Show simple item record

Incorporation of a gravity wave momentum deposition parameterization into the Venus Thermosphere General Circulation Model (VTGCM)

dc.contributor.authorZalucha, A. M.en_US
dc.contributor.authorBrecht, A. S.en_US
dc.contributor.authorRafkin, S.en_US
dc.contributor.authorBougher, S. W.en_US
dc.contributor.authorAlexander, M. J.en_US
dc.date.accessioned2013-03-05T18:17:00Z
dc.date.available2014-03-03T15:09:23Zen_US
dc.date.issued2013-01en_US
dc.identifier.citationZalucha, A. M.; Brecht, A. S.; Rafkin, S.; Bougher, S. W.; Alexander, M. J. (2013). "Incorporation of a gravity wave momentum deposition parameterization into the Venus Thermosphere General Circulation Model (VTGCM)." Journal of Geophysical Research: Planets 118(1): 147-160. <http://hdl.handle.net/2027.42/96657>en_US
dc.identifier.issn2169-9097en_US
dc.identifier.issn2169-9100en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96657
dc.publisherSpringer‐Verlagen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherThermosphereen_US
dc.subject.otherGeneral Circulation Modelen_US
dc.subject.otherGravity Wavesen_US
dc.subject.otherVenusen_US
dc.titleIncorporation of a gravity wave momentum deposition parameterization into the Venus Thermosphere General Circulation Model (VTGCM)en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96657/1/jgre20038.pdf
dc.identifier.doi10.1029/2012JE004168en_US
dc.identifier.sourceJournal of Geophysical Research: Planetsen_US
dc.identifier.citedreferenceRoldán, C., M. A. López‐Valverde, M. López‐Puertas, and D. P. Edwards ( 2000 ), Non‐LTE infrared emissions of CO 2 in the atmosphere of Venus, Icarus, 147, 11 – 25, doi: 10.1006/icar.2000.6432.en_US
dc.identifier.citedreferenceMoissl, R., et al. ( 2009 ), Venus cloud top winds from tracking UV features in Venus Monitoring Camera images, J. Geophys. Res., 114 ( E13 ), E00B31, doi:10.1029/2008JE003117.en_US
dc.identifier.citedreferenceOrr, A., P. Bechtold, J. Scinocca, M. Ern, and M. Janiskova ( 2010 ), Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization, J. Climate, 23, 5905 – 5926, DOI: 10.1175/2010JCLI3490.1.en_US
dc.identifier.citedreferenceOrtland, D. A., and M. J. Alexander ( 2006 ), Gravity wave influence on the global structure of the diurnal tide in the mesosphere and lower thermosphere, J. Geophys. Res., 111 ( A10 ), A10S10, doi:10.1029/2005JA011467.en_US
dc.identifier.citedreferencePeralta, J., R. Hueso, A. Sánchez‐Lavega, G. Piccioni, O. Lanciano, and P. Drossart ( 2008 ), Characterization of mesoscale gravity waves in the upper and lower clouds of Venus from VEX‐VIRTIS images, J. Geophys. Res. Planets, 113 ( E12 ), doi:10.1029/2008JE003185.en_US
dc.identifier.citedreferencePiccioni, G., et al. ( 2009 ), Near‐IR oxygen nightglow observed by VIRTIS in the Venus upper atmosphere, J. Geophys. Res. Planets, 114, E00B38, doi:10.1029/2008JE003133.en_US
dc.identifier.citedreferenceRossow, W. B., S. B. Fels, and P. H. Stone ( 1980 ), Comments on “A three‐dimensional model of dynamical processes in the Venus atmosphere”, J. Atmos. Sci., 37, 250 – 252, doi:10.1175/1520‐0469(1980)037 < 0250:COTDMO > 2.0.CO;2.en_US
dc.identifier.citedreferenceSato, K., S. Tateno, S. Watanabe, and Y. Kawatani ( 2012 ), Gravity wave characteristics in the southern hemisphere revealed by a high‐resolution middle‐atmosphere general circulation model, J. Atmos. Sci., 69, 1378 – 1396 (doi: http://dx.doi.org/10.1175/JAS‐D‐11‐0101.1)en_US
dc.identifier.citedreferenceSchofield, J. T., and F. W. Taylor ( 1983 ), Measurements of the mean, solar‐fixed temperature and cloud structure of the middle atmosphere of Venus, Quart. J. Roy. Meteor. Soc., 109, 57 – 80, doi: 10.1256/smsqj.45903.en_US
dc.identifier.citedreferenceSchubert, G. ( 1983 ), General circulation and the dynamical state of the Venus atmosphere, in Venus, edited by D. M. Hunten, L. Colin, T. M. Donahue, & V. I. Moroz, pp. 681 – 765.en_US
dc.identifier.citedreferenceScinocca, J. ( 2002 ), The effect of back‐reflection in the parameterization of non‐orographic gravity‐wave drag, J. Meteorol. Soc. Japan, 80 ( 4B ), 939 – 962.en_US
dc.identifier.citedreferenceSeiff, A. ( 1991 ), Waves in Venus's middle and upper atmosphere: Implications of Pioneer Venus probe data above the clouds, J. Geophys. Res., 96, 11,021 – 11,032, doi: 10.1029/91JA01101.en_US
dc.identifier.citedreferenceSeiff, A., D. B. Kirk, R. E. Young, R. C. Blanchard, J. T. Findlay, G. M. Kelly, and S. C. Sommer ( 1980 ), Measurements of thermal structure and thermal contrasts in the atmosphere of Venus and related dynamical observations—Results from the four Pioneer Venus probes, J. Geophys. Res., 85, 7903 – 7933, doi: 10.1029/JA085iA13p07903.en_US
dc.identifier.citedreferenceShepherd, T. G., K. Semeniuk, and J. N. Koshyk ( 1996 ), Sponge layer feedbacks in middle‐atmosphere models, J. Geophys. Res., 101, 23,447 – 23,464, doi: 10.1029/96JD01994.en_US
dc.identifier.citedreferenceSoret, L., J.‐C. Gérard, F. Montmessin, G. Piccioni, P. Drossart, and J.‐L. Bertaux ( 2012 ), Atomic oxygen on the Venus nightside: Global distribution deduced from airglow mapping, Icarus, 217 ( 2 ), 849 – 855, doi: 10.1016/j.icarus.2011.03.034.en_US
dc.identifier.citedreferenceTaylor, F. W., et al. ( 1980 ), Structure and meteorology of the middle atmosphere of Venus infrared remote sensing from the Pioneer orbiter, J. Geophys. Res., 85, 7963 – 8006, doi: 10.1029/JA085iA13p07963.en_US
dc.identifier.citedreferencevon Zahn, U., K. H. Fricke, H. Hoffmann, and K. Pelka ( 1979 ), Venus—Eddy coefficients in the thermosphere and the inferred helium content of the lower atmosphere, Geophys. Res. Lett., 6, 337 – 340.en_US
dc.identifier.citedreferencevon Zahn, U., K. H. Fricke, D. M. Hunten, D. Krankowsky, K. Mauersberger, and O. A. Nier ( 1980 ), The upper atmosphere of Venus during morning conditions, J. Geophys. Res., 85, 7829 – 7840, doi: 10.1029/JA085iA13p07829.en_US
dc.identifier.citedreferenceWarner, C., and M. McIntyre ( 2001 ), An ultra‐simple spectral parameterization for non‐orographic gravity waves, J. Atmos. Sci., 58, 1837 – 1857.en_US
dc.identifier.citedreferenceYiğit, E., A. D. Aylward, and A. S. Medvedev ( 2008 ), Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study, J. Geophys. Res. ‐ Atmos., 113 ( D12 ), 19,106, doi:10.1029/2008JD010135.en_US
dc.identifier.citedreferenceYiğit, E., A. S. Medvedev, A. D. Aylward, P. Hartogh, and M. J. Harris ( 2009 ), Modeling the effects of gravity wave momentum deposition on the general circulation above the turbopause, J. Geophys. Res. ‐ Atmos., 114 ( D13 ), D07101, doi:10.1029/2008JD011132.en_US
dc.identifier.citedreferenceZhang, S., S. W. Bougher, and M. J. Alexander ( 1996 ), The impact of gravity waves on the Venus thermosphere and O 2 IR nightglow, J. Geophys. Res., 1012, 23,195 – 23,206, doi: 10.1029/96JE02035.en_US
dc.identifier.citedreferenceAlexander, M. J. ( 1992 ), A mechanism for the Venus thermospheric superrotation, Geophys. Res. Lett., 19, 2207 – 2210, doi: 10.1029/92GL02110.en_US
dc.identifier.citedreferenceAlexander, M. J., and T. J. Dunkerton ( 1999 ), A spectral parameterization of mean‐flow forcing due to breaking gravity waves, J. Atmos. Sci., 56, 4167 – 4182, doi:10.1175/1520‐0469(1999)056 < 4167:ASPOMF > 2.0.CO;2.en_US
dc.identifier.citedreferenceBailey, J., S. Chamberlain, D. Crisp, and V. S. Meadows ( 2008 ), Near infrared imaging spectroscopy of Venus with the Anglo‐Australian Telescope, Planet. Space Sci., 56, 1385 – 1390, doi: 10.1016/j.pss.2008.03.006.en_US
dc.identifier.citedreferenceBelton, M. J. S., G. R. Smith, D. A. Elliott, K. Klaasen, and G. E. Danielson ( 1976a ), Space‐time relationships in the UV markings on Venus, J. Atmos. Sci., 33, 1383 – 1393, doi:10.1175/1520‐0469(1976)033 < 1383:STRITU > 2.0.CO;2.en_US
dc.identifier.citedreferenceBelton, M. J. S., G. R. Smith, G. Schubert, and A. D. del Genio ( 1976b ), Cloud patterns, waves, and convection in the Venus atmosphere, in Bulletin of the American Astronomical Society, Bulletin of the American Astronomical Society, vol. 8, p. 486.en_US
dc.identifier.citedreferenceBelton, M. J. S., G. R. Smith, G. Schubert, and A. D. del Genio ( 1976c ), Cloud patterns, waves and convection in the Venus atmosphere, J. Atmos. Sci., 33, 1394 – 1417, doi:10.1175/1520‐0469(1976)033 < 1394:CPWACI > 2.0.CO;2.en_US
dc.identifier.citedreferenceBertaux, J.‐L., et al. ( 2007 ), A warm layer in Venus' cryosphere and high‐altitude measurements of HF, HCl, H 2 O and HDO, Nature, 450, 646 – 649, doi: 10.1038/nature05974.en_US
dc.identifier.citedreferenceBougher, S. W., R. E. Dickinson, E. C. Ridley, R. G. Roble, A. F. Nagy, and T. E. Cravens ( 1986 ), Venus mesosphere and thermosphere. II—Global circulation, temperature, and density variations, Icarus, 68, 284 – 312, doi:10.1016/0019‐1035(86)90025‐4.en_US
dc.identifier.citedreferenceBougher, S. W., R. G. E. Roble, R. E. Dickinson, and E. C. Ridley ( 1988 ), Venus mesosphere and thermosphere. III—Three‐dimensional general circulation with coupled dynamics and composition, Icarus, 73, 545 – 573, doi:10.1016/0019‐1035(88)90064‐4.en_US
dc.identifier.citedreferenceBougher, S. W., M. J. Alexander, and H. G. Mayr ( 1997 ), Upper atmosphere dynamics: Global circulation and gravity waves, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, edited by S. W. Bougher, D. M. Hunten, & R. J. Phillips, pp. 259 – 291.en_US
dc.identifier.citedreferenceBougher, S. W., S. Engel, R. G. Roble, and B. Foster ( 1999 ), Comparative terrestrial planet thermospheres 2. Solar cycle variation of global structure and winds at equinox, J. Geophys. Res., 104, 16,591 – 16,611, doi:10.1029/1998JE001019.en_US
dc.identifier.citedreferenceBougher, S. W., P. Blelly, M. Combi, J. L. Fox, I. Mueller‐Wodarg, A. Ridley, and R. G. Roble ( 2008 ), Neutral upper atmosphere and ionosphere modeling, Space Sci. Rev., 139, 107 – 141, doi: 10.1007/s11214‐008‐9401‐9.en_US
dc.identifier.citedreferenceBrecht, A., S. Bougher, J.‐C. Gérard, and L. Soret ( 2012 ), Atomic oxygen distributions in the Venus thermosphere: Comparisons between Venus Express observations and global model simulations, Icarus, 217 ( 2 ), 759 – 766, doi: 10.1016/j.icarus.2011.06.033.en_US
dc.identifier.citedreferenceBrecht, A. S., S. W. Bougher, J.‐C. Gérard, C. D. Parkinson, S. Rafkin, and B. Foster ( 2011 ), Understanding the variability of nightside temperatures, NO UV and O 2 IR nightglow emissions in the Venus upper atmosphere, J. Geophys. Res., 116 ( E15 ), 8004, doi: 10.1029/2010JE003770.en_US
dc.identifier.citedreferenceCovey, C., and G. Schubert ( 1982 ), Planetary‐scale waves in the Venus atmosphere, J. Atmos. Sci., 39, 2397 – 2413, doi:10.1175/1520‐0469(1982)039 < 2397:PSWITV > 2.0.CO;2.en_US
dc.identifier.citedreferenceCovey, C. C., and G. Schubert ( 1981a ), Mesoscale convection in the clouds of Venus, Nature, 290, 17 – 20, doi: 10.1038/290017a0.en_US
dc.identifier.citedreferenceCovey, C. C., and G. Schubert ( 1981b ), 4‐day waves in the Venus atmosphere, Icarus, 47, 130 – 138, doi: 10.1016/0019‐1035(81)90097‐X.en_US
dc.identifier.citedreferenceDunkerton, T. J. ( 1989 ), Theory of internal gravity wave saturation, Pure Appl. Geophys., 130, 373 – 397, doi: 10.1007/BF00874465.en_US
dc.identifier.citedreferenceEckermann, S. D., J. Ma, and X. Zhu ( 2011 ), Scale‐dependent infrared radiative damping rates on Mars and their role in the deposition of gravity‐wave momentum flux, Icarus, 211, 429 – 442, doi: 10.1016/j.icarus.2010.10.029.en_US
dc.identifier.citedreferenceFox, J. L. ( 1988 ), Heating efficiencies in the thermosphere of Venus reconsidered, Planet. Space Sci., 36, 37 – 46, doi: 10.1016/0032‐0633(88)90144‐4.en_US
dc.identifier.citedreferenceFritts, D. C. ( 1984 ), Gravity wave saturation in the middle atmosphere—A review of theory and observations, Rev. Geophys. Space Phys., 22, 275 – 308.en_US
dc.identifier.citedreferenceFritts, D. C., and W. Lu ( 1993 ), Spectral estimates of gravity wave energy and momentum fluxes. Part 2: Parameterization of wave forcing and variability, J. Atmos. Sci., 50, 3695 – 3713, doi:10.1175/1520‐0469(1993)050 < 3695:SEOGWE > 2.0.CO;2.en_US
dc.identifier.citedreferenceFritts, D. C., L. Wang, J. Werne, T. Lund, and K. Wan ( 2009 ), Gravity wave instability dynamics at high Reynolds numbers. Part I: Wave field evolution at large amplitudes and high frequencies, J. Atmos. Sci., 66, 1126 – 1148, doi:10.1175/2008JAS2726.1.en_US
dc.identifier.citedreferenceGarcia, R. F., P. Drossart, G. Piccioni, M. López‐Valverde, and G. Occhipinti ( 2009 ), Gravity waves in the upper atmosphere of Venus revealed by CO 2 nonlocal thermodynamic equilibrium emissions, J. Geophys. Res. (Planets), 114 ( E13 ), E00B32, doi:10.1029/2008JE003073.en_US
dc.identifier.citedreferenceGérard, J.‐C., et al. ( 2008 ), Distribution of the O 2 infrared nightglow observed with VIRTIS on board Venus Express, Geophys. Res. Lett., 35, L02,207, doi: 10.1029/2007GL032021.en_US
dc.identifier.citedreferenceHolton, J. R. ( 1982 ), The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere, J. Atmos. Sci., 39, 791 – 799, doi:10.1175/1520‐0469(1982)039 < 0791:TROGWI > 2.0.CO;2.en_US
dc.identifier.citedreferenceImamura, T., and T. Ogawa ( 1995 ), Radiative damping of gravity waves in the terrestrial planetary atmospheres, Geophys. Res. Lett., 22, 267 – 270, doi: 10.1029/94GL02998.en_US
dc.identifier.citedreferenceKasprzak, W. T., A. E. Hedin, H. G. Mayr, and H. B. Niemann ( 1988 ), Wavelike perturbations observed in the neutral thermosphere of Venus, J. Geophys. Res., 93, 11,237 – 11,245, doi: 10.1029/JA093iA10p11237.en_US
dc.identifier.citedreferenceKasprzak, W. T., H. B. Niemann, A. E. Hedin, and S. W. Bougher ( 1993 ), Wave‐like perturbations observed at low altitudes by the Pioneer Venus Orbiter Neutral Mass Spectrometer during orbiter entry, Geophys. Res. Lett., 20, 2755 – 2758, doi: 10.1029/93GL02628.en_US
dc.identifier.citedreferenceKim, Y.‐J., S. D. Eckermann, and H.‐Y. Chun ( 2003 ), An overview of the past, present and future of gravity‐wave drag parametrization for numerical climate and weather prediction models, Atmos. Ocean, 41, 65 – 98, doi: 10.3137/ao.410105.en_US
dc.identifier.citedreferenceLawrence, B. ( 1997 ), The effect of parameterized gravity wave drag on simulations of the middle atmosphere during northern winter 1991/1992—general evolution, in NATO ASI Series, Vol I 50: Gravity Wave Processes: Their Parameterization in Global Climate Models, edited by K. Hamilton, pp. 291 – 307, Springer‐Verlag, New York.en_US
dc.identifier.citedreferenceLeovy, C. ( 1964 ), Simple models of thermally driven mesopheric circulation, J. Atmos. Sci., 21, 327 – 341, doi:10.1175/1520‐0469(1964)021 < 0327:SMOTDM > 2.0.CO;2.en_US
dc.identifier.citedreferenceLimaye, S. S. ( 1990 ), Venus: Thermal tides in the Venera 15 Fourier spectrometer data between 300–1300 cm −1, in Bulletin of the American Astronomical Society, BAAS, vol. 22, p. 1052.en_US
dc.identifier.citedreferenceLindzen, R. S. ( 1981 ), Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707 – 9714, doi: 10.1029/JC086iC10p09707.en_US
dc.identifier.citedreferenceLindzen, R. S. ( 1985 ), Multiple gravity‐wave breaking levels, J. Atmos. Sci., 42, 301 – 305, doi:10.1175/1520‐0469(1985)042 < 0301:MGWBL > 2.0.CO;2.en_US
dc.identifier.citedreferenceLindzen, R. S., and J. R. Holton ( 1968 ), A theory of the quasi‐biennial oscillation, J. Atmos. Sci., 25, 1095 – 1107, doi:10.1175/1520‐0469(1968)025 < 1095:ATOTQB > 2.0.CO;2.en_US
dc.identifier.citedreferenceMarkiewicz, W. J., et al. ( 2007 ), Morphology and dynamics of the upper cloud layer of Venus, Nature, 450, 633 – 636, doi: 10.1038/nature06320.en_US
dc.identifier.citedreferenceMarks, C. J., and S. D. Eckermann ( 1995 ), A three‐dimensional nonhydrostatic ray‐tracing model for gravity waves: Formulation and preliminary results for the middle atmosphere, J. Atmos. Sci., 52, 1959 – 1984, doi:10.1175/1520‐0469(1995)052 < 1959:ATDNRT > 2.0.CO;2.en_US
dc.identifier.citedreferenceMayr, H. G., I. Harris, W. T. Kasprzak, M. Dube, and F. Varosi ( 1988 ), Gravity waves in the upper atmosphere of Venus, J. Geophys. Res., 931, 11,247 – 11,262, doi: 10.1029/JA093iA10p11247.en_US
dc.identifier.citedreferenceMcLandress, C., and J. F. Scinocca ( 2005 ), The GCM response to current parameterizations of non‐orographic gravity wave drag, J. Atmos. Sci., 62, 2394 – 2413.en_US
dc.identifier.citedreferenceMedvedev, A. S., and E. Yiǧit ( 2012 ), Thermal effects of internal gravity waves in the Martian upper atmosphere, Geophys. Res. Lett., 39, L05201, doi: 10.1029/2012GL050852.en_US
dc.identifier.citedreferenceMedvedev, A. S., E. Yiğit, P. Hartogh, and E. Becker ( 2011 ), Influence of gravity waves on the martian atmosphere: General circulation modeling, J. Geophys. Res. ‐ Planets, 116 ( E15 ), 10,004, doi:10.1029/2011JE003848.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.