Show simple item record

Gene expression alterations in bipolar disorder postmortem brains

dc.contributor.authorChen, Haimingen_US
dc.contributor.authorWang, Nulangen_US
dc.contributor.authorZhao, Xinen_US
dc.contributor.authorRoss, Christopher Aen_US
dc.contributor.authorO’shea, K Sueen_US
dc.contributor.authorMcInnis, Melvin Gen_US
dc.date.accessioned2013-03-05T18:16:45Z
dc.date.available2014-05-01T14:28:04Zen_US
dc.date.issued2013-03en_US
dc.identifier.citationChen, Haiming; Wang, Nulang; Zhao, Xin; Ross, Christopher A; O’shea, K Sue ; McInnis, Melvin G (2013). "Gene expression alterations in bipolar disorder postmortem brains." Bipolar Disorders 15(2). <http://hdl.handle.net/2027.42/96649>en_US
dc.identifier.issn1398-5647en_US
dc.identifier.issn1399-5618en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96649
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSynapseen_US
dc.subject.otherAntipsychoticsen_US
dc.subject.otherTransporten_US
dc.subject.otherMicroarrayen_US
dc.titleGene expression alterations in bipolar disorder postmortem brainsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPsychologyen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumMolecular and Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MIen_US
dc.contributor.affiliationotherDepartment of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MDen_US
dc.contributor.affiliationotherDepartment of Psychiatry and Behavioral Sciencesen_US
dc.contributor.affiliationotherDepartment of Psychiatry and Comprehensive Depression Centeren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96649/1/bdi12039.pdf
dc.identifier.doi10.1111/bdi.12039en_US
dc.identifier.sourceBipolar Disordersen_US
dc.identifier.citedreferenceBrennand KJ, Simone A, Jou J et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011; 473: 221 – 225.en_US
dc.identifier.citedreferenceTusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116 – 5121.en_US
dc.identifier.citedreferenceHolland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5’—3’ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 1991; 88: 7276 – 7280.en_US
dc.identifier.citedreferenceLivak KJ, Schmittgen TD. Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method. Methods 2001; 25: 402 – 408.en_US
dc.identifier.citedreferenceHosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA. Identifying biological themes within lists of genes with EASE. Genome Biol 2003; 4: R70.en_US
dc.identifier.citedreferenceKanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28: 27 – 30.en_US
dc.identifier.citedreferencePrasad KM, Almasy L, Gur RC et al. RGS4 polymorphisms associated with variability of cognitive performance in a family‐based schizophrenia sample. Schizophr Bull 2010; 36: 983 – 990.en_US
dc.identifier.citedreferenceDean B, Boer S, Gibbons A, Money T, Scarr E. Recent advances in postmortem pathology and neurochemistry in schizophrenia. Curr Opin Psychiatry 2009; 22: 154 – 160.en_US
dc.identifier.citedreferenceIkeda M, Tomita Y, Mouri A et al. Identification of novel candidate genes for treatment response to risperidone and susceptibility for schizophrenia: integrated analysis among pharmacogenomics, mouse expression, and genetic case‐control association approaches. Biol Psychiatry 2010; 67: 263 – 269.en_US
dc.identifier.citedreferenceLane HY, Liu YC, Huang CL et al. RGS4 polymorphisms predict clinical manifestations and responses to risperidone treatment in patients with schizophrenia. J Clin Psychopharmacol 2008; 28: 64 – 68.en_US
dc.identifier.citedreferenceThomas EA. Molecular profiling of antipsychotic drug function: convergent mechanisms in the pathology and treatment of psychiatric disorders. Mol Neurobiol 2006; 34: 109 – 128.en_US
dc.identifier.citedreferenceLi JZ, Vawter MP, Walsh DM et al. Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet 2004; 13: 609 – 616.en_US
dc.identifier.citedreferenceDanglot L, Galli T. What is the function of neuronal AP‐3? Biol Cell 2007; 99: 349 – 361.en_US
dc.identifier.citedreferenceCarter CJ. eIF2B and oligodendrocyte survival: where nature and nurture meet in bipolar disorder and schizophrenia? Schizophr Bull 2007; 33: 1343 – 1353.en_US
dc.identifier.citedreferenceLe‐Niculescu H, Patel SD, Bhat M et al. Convergent functional genomics of genome‐wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 155 – 181.en_US
dc.identifier.citedreferenceLee SH, DeCandia TR, Ripke S et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat Genet 2012; 44: 247 – 250.en_US
dc.identifier.citedreferenceChen R, Mias GI, Li‐Pook‐Than J et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 2012; 148: 1293 – 1307.en_US
dc.identifier.citedreferenceCraddock N, O’Donovan MC, Owen MJ. The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet 2005; 42: 193 – 204.en_US
dc.identifier.citedreferenceLi Y, Zhao Q, Zhang Z et al. Association study between RGS4 and bipolar disorder in the Chinese Han population. Psychiatr Genet 2010; 20: 130 – 132.en_US
dc.identifier.citedreferenceLe‐Niculescu H, Balaraman Y, Patel S et al. Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 129 – 158.en_US
dc.identifier.citedreferenceYang P, Baker KA, Hagg T. The ADAMs family: coordinators of nervous system development, plasticity and repair. Prog Neurobiol 2006; 79: 73 – 94.en_US
dc.identifier.citedreferenceJope RS. Anti‐bipolar therapy: mechanism of action of lithium. Mol Psychiatry 1999; 4: 117 – 128.en_US
dc.identifier.citedreferenceBinder EB. The role of FKBP5, a co‐chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 2009; 34 ( Suppl. 1 ): S186 – S195.en_US
dc.identifier.citedreferenceWillour VL, Chen H, Toolan J et al. Family‐based association of FKBP5 in bipolar disorder. Mol Psychiatry 2009; 14: 261 – 268.en_US
dc.identifier.citedreferenceFerreira MA, O’Donovan MC, Meng YA et al. Collaborative genome‐wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056 – 1058.en_US
dc.identifier.citedreferenceQuinn EM, Hill M, Anney R, Gill M, Corvin AP, Morris DW. Evidence for cis‐acting regulation of ANK3 and CACNA1C gene expression. Bipolar Disord 2010; 12: 440 – 445.en_US
dc.identifier.citedreferenceTakahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861 – 872.en_US
dc.identifier.citedreferencePang ZP, Yang N, Vierbuchen T et al. Induction of human neuronal cells by defined transcription factors. Nature 2011; 476: 220 – 223.en_US
dc.identifier.citedreferenceGoodwin FK, Jamison KR. Manic Depressive Illness. New York: Oxford University Press, 1990.en_US
dc.identifier.citedreferenceGershon ES, Hamovit J, Guroff JJ et al. A family study of schizoaffective, bipolar I, bipolar II, unipolar, and normal control probands. Arch Gen Psychiatry 1982; 39: 1157 – 1167.en_US
dc.identifier.citedreferenceBertelsen A, Harvald B, Hauge M. A Danish twin study of manic‐depressive disorders. Br J Psychiatry 1977; 130: 330 – 351.en_US
dc.identifier.citedreferenceMendlewicz J, Rainer JD. Adoption study supporting genetic transmission in manic–depressive illness. Nature 1977; 268: 327 – 329.en_US
dc.identifier.citedreferenceSerretti A, Mandelli L. The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions. Mol Psychiatry 2008; 13: 742 – 771.en_US
dc.identifier.citedreferenceCraddock N, Khodel V, Van EP, Reich T. Mathematical limits of multilocus models: the genetic transmission of bipolar disorder. Am J Hum Genet 1995; 57: 690 – 702.en_US
dc.identifier.citedreferenceCrow TJ. How and why genetic linkage has not solved the problem of psychosis: review and hypothesis. Am J Psychiatry 2007; 164: 13 – 21.en_US
dc.identifier.citedreferenceIwamoto K, Kakiuchi C, Bundo M, Ikeda K, Kato T. Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Mol Psychiatry 2004; 9: 406 – 416.en_US
dc.identifier.citedreferenceJurata LW, Bukhman YV, Charles V et al. Comparison of microarray‐based mRNA profiling technologies for identification of psychiatric disease and drug signatures. J Neurosci Methods 2004; 138: 173 – 188.en_US
dc.identifier.citedreferenceIwamoto K, Bundo M, Kato T. Altered expression of mitochondria‐related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large‐scale DNA microarray analysis. Hum Mol Genet 2005; 14: 241 – 253.en_US
dc.identifier.citedreferenceTsuang MT, Nossova N, Yager T et al. Assessing the validity of blood‐based gene expression profiles for the classification of schizophrenia and bipolar disorder: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 2005; 133: 1 – 5.en_US
dc.identifier.citedreferenceRyan MM, Lockstone HE, Huffaker SJ, Wayland MT, Webster MJ, Bahn S. Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. Mol Psychiatry 2006; 11: 965 – 978.en_US
dc.identifier.citedreferenceChoudary PV, Molnar M, Evans SJ et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA 2005; 102: 15653 – 15658.en_US
dc.identifier.citedreferenceBousman CA, Chana G, Glatt SJ et al. Preliminary evidence of ubiquitin proteasome system dysregulation in schizophrenia and bipolar disorder: convergent pathway analysis findings from two independent samples. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 494 – 502.en_US
dc.identifier.citedreferenceChu TT, Liu Y, Kemether E. Thalamic transcriptome screening in three psychiatric states. J Hum Genet 2009; 54: 665 – 675.en_US
dc.identifier.citedreferenceChoi KH, Higgs BW, Wendland JR, Song J, McMahon FJ, Webster MJ. Gene expression and genetic variation data implicate PCLO in bipolar disorder. Biol Psychiatry 2011; 69: 353 – 359.en_US
dc.identifier.citedreferenceElashoff M, Higgs BW, Yolken RH et al. Meta‐analysis of 12 genomic studies in bipolar disorder. J Mol Neurosci 2007; 31: 221 – 243.en_US
dc.identifier.citedreferenceTorrey EF, Webster M, Knable M, Johnston N, Yolken RH. The Stanley Foundation Brain Collection and Neuropathology Consortium. Schizophr Res 2000; 44: 151 – 155.en_US
dc.identifier.citedreferencePopova T, Mennerich D, Weith A, Quast K. Effect of RNA quality on transcript intensity levels in microarray analysis of human post‐mortem brain tissues. BMC Genomics 2008; 9: 91.en_US
dc.identifier.citedreferenceIrizarry RA, Hobbs B, Collin F et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249 – 264.en_US
dc.identifier.citedreferenceGautier L, Cope L, Bolstad BM, Irizarry RA. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004; 20: 307 – 315.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.