Show simple item record

Lumbar Vertebral Body Bone Microstructural Scaling in Small to Medium‐Sized Strepsirhines

dc.contributor.authorFajardo, Roberto J.en_US
dc.contributor.authorDesilva, Jeremy M.en_US
dc.contributor.authorManoharan, Rajaram K.en_US
dc.contributor.authorSchmitz, James E.en_US
dc.contributor.authorMaclatchy, Laura M.en_US
dc.contributor.authorBouxsein, Mary L.en_US
dc.date.accessioned2013-02-12T19:01:25Z
dc.date.available2014-04-02T15:08:08Zen_US
dc.date.issued2013-02en_US
dc.identifier.citationFajardo, Roberto J.; Desilva, Jeremy M.; Manoharan, Rajaram K.; Schmitz, James E.; Maclatchy, Laura M.; Bouxsein, Mary L. (2013). "Lumbar Vertebral Body Bone Microstructural Scaling in Small to Medium‐Sized Strepsirhines." The Anatomical Record 296(2): 210-226. <http://hdl.handle.net/2027.42/96425>en_US
dc.identifier.issn1932-8486en_US
dc.identifier.issn1932-8494en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96425
dc.description.abstractBone mass, architecture, and tissue mineral density contribute to bone strength. As body mass (BM) increases any one or combination of these properties could change to maintain structural integrity. To better understand the structural origins of vertebral fragility and gain insight into the mechanisms that govern bone adaptation, we conducted an integrative analysis of bone mass and microarchitecture in the last lumbar vertebral body from nine strepsirhine species, ranging in size from 42 g ( Microcebus rufus ) to 2,440 g ( Eulemur macaco ). Bone mass and architecture were assessed via µCT for the whole body and spherical volumes of interest (VOI). Allometric equations were estimated and compared with predictions for geometric scaling, assuming axial compression as the dominant loading regime. Bone mass, microarchitectural, and vertebral body geometric variables predominantly scaled isometrically. Among structural variables, the degree of anisotropy (Tb.DA) was the only parameter independent of BM and other trabecular architectural variables. Tb.DA was related to positional behavior. Orthograde primates had higher average Tb.DA (1.60) and more craniocaudally oriented trabeculae while lorisines had the lowest Tb.DA (1.25), as well as variably oriented trabeculae. Finally, lorisines had the highest ratio of trabecular bone volume to cortical shell volume (∼3x) and while there appears to be flexibility in this ratio, the total bone volume (trabecular + cortical) scales isometrically (BM 1.23 , r 2 = 0.93) and appears tightly constrained. The common pattern of isometry in our measurements leaves open the question of how vertebral bodies in strepsirhine species compensate for increased BM. Anat Rec, 2013. © 2013 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherCortical Boneen_US
dc.subject.otherMicroCTen_US
dc.subject.otherTrabecular Boneen_US
dc.subject.otherAllometryen_US
dc.subject.otherLumbar Vertebraen_US
dc.subject.otherStrepsirhineen_US
dc.titleLumbar Vertebral Body Bone Microstructural Scaling in Small to Medium‐Sized Strepsirhinesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Anthropology, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherUniversity of Texas Health Science Center at San Antonio, Department of Orthopaedics, MSC 7774, 7703 Floyd Curl Dr., San Antonio, TX 78213en_US
dc.contributor.affiliationotherCenter for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusettsen_US
dc.contributor.affiliationotherDepartment of Anthropology, Boston University, Boston, Massachusettsen_US
dc.contributor.affiliationotherDepartment of Orthopaedics, University of Texas Health Science Center at San Antonio, San Antonio, Texasen_US
dc.identifier.pmid23355518en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96425/1/22632_ftp.pdf
dc.identifier.doi10.1002/ar.22632en_US
dc.identifier.sourceThe Anatomical Recorden_US
dc.identifier.citedreferenceSeiffert ER. 2007. Early evolution and biogeography of lorisiform strepsirrhines. Am J Primatol 69: 27 – 35.en_US
dc.identifier.citedreferenceRidler TW, Calvard S. 1978. Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybernet SMC 8: 630 – 632.en_US
dc.identifier.citedreferenceRockoff SD, Sweet E, Bleustein J. 1969. The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3: 163 – 175.en_US
dc.identifier.citedreferenceRüegsegger P, Koller B, Müller R. 1996. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Res 58: 24 – 29.en_US
dc.identifier.citedreferenceRyan TM, Ketcham RA. 2002. The three‐dimensional structure of trabecular bone in the femoral head of strepsirhine primates. J Hum Evol 43: 1 – 26.en_US
dc.identifier.citedreferenceRyan TM, Krovitz GE. 2006. Trabecular bone ontogeny in the human proximal femur. J Hum Evol 51: 591 – 602.en_US
dc.identifier.citedreferenceRyan TM, Shaw CN. 2012. Unique suites of trabecular bone features characterize locomotor behavior in human and non‐human anthropoid primates. PloS one 7: e41037.en_US
dc.identifier.citedreferenceRyan TM, Walker A. 2010. Trabecular bone structure in the humeral and femoral heads of anthropoid primates. Anat Rec (Hoboken ) 293: 719 – 729.en_US
dc.identifier.citedreferenceSeiffert ER, Simons EL, Attia Y. 2003. Fossil evidence for an ancient divergence of lorises and galagos. Nature 422: 421 – 424.en_US
dc.identifier.citedreferenceShapiro LJ. 2007. Morphological and functional differentiation in the lumbar spine of lorisids and galagids. Am J Primatol 69: 86 – 102.en_US
dc.identifier.citedreferenceShapiro LJ, Seiffert CVM, Godfrey LR, Jungers WL, Simons EL, Randria GFN. 2005. Morphometric analysis of lumbar vertebrae in extinct Malagasy strepsirrhines. Am J Phys Anthropol 128: 823 – 839.en_US
dc.identifier.citedreferenceShapiro LJ, Simons CVM. 2002. Functional aspects of strepsirrhine lumbar vertebral bodies and spinous processes. J Hum Evol 42: 753 – 783.en_US
dc.identifier.citedreferenceShaw CN, Ryan TM. 2012. Does skeletal anatomy reflect adaptation to locomotor patterns? Cortical and trabecular architecture in human and nonhuman anthropoids. Am J Phys Anthropol 147: 187 – 200.en_US
dc.identifier.citedreferenceSilva MJ, Keaveny TM, Hayes WC. 1997. Load sharing between the shell and centrum in the lumbar vertebral body. Spine 22: 140 – 150.en_US
dc.identifier.citedreferenceSmit TH. 2002. The use of a quadruped as an in vivo model for the study of the spine ‐ biomechanical considerations. Eur Spine J 11: 137 – 144.en_US
dc.identifier.citedreferenceSmith RJ, Cheverud JM. 2002. Scaling of sexual dimorphism in body mass: a phylogenetic analysis of Rensch's rule in primates. Int J Primatol 23: 1095 – 1135.en_US
dc.identifier.citedreferenceSmith RJ, Jungers WL. 1997. Body mass in comparative primatology. J Hum Evol 32: 523 – 559.en_US
dc.identifier.citedreferenceSwartz SM, Parker A, Huo C. 1998. Theoretical and empirical scaling patterns and topological homology in bone trabeculae. J Exp Biol 201: 573 – 590.en_US
dc.identifier.citedreferenceTrussell HJ. 1979. Comments on “picture thresholding using an iterative selection method”. IEEE Trans Syst Man Cybernet SMC 9: 311.en_US
dc.identifier.citedreferenceTurner CH. 1992. On Wolff's Law of trabecular architecture. J Biomech 25: 1 – 9.en_US
dc.identifier.citedreferenceTurner CH, Cowin SC, Rho JY, Ashman RB, Rice JC. 1990. The fabric dependence of the orthotropic elastic constants of cancellous bone. J Biomech 23: 549 – 561.en_US
dc.identifier.citedreferenceUnderwood EE. 1970. Quantitative stereology. Reading, MA: Addison‐Wesley Publishing Co.en_US
dc.identifier.citedreferenceWallace IJ, Tommasini SM, Judex S, Garland T, Jr., Demes B. 2012. Genetic variations and physical activity as determinants of limb bone morphology: an experimental approach using a mouse model. Am J Phys Anthropol 148: 24 – 35.en_US
dc.identifier.citedreferenceWang Q, Ashley DW, Dechow PC. 2010. Regional, ontogenetic, and sex‐related variations in elastic properties of cortical bone in baboon mandibles. Am J Phys Anthropol 141: 526 – 549.en_US
dc.identifier.citedreferenceWarton DI, Weber NC. 2002. Common slope tests for bivariate errors‐in‐variables models. Biom J 44: 161 – 174.en_US
dc.identifier.citedreferenceWarton DI, Wright IJ, Falster DS, Westoby M. 2006. Bivariate line‐fitting methods for allometry. Biol Rev 81: 259 – 291en_US
dc.identifier.citedreferenceWeibel ER. 1979. Stereological methods. New York: Academic Press.en_US
dc.identifier.citedreferenceWeibel ER. 1980. Stereological methods. New York: Academic Press.en_US
dc.identifier.citedreferenceYoder AD, Yang Z. 2004. Divergence dates for Malagasy lemurs estimated from multiple gene loci: geological and evolutionary context. Mol Ecol 13: 757 – 773.en_US
dc.identifier.citedreferenceYoganandan N, Myklebust JB, Cusick JF, Wilson CR, Sances A. 1988. Functional biomechanics of the thoracolumbar vertebral cortex. Clin Biomech 3: 11 – 18.en_US
dc.identifier.citedreferenceZar JH. 1984. Biostatistical analysis. Englewood Cliffs, NJ: Prentice‐Hall.en_US
dc.identifier.citedreferenceBiggerman M, Brinckman P. 1995. Biomechanics of osteoporotic fractures. In: Genant HK, Jergas M, van Kujik C, editors. Vertebral fracture in osteoporosis. San Francisco: Radiology Research and Education Foundation. p 21 – 40.en_US
dc.identifier.citedreferenceBouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. 2010. Guidelines for assessment of bone microstructure in rodents using micro‐computed tomography. J Bone Miner Res 25: 1468 – 1486.en_US
dc.identifier.citedreferenceBouxsein ML, Myers KS, Shultz KL, Donahue LR, Rosen CJ, Beamer WG. 2005. Ovariectomy‐induced bone loss varies among inbred strains of mice. J Bone Miner Res 20: 1085 – 1092.en_US
dc.identifier.citedreferenceBuie HR, Moore CP, Boyd SK. 2008. Postpubertal architectural developmental patterns differ between the L3 vertebra and proximal tibia in three inbred strains of mice. J Bone Miner Res 23: 2048 – 2059.en_US
dc.identifier.citedreferenceChappard D, Retailleau‐Gaborit N, Legrand E, Basle MF, Audran M. 2005. Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res 20: 1177 – 1184.en_US
dc.identifier.citedreferenceChatterjee HJ, Ho SY, Barnes I, Groves C. 2009. Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evol Biol 9: 259.en_US
dc.identifier.citedreferenceChen H, Shoumura S, Emura S, Bunai Y. 2008. Regional variations of vertebral trabecular bone microstructure with age and gender. Osteoporos Int 19: 1473 – 1483.en_US
dc.identifier.citedreferenceCotter MM, Simpson SW, Latimer BM, Hernandez CJ. 2009. Trabecular microarchitecture of hominoid thoracic vertebrae. Anat Rec (Hoboken ) 292: 1098 – 1106.en_US
dc.identifier.citedreferenceCurrey JD. 2002. Bones: structure and mechanics. Princeton, NJ: Princeton University Press.en_US
dc.identifier.citedreferenceDeSilva JM, Devlin MJ. 2012. A comparative study of the trabecular bony architecture of the talus in humans, non‐human primates, and Australopithecus. J Hum Evol 63: 536 – 551.en_US
dc.identifier.citedreferenceDoube M, Klosowski MM, Wiktorowicz‐Conroy AM, Hutchinson JR, Shefelbine SJ. 2011. Trabecular bone scales allometrically in mammals and birds. Proc Biol Sci 278: 3067 – 3073.en_US
dc.identifier.citedreferenceEswaran SK, Gupta A, Adams MF, Keaveny TM. 2006. Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 21: 307 – 314.en_US
dc.identifier.citedreferenceFajardo RJ, Hernandez E, O'Connor PM. 2007a. Postcranial skeletal pneumaticity: a case study in the use of quantitative microCT to assess vertebral structure in birds. J Anat 211: 138 – 147.en_US
dc.identifier.citedreferenceFajardo RJ, Manoharan RK, Pearsall RS, Davies MV, Marvell T, Monnell TE, Ucran JA, Pearsall AE, Khanzode D, Kumar R, Underwood KW, Roberts B, Seehra J, Bouxsein ML. 2010. Treatment with a soluble receptor for activin improves bone mass and structure in the axial and appendicular skeleton of female cynomolgus macaques ( Macaca fascicularis ). Bone 46: 64 – 71.en_US
dc.identifier.citedreferenceFajardo RJ, Müller R. 2001. Three‐dimensional analysis of nonhuman primate trabecular architecture using micro‐computed tomography. Am J Phys Anthropol 115: 327 – 336.en_US
dc.identifier.citedreferenceFajardo RJ, Muller R, Ketcham RA, Colbert M. 2007b. Nonhuman anthropoid primate femoral neck trabecular architecture and its relationship to locomotor mode. Anat Rec 290: 422 – 436.en_US
dc.identifier.citedreferenceFields AJ, Eswaran SK, Jekir MG, Keaveny TM. 2009. Role of trabecular microarchitecture in whole‐vertebral body biomechanical behavior. J Bone Miner Res 24: 1523 – 1530.en_US
dc.identifier.citedreferenceGebo DL. 2011. Vertical clinging and leaping revisited: vertical support use as the ancestral condition of strepsirrhine primates. Am J Phys Anthropol 146: 323 – 335.en_US
dc.identifier.citedreferenceGlatt V, Canalis E, Stadmeyer L, Bouxsein ML. 2007. Age‐related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res 22: 1197 – 1207.en_US
dc.identifier.citedreferenceGodfrey L, Sutherland M, Boy D, Gomberg N. 1991. Scaling of limb joint surface areas in anthropoid primates and other mammals. J Zool 223: 603 – 625.en_US
dc.identifier.citedreferenceGong H, Zhang M, Yeung HY, Qin L. 2005. Regional variations in microstructural properties of vertebral trabeculae with aging. J Bone Miner Metabol 23: 174 – 180.en_US
dc.identifier.citedreferenceGosman JH, Ketcham RA. 2009. Patterns in ontogeny of human trabecular bone from SunWatch Village in the prehistoric Ohio Valley: general features of microarchitectural change. Am J Phys Anthropol 138: 318 – 332.en_US
dc.identifier.citedreferenceGriffin NL, D'Aout K, Ryan TM, Richmond BG, Ketcham RA, Postnov A. 2010. Comparative forefoot trabecular bone architecture in extant hominids. J Hum Evol 59: 202 – 213.en_US
dc.identifier.citedreferenceGuldberg RE, Ballock RT, Boyan BD, Duvall CL, Lin ASP, Nagaraja S, Oest M, Phillips J, Porter BD, Robertson G, Taylor WR. 2003. Analyzing bone, blood vessels, and biomaterials with microcomputed tomography. IEEE Eng Med Biol 22: 77 – 83.en_US
dc.identifier.citedreferenceHalloran BP, Ferguson VL, Simske SJ, Burghardt A, Venton LL, Majumdar S. 2002. Changes in bone structure and mass with advancing age in the male C57BL/6J mouse. J Bone Miner Res 17: 1044 – 1050.en_US
dc.identifier.citedreferenceHarrigan TP, Jasty M, Mann RW, Harris WH. 1988. Limitations of the continuum assumption in cancellous bone. J Biomech 21: 269 – 275.en_US
dc.identifier.citedreferenceHernandez CJ, Loomis DA, Cotter MM, Schifle AL, Anderson LC, Elsmore L, Kunos C, Latimer B. 2009. Biomechanical allometry in hominoid thoracic vertebrae. J Hum Evol 56: 462 – 470.en_US
dc.identifier.citedreferenceHildebrand T, Müller R, Laib A, Dequeker J, Rüegsegger P. 1999. Direct three‐dimensional morphometric analysis of human cancellous bone: a microstructural data from spine, femur, ilia crest, and calcaneus. J Bone Miner Res 14: 1167 – 1174.en_US
dc.identifier.citedreferenceHildebrand T, Ruegsegger P. 1997a. Quantification of bone microarchitecture with the structure model index. Comput Meth Biomech Biomed Eng 1: 15 – 24.en_US
dc.identifier.citedreferenceHildebrand T, Rüegsegger P. 1997b. A new method for the model‐independent assessment of thickness in three‐dimensional images. J Microsc 185: 67 – 75.en_US
dc.identifier.citedreferenceKetcham RA, Ryan TM. 2004. Quantification and visualization of anisotropy in trabecular bone. J Microsc 213: 158 – 171.en_US
dc.identifier.citedreferenceLaib A, Barou O, Vico L, Lafage‐Proust MH, Alexandre C, Rugsegger P. 2000. 3D micro‐computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis. Med Biol Eng Comput 38: 326 – 332.en_US
dc.identifier.citedreferenceLorenz M, Patwardhan A, Vanderby R, Jr. 1983. Load‐bearing characteristics of lumbar facets in normal and surgically altered spinal segments. Spine (Phila Pa 1976) 8: 122 – 130.en_US
dc.identifier.citedreferenceMacLatchy L, Müller R. 2002. A comparison of the femoral head and neck trabecular architecture of Galago and Perodicticus using micro‐computed tomography (µCT ). J Hum Evol 43: 89 – 105.en_US
dc.identifier.citedreferenceMaga M, Kappelman J, Ryan TM, Ketcham RA. 2006. Preliminary observations on the calcaneal trabecular microarchitecture of extant large‐bodied hominoids. Am J Phys Anthropol 129: 410 – 417.en_US
dc.identifier.citedreferenceMajoral M, Berge C, Casinos A, Jouffroy FK. 1997. The length of the vertebral column of primates: An allometric study. Folia Primatol 68: 57 – 76.en_US
dc.identifier.citedreferenceMartins EP, Hansen TF. 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149: 646 – 667.en_US
dc.identifier.citedreferenceMasters JC, Boniotto M, Crovella S, Roos C, Pozzi L, Delpero M. 2007. Phylogenetic relationships among the Lorisoidea as indicated by craniodental morphology and mitochondrial sequence data. Am J Primatol 69: 6 – 15.en_US
dc.identifier.citedreferenceMatsui A, Rakotondraparany F, Munechika I, Hasegawa M, Horai S. 2009. Molecular phylogeny and evolution of prosimians based on complete sequences of mitochondrial DNAs. Gene 441: 53 – 66.en_US
dc.identifier.citedreferenceMcBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA, 3rd. 1985. Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg Am 67: 1206 – 1214.en_US
dc.identifier.citedreferenceMeinel L, Fajardo R, Hofmann S, Langer R, Chen J, Snyder B, Vunjak‐Novakovic G, Kaplan D. 2005. Silk implants for the healing of critical size bone defects. Bone 37: 688 – 698.en_US
dc.identifier.citedreferenceMullender MG, Huiskes R, Versleyen H, Buma P. 1996. Osteocyte density and histomorphometric parameters in cancellous bone of the proximal femur in five mammalian species. J Orthop Res 14: 972 – 979.en_US
dc.identifier.citedreferenceMüller R, Koller B, Hildebrand T, Laib A, Gionollini S, Rüegsegger P. 1996. Resolution dependency of microstructural properties of cancellous bone based on three‐dimensional µ‐tomography. Technol Health Care 4: 113 – 119.en_US
dc.identifier.citedreferenceNash L. 1998. Vertical clingers and sleepers: seasonal influences on the activities and substrate use of Lepilemur leucopus at Besa Mahafly Special Reserve. Madagascar. Folia Primatol 69: 204 – 217.en_US
dc.identifier.citedreferenceNunn CL, Barton RA. 2001. Comparative methods for studying primate adaptation and allometry. Evol Anthropol 10: 81 – 98.en_US
dc.identifier.citedreferenceO'Neill MC, Dobson SD. 2008. The degree and pattern of phylogenetic signal in primate long‐bone structure. J Hum Evol 54: 309 – 322.en_US
dc.identifier.citedreferenceParfitt AM, Mathews CHE, Villanueva AR, Kleerekoper M, Frame B, Rao DS. 1983. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and osteoporosis. J Clin Invest 72: 1396 – 1409.en_US
dc.identifier.citedreferenceParsons T, Ryan TM, Reeves RH, Richtsmeier JT. 2007. Microstructure of trabecular bone in a mouse model for Down syndrome. Anat Rec (Hoboken ) 290: 414 – 421.en_US
dc.identifier.citedreferencePurvis A. 1995. A composite estimate of primate phylogeny. Phil Trans R Soc Lond B 348: 405 – 421.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.