dc.identifier.citedreferenceAber, J. D., S. V. Ollinger, C. T. Driscoll, G. E. Likens, R. T. Holmes, R. J. Freuder, and C. L. Goodale ( 2002 ), Inorganic nitrogen losses from a forested ecosystem in response to physical, chemical, biotic, and climatic perturbations, Ecosystems, 5, 648 – 658, doi: 10.1007/s10021-002-0203-2.en_US
dc.identifier.citedreferenceAhl, D. E., S. T. Gower, D. S. Mackay, S. N. Burrows, J. M. Norman, and G. R. Diak ( 2004 ), Heterogeneity of light use efficiency in a northern Wisconsin forest: Implications for modeling net primary production with remote sensing, Remote Sens. Environ., 93, 168 – 178, doi: 10.1016/j.rse.2004.07.003.en_US
dc.identifier.citedreferenceAllard, V., J. M. Ourcival, S. Rambal, R. Joffre, and A. Rocheteu ( 2008 ), Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern France, Global Change Biol., 14, 714 – 725, doi: 10.1111/j.1365-2486.2008.01539.x.en_US
dc.identifier.citedreferenceAmiro, B. D., et al. ( 2010 ), Ecosystem carbon dioxide fluxes after disturbance in forests of North America, J. Geophys. Res., 115, G00K02, doi: 10.1029/2010JG001390.en_US
dc.identifier.citedreferenceAsner, G. P., T. R. Seastedt, and A. R. Townsend ( 1997 ), The decoupling of terrestrial carbon and nitrogen cycles, BioScience, 47, 226 – 234, doi: 10.2307/1313076.en_US
dc.identifier.citedreferenceBirdsey, R., K. Pregitzer, and A. Lucier ( 2006 ), Forest carbon management in the United States: 1600–2100, J. Environ. Qual., 35, 1461 – 1469, doi: 10.2134/jeq2005.0162.en_US
dc.identifier.citedreferenceBoerner, R. E. J., J. Huang, and S. C. Hart ( 2008 ), Impacts of fire and fire surrogate treatments on ecosystem nitrogen storage patterns: Similarities and differences between forests of eastern and western North America, Can. J. For. Res., 38, 3056 – 3070, doi: 10.1139/X08-144.en_US
dc.identifier.citedreferenceBohrer, G., G. G. Katul, R. L. Walko, and R. Avissar ( 2009 ), Exploring the effects of microscale structural heterogeneity of forest canopies using large‐eddy simulations, Boundary Layer Meteorol., 132, 351 – 382, doi: 10.1007/s10546-009-9404-4.en_US
dc.identifier.citedreferenceBormann, F. H., and G. E. Likens ( 1979 ), Catastrophic disturbance and the steady‐state in northern hardwood forests, Am. Sci., 67, 660 – 669.en_US
dc.identifier.citedreferenceBurns, R. M., and B. H. Honkala (Eds.) ( 1990 ), Silvics of North America: 1. Conifers; 2. Hardwoods, U.S. Dept. Agric., Forest Service, Washington, D.C.en_US
dc.identifier.citedreferenceCaspersen, J. P., S. W. Pacala, J. C. Jenkins, G. C. Hurtt, P. R. Moorcroft, and R. A. Birdsey ( 2000 ), Contributions of land‐use history to carbon accumulation in U.S. forests, Science, 290, 1148 – 1151, doi: 10.1126/science.290.5494.1148.en_US
dc.identifier.citedreferenceChen, B. Z., T. A. Black, N. C. Coops, T. Hilker, J. A. Trofymow, and K. Morgenstern ( 2009 ), Assessing tower flux footprint climatology and scaling between remotely sensed and eddy covariance measurements, Boundary Layer Meteorol., 130, 137 – 167, doi: 10.1007/s10546-008-9339-1.en_US
dc.identifier.citedreferenceChertov, O., J. S. Bhatti, A. Komarov, A. Mikhailov, and S. Bykhovets ( 2009 ), Influence of climate change, fire and harvest on the carbon dynamics of black spruce in Central Canada, For. Ecol. Manage., 257, 941 – 950, doi: 10.1016/j.foreco.2008.10.038.en_US
dc.identifier.citedreferenceClark, K. L., N. Skowronski, and J. Hom ( 2010 ), Invasive insects impact forest carbon dynamics, Global Change Biol., 16, 88 – 101, doi: 10.1111/j.1365-2486.2009.01983.x.en_US
dc.identifier.citedreferenceCraine, J. M., et al. ( 2009 ), Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability, New Phytol., 183, 980 – 992, doi: 10.1111/j.1469-8137.2009.02917.x.en_US
dc.identifier.citedreferenceCurtis, P. S., C. S. Vogel, X. Z. Wang, K. S. Pregitzer, D. R. Zak, J. Lussenhop, M. Kubiske, and J. A. Teeri ( 2000 ), Gas exchange, leaf nitrogen, and growth efficiency of Populus tremuloides in a CO 2 ‐enriched atmosphere, Ecol. Appl., 10, 3 – 17.en_US
dc.identifier.citedreferenceCurtis, P. S., C. S. Vogel, C. M. Gough, H. P. Schmid, H.‐B. Su, and B. D. Bovard ( 2005 ), Respiratory carbon losses and the carbon‐use efficiency of a northern hardwood forest, 1999–2003, New Phytol., 167, 437 – 456, doi: 10.1111/j.1469-8137.2005.01438.x.en_US
dc.identifier.citedreferenceDavidson, E. A., P. A. Matson, P. M. Vitousek, R. Riley, K. Dunkin, G. Garcia‐Mendez, and J. M. Maass ( 1993 ), Processes regulating soil emissions of NO and N 2 O in a seasonally dry tropical forest, Ecology, 74, 130 – 139, doi: 10.2307/1939508.en_US
dc.identifier.citedreferenceDavis, M. B. ( 1989 ), Lags in vegetation response to greenhouse warming, Clim. Change, 15, 75 – 82, doi: 10.1007/BF00138846.en_US
dc.identifier.citedreferenceDavis, M. R., R. B. Allen, and P. W. Clinton ( 2003 ), Carbon storage along a stand development sequence in a New Zealand Nothofagus forest, For. Ecol. Manage., 177, 313 – 321, doi: 10.1016/S0378-1127(02)00333-X.en_US
dc.identifier.citedreferenceDetto, M., and G. G. Katul ( 2007 ), Simplified expressions for adjusting higher‐order turbulent statistics obtained from open path gas analyzers, Boundary Layer Meteorol., 122, 205 – 216, doi: 10.1007/s10546-006-9105-1.en_US
dc.identifier.citedreferenceDetto, M., N. Montaldo, J. D. Albertson, and G. Katul ( 2006 ), Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy,, Water Resour. Res., 42, W08419, doi: 10.1029/2005WR004693.en_US
dc.identifier.citedreferenceDore, S., T. E. Kolb, M. Montes‐Helu, S. E. Eckert, B. W. Sullivan, B. A. Hungate, J. P. Kaye, S. C. Hart, G. W. Koch, and A. Finkral ( 2010 ), Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning, Ecol. Appl., 20, 663 – 683, doi: 10.1890/09-0934.1.en_US
dc.identifier.citedreferenceDuursma, R. A., and A. Makela ( 2007 ), Summary models for light interception and light‐use efficiency of non‐homogeneous canopies, Tree Physiol., 27, 859 – 870.en_US
dc.identifier.citedreferenceFoster, D. R., D. Aber, J. M. Melillo, R. D. Bowden, and F. A. Bazzaz ( 1997 ), Forest response to disturbance and anthropogenic stress, BioScience, 47, 437 – 445, doi: 10.2307/1313059.en_US
dc.identifier.citedreferenceFrelich, L. E., and P. B. Reich ( 1995 ), Spatial patterns and succession in a Minnesota southern‐boreal forest, Ecol. Monogr., 65, 325 – 346, doi: 10.2307/2937063.en_US
dc.identifier.citedreferenceFrey, B., F. Hagedorn, and F. Giudici ( 2006 ), Effect of girdling on soil respiration and root composition in a sweet chestnut forest, For. Ecol. Manage., 225, 271 – 277, doi: 10.1016/j.foreco.2006.01.003.en_US
dc.identifier.citedreferenceGoodale, C. L., and J. D. Aber ( 2001 ), The long‐term effects of land‐use history on nitrogen cycling in northern hardwood forests, Ecol. Appl., 11, 253 – 267, doi: 10.1890/1051-0761(2001)011[0253:TLTEOL]2.0.CO;2.en_US
dc.identifier.citedreferenceGough, C. M., C. S. Vogel, K. H. Harrold, K. George, and P. S. Curtis ( 2007 ), The legacy of harvest and fire on ecosystem carbon storage in a north temperate forest, Global Change Biol., 13, 1935 – 1949, doi: 10.1111/j.1365-2486.2007.01406.x.en_US
dc.identifier.citedreferenceGough, C. M., C. S. Vogel, H. P. Schmid, H.‐B. Su, and P. S. Curtis ( 2008 ), Multi‐year convergence of biometric and meteorological estimates of forest carbon storage, Agric. For. Meteorol., 148, 158 – 170, doi: 10.1016/j.agrformet.2007.08.004.en_US
dc.identifier.citedreferenceGough, C. M., C. E. Flower, C. S. Vogel, D. Dragoni, and P. S. Curtis ( 2009 ), Whole‐ecosystem labile carbon production in a north temperate deciduous forest, Agric. For. Meteorol., 149, 1531 – 1540, doi: 10.1016/j.agrformet.2009.04.006.en_US
dc.identifier.citedreferenceGough, C. M., C. S. Vogel, B. Hardiman, and P. S. Curtis ( 2010 ), Wood net primary production resilience in an unmanaged forest transitioning from early to middle succession, For. Ecol. Manage., 260, 36 – 41, doi: 10.1016/j.foreco.2010.03.027.en_US
dc.identifier.citedreferenceGundersen, P., I. K. Schmidt, and K. Raulund‐Rasmussen ( 2006 ), Leaching of nitrate from temperate forests—Effects of air pollution and forest management, Environ. Rev., 14, 1 – 57, doi: 10.1139/a05-015.en_US
dc.identifier.citedreferenceHall, S. J., P. A. Matson, and P. M. Roth ( 1996 ), NOx emissions from soil: Implications for air quality modeling in agricultural regions, Annu. Rev. Energy Environ., 21, 311 – 346, doi: 10.1146/annurev.energy.21.1.311.en_US
dc.identifier.citedreferenceHancock, J. E., M. A. Arthur, K. C. Weathers, and G. M. Lovett ( 2008 ), Carbon cycling along a gradient of beech bark disease impact in the Catskill Mountains, New York, Can. J. For. Res. 38, 1267 – 1274, doi: 10.1139/X07-228.en_US
dc.identifier.citedreferenceHardiman, B., G. Bohrer, C. M. Gough, C. S. Vogel, and P. S. Curtis ( 2011 ), The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest, Ecology, 92, 1818 – 1827, doi: 10.1890/10-2192.1.en_US
dc.identifier.citedreferenceHendrick, R. L., and K. S. Pregitzer ( 1993 ), The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems, Can. J. For. Res. 23, 2507 – 2520, doi: 10.1139/x93-312.en_US
dc.identifier.citedreferenceHill, S. B., A. U. Mallik, and H. Y. H Chen ( 2005 ), Canopy gap disturbance and succession in trembling aspen dominated boreal forests in northeastern Ontario, Can. J. For. Res., 35, 1942 – 1951, doi: 10.1139/x05-126.en_US
dc.identifier.citedreferenceHobbie, S. E. ( 2005 ), Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition, Ecosystems, 8, 644 – 656, doi: 10.1007/s10021-003-0110-7.en_US
dc.identifier.citedreferenceHögberg, P. ( 1990 ), Forests losing large quantities of nitrogen have elevated 15 N: 14 N ratios, Oecologia, 84, 229 – 231.en_US
dc.identifier.citedreferenceHögberg, P., A. Nordgren, N. Buchmann, A. F. S. Taylor, A. Ekblad, M. N. Högberg, G. Nyberg, M. Ottosson‐Löfvenius, and D. J. Read ( 2001 ), Large‐scale forest girdling shows that current photosynthesis drives soil respiration, Nature, 411, 789 – 792, doi: 10.1038/35081058.en_US
dc.identifier.citedreferenceHollinger, D. Y., and A. D. Richardson ( 2005 ), Uncertainty in eddy covariance measurements and its application to physiological models, Tree Physiol., 25, 873 – 885.en_US
dc.identifier.citedreferenceHolmes, W. E., and D. R. Zak ( 1999 ), Soil microbial control of nitrogen loss following clearcut harvest in northern hardwood ecosystems, Ecol. Appl., 9, 202 – 215, doi: 10.1890/1051-0761(1999)009[0202:SMCONL]2.0.CO;2.en_US
dc.identifier.citedreferenceHoule, D., L. Duchesne, and R. Boutin ( 2009 ), Effects of a spruce budworm outbreak on element export below the rooting zone: A case study for a balsam fir forest, Ann. For. Sci., 66, 707, doi: 10.1051/forest/2009057.en_US
dc.identifier.citedreferenceHsieh, C. I., M. Siqueira, G. Katul, and C.‐R. Chu ( 2003 ), Predicting scalar source‐sink and flux distributions within a forest canopy using a 2‐D Lagrangian stochastic dispersion model, Boundary Layer Meteorol., 109, 113 – 138, doi: 10.1023/A:1025461906331.en_US
dc.identifier.citedreferenceIshii, H. T., S. Tanabe, and T. Hiura ( 2004 ), Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperature forest ecosystems, For. Sci., 50 ( 3 ), 342 – 355.en_US
dc.identifier.citedreferenceJandl, R., M. Lindner, L. Vesterdal, B. Bauwens, R. Baritz, F. Hagedorn, D. W. Johnson, K. Minkkinen, and K. A. Byrne ( 2007 ), How strongly can forest management influence carbon sequestration? Geoderma, 137, 253 – 268, doi: 10.1016/j.geoderma.2006.09.003.en_US
dc.identifier.citedreferenceJohnson, D. W., and N. T. Edwards ( 1979 ), Effects of stem girdling on biogeochemical cycles within a mixed deciduous forest in eastern Tennessee. 2. Soil‐nitrogen mineralization and nitrification rates, Oecologia, 40, 259 – 271, doi: 10.1007/BF00345323.en_US
dc.identifier.citedreferenceJohnson, M. G., D. T. Tingey, D. L. Phillips, and M. J. Storm ( 2001 ), Advancing fine root research with minirhizotrons, Environ. Exp. Bot., 45, 263 – 289, doi: 10.1016/S0098-8472(01)00077-6.en_US
dc.identifier.citedreferenceJones, M. G. K., W. H. Outlaw, and O. H. Lowry ( 1977 ), Enzymic assay of 10 −7 to 10 −14 moles of sucrose in plant‐tissues, Plant Physiol., 60, 379 – 383, doi: 10.1104/pp.60.3.379.en_US
dc.identifier.citedreferenceKashian, D. M., W. H. Romme, D. B. Tinker, M. G. Turner, and M. G. Ryan ( 2006 ), Carbon storage on landscapes with stand‐replacing fires, BioScience, 56, 598 – 606, doi: 10.1641/0006-3568(2006)56[598:CSOLWS]2.0.CO;2.en_US
dc.identifier.citedreferenceKaye, J. P., S. C. Hart, P. Z. Fulé, W. W. Covington, M. M. Moore, and M. W. Kaye ( 2005 ), Initial carbon, nitrogen, and phosphorus fluxes following ponderosa pine restoration treatments, Ecol. Appl., 15, 1581 – 1593, doi: 10.1890/04-0868.en_US
dc.identifier.citedreferenceKinney, K. K., R. L. Lindroth, S. M. Jung, and E. V. Nordheim, ( 1997 ), Effects of CO 2 and NO 3 − availability on deciduous trees: Phytochemistry and insect performance, Ecology, 78, 215 – 230.en_US
dc.identifier.citedreferenceKneeshaw, D. D., and Y. Bergeron ( 1998 ), Canopy gap characteristics and tree replacement in the southeastern boreal forest, Ecology, 79, 783 – 794, doi: 10.1890/0012-9658(1998)079[0783:CGCATR]2.0.CO;2.en_US
dc.identifier.citedreferenceKnohl, A., O. Kolle, T. Y. Minayeva, I. M. Milyukova, N. N. Vygodskaya, T. Foken, and E.‐D. Schulze ( 2002 ), Carbon dioxide exchange of a Russian boreal forest after disturbance by wind throw, Global Change Biol., 8, 231 – 246, doi: 10.1046/j.1365-2486.2002.00475.x.en_US
dc.identifier.citedreferenceLaw, B. E., P. E. Thornton, J. Irvine, P. M. Anthoni, and S. Van Tuyl ( 2001 ), Carbon storage and fluxes in ponderosa pine forests at different developmental stages, Global Change Biol., 7, 755 – 777, doi: 10.1046/j.1354-1013.2001.00439.x.en_US
dc.identifier.citedreferenceLeDuc, S. D., and D. E. Rothstein ( 2007 ), Initial recovery of soil carbon and nitrogen pools and dynamics following disturbance in jack pine forests: A comparison of wildfire and clearcut harvesting, Soil Biol. Biochem., 39, 2865 – 2876, doi: 10.1016/j.soilbio.2007.05.029.en_US
dc.identifier.citedreferenceLikens, G. E., F. H. Bormann, N. M. Johnson, D. W. Fisher, and R. S. Pierce ( 1970 ), Effects of forest cutting and herbicide treatment on nutrient budgets in Hubbard Brook Watershed‐Ecosystem, Ecol. Monogr., 40, 23 – 47, doi: 10.2307/1942440.en_US
dc.identifier.citedreferenceLindahl, B. D., W. de Boer, and R. D. Finlay ( 2010 ), Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi, ISME J., 4, 872 – 881, doi: 10.1038/ismej.2010.19.en_US
dc.identifier.citedreferenceLindroth, A., F. Lagergren, A. Grelle, L. Klemedtsson, O. Langvall, P. Weslien, and J. Tuulik ( 2009 ), Storms can cause Europe‐wide reduction in forest carbon sink, Global Change Biol., 15, 346 – 355, doi: 10.1111/j.1365-2486.2008.01719.x.en_US
dc.identifier.citedreferenceLuyssaert, S., E.‐D. Schulze, A. Börner, A. Knohl, D. Hessenmöller, B. E. Law, P. Ciais, and J. Grace ( 2008 ), Old‐growth forests as global carbon sinks, Nature, 455, 213 – 215, doi: 10.1038/nature07276.en_US
dc.identifier.citedreferenceMagnani, F., et al. ( 2007 ), The human footprint in the carbon cycle of temperate and boreal forests, Nature, 447, 849 – 851, doi: 10.1038/nature05847.en_US
dc.identifier.citedreferenceMartin, J. L., S. Gower, J. Plaut, and B. Holmes ( 2005 ), Carbon pools in a boreal mixed wood logging chronosequence, Global Change Biol., 11, 1883 – 1894, doi: 10.1111/j.1365-2486.2005.01019.x.en_US
dc.identifier.citedreferenceMartin, T. A., and E. J. Jokela ( 2004 ), Developmental patterns and nutrition impact radiation use efficiency components in southern pine stands, Ecol. Appl., 14, 1839 – 1854, doi: 10.1890/03-5262.en_US
dc.identifier.citedreferenceMcCalley, C. K., and J. P. Sparks ( 2008 ), Controls over nitric oxide and ammonia emissions from Mojave Desert soils, Oecologia, 156, 871 – 881, doi: 10.1007/s00442-008-1031-0.en_US
dc.identifier.citedreferenceMcDowell, W. H., A. H. Magill, J. A. Aitkenhead‐Peterson, J. D. Aber, J. L. Merriam, and S. S. Kaushal ( 2004 ), Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution, For. Ecol. Manage., 196, 29 – 41, doi: 10.1016/j.foreco.2004.03.010.en_US
dc.identifier.citedreferenceMisson, L., J. Tang, M. Xu, M. McKay, and A. Goldstein ( 2005 ), Influences of recovery from clear‐cut, climate variability, and thinning on the carbon balance of a young ponderosa pine plantation, Agric. For. Meteorol., 130, 207 – 222, doi: 10.1016/j.agrformet.2005.04.001.en_US
dc.identifier.citedreferenceNadelhoffer, K. J., J. D. Aber, and J. M. Melillo ( 1985 ), Fine roots, net primary production, and soil‐nitrogen availability: A new hypothesis, Ecology, 66, 1377 – 1390, doi: 10.2307/1939190.en_US
dc.identifier.citedreferenceNave, L. E., C. S. Vogel, C. M. Gough, and P. S. Curtis ( 2009 ), Contribution of atmospheric nitrogen deposition to net primary productivity in a northern hardwood forest, Can. J. For. Res., 39, 1108 – 1118, doi: 10.1139/X09-038.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.