Show simple item record

Deficiency in pulmonary surfactant proteins in mice with fatty acid binding protein 4‐ Cre ‐mediated knockout of the tuberous sclerosis complex 1 gene

dc.contributor.authorXiang, Xinxinen_US
dc.contributor.authorYuan, Fangen_US
dc.contributor.authorZhao, Jingen_US
dc.contributor.authorLi, Ziruen_US
dc.contributor.authorWang, Xianen_US
dc.contributor.authorGuan, Youfeien_US
dc.contributor.authorTang, Chaoshuen_US
dc.contributor.authorSun, Guangen_US
dc.contributor.authorLi, Yinen_US
dc.contributor.authorZhang, Weizhenen_US
dc.date.accessioned2013-03-05T18:17:03Z
dc.date.available2014-05-01T14:28:07Zen_US
dc.date.issued2013-03en_US
dc.identifier.citationXiang, Xinxin; Yuan, Fang; Zhao, Jing; Li, Ziru; Wang, Xian; Guan, Youfei; Tang, Chaoshu; Sun, Guang; Li, Yin; Zhang, Weizhen (2013). "Deficiency in pulmonary surfactant proteins in mice with fatty acid binding protein 4‐ Cre ‐mediated knockout of the tuberous sclerosis complex 1 gene." Experimental Physiology 98(3). <http://hdl.handle.net/2027.42/96661>en_US
dc.identifier.issn0958-0670en_US
dc.identifier.issn1469-445Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96661
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleDeficiency in pulmonary surfactant proteins in mice with fatty acid binding protein 4‐ Cre ‐mediated knockout of the tuberous sclerosis complex 1 geneen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Surgery, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDivision of Medicine, Memorial University of Newfoundland, St John's, Newfoundland, Canadaen_US
dc.contributor.affiliationotherDepartment of Physiology and Pathophysiology, Peking University Health Science Center; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, Chinaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96661/1/expphysiol.2012.069674.pdf
dc.identifier.doi10.1113/expphysiol.2012.069674en_US
dc.identifier.sourceExperimental Physiologyen_US
dc.identifier.citedreferenceRovira J, Marcelo Arellano E, Burke JT, Brault Y, Moya‐Rull D, Bañón‐Maneus E, Ramírez‐Bajo MJ, Gutiérrez‐Dalmau A, Revuelta I, Quintana LF, Campistol JM & Diekmann F ( 2008 ). Effect of mTOR inhibitor on body weight: from an experimental rat model to human transplant patients. Transpl Int 21, 992 – 998.en_US
dc.identifier.citedreferenceLee MY, Tse HF, Siu CW, Zhu SG, Man RY & Vanhoutte PM ( 2007 ). Genomic changes in regenerated porcine coronary arterial endothelial cells. Arterioscler Thromb Vasc Biol 27, 2443 – 2449.en_US
dc.identifier.citedreferenceLi Y, Jiang C, Xu G, Wang N, Zhu Y, Tang C & Wang X ( 2008 ). Homocysteine upregulates resistin production from adipocytes in vivo and in vitro. Diabetes 57, 817 – 827.en_US
dc.identifier.citedreferenceLian J, Yan XH, Peng J & Jiang SW ( 2008 ). The mammalian target of rapamycin pathway and its role in molecular nutrition regulation. Mol Nutr Food Res 52, 393 – 399.en_US
dc.identifier.citedreferenceMiakotina OL, Goss KL & Snyder JM ( 2002 ). Insulin utilizes the PI 3‐kinase pathway to inhibit SP‐A gene expression in lung epithelial cells. Respir Res 3, 27.en_US
dc.identifier.citedreferenceMudhasani R, Puri V, Hoover K, Czech MP, Imbalzano AN & Jones SN ( 2011 ). Dicer is required for the formation of white but not brown adipose tissue. J Cell Physiol 226, 1399 – 1406.en_US
dc.identifier.citedreferenceMurakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K & Yamanaka S ( 2004 ). mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 24, 6710 – 6718.en_US
dc.identifier.citedreferenceOnda H, Crino PB, Zhang H, Murphey RD, Rastelli L, Gould Rothberg BE & Kwiatkowski DJ ( 2002 ). Tsc2 null murine neuroepithelial cells are a model for human tuber giant cells, and show activation of an mTOR pathway. Mol Cell Neurosci 21, 561 – 574.en_US
dc.identifier.citedreferencePolak P, Cybulski N, Feige JN, Auwerx J, Ruegg MA & Hall MN ( 2008 ). Adipose‐specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 8, 399 – 410.en_US
dc.identifier.citedreferencePolak P & Hall MN ( 2009 ). mTOR and the control of whole body metabolism. Curr Opin Cell Biol 21, 209 – 218.en_US
dc.identifier.citedreferenceReese‐Wagoner A, Thompson J & Banaszak L ( 1999 ). Structural properties of the adipocyte lipid binding protein. Biochim Biophys Acta 1441, 106 – 116.en_US
dc.identifier.citedreferenceRoss SR, Graves RA, Greenstein A, Platt KA, Shyu HL, Mellovitz B & Spiegelman BM ( 1990 ). A fat‐specific enhancer is the primary determinant of gene expression for adipocyte P2 in vivo. Proc Natl Acad Sci U S A 87, 9590 – 9594.en_US
dc.identifier.citedreferenceScifres CM, Chen B, Nelson DM & Sadovsky Y ( 2011 ). Fatty acid binding protein 4 regulates intracellular lipid accumulation in human trophoblasts. J Clin Endocrinol Metab 96, E1083 – E1091.en_US
dc.identifier.citedreferenceShum BO, Mackay CR, Gorgun CZ, Frost MJ, Kumar RK, Hotamisligil GS & Rolph MS ( 2006 ). The adipocyte fatty acid‐binding protein aP2 is required in allergic airway inflammation. J Clin Invest 116, 2183 – 2192.en_US
dc.identifier.citedreferenceSpiegelman BM & Green H ( 1980 ). Control of specific protein biosynthesis during the adipose conversion of 3T3 cells. J Biol Chem 255, 8811 – 8818.en_US
dc.identifier.citedreferenceTomasoni R & Mondino A ( 2011 ). The tuberous sclerosis complex: balancing proliferation and survival. Biochem Soc Trans 39, 466 – 471.en_US
dc.identifier.citedreferenceUhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H, Kwiatkowski DJ, Yamada K & Gutmann DH ( 2002 ). Astrocyte‐specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 52, 285 – 296.en_US
dc.identifier.citedreferenceUm SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J & Thomas G ( 2004 ). Absence of S6K1 protects against age‐ and diet‐induced obesity while enhancing insulin sensitivity. Nature 431, 200 – 205.en_US
dc.identifier.citedreferenceWeaver TE & Whitsett JA ( 1991 ). Function and regulation of expression of pulmonary surfactant‐associated proteins. Biochem J 273, 249 – 264en_US
dc.identifier.citedreferenceWeis SM & Cheresh DA ( 2005 ). Pathophysiological consequences of VEGF‐induced vascular permeability. Nature 437, 497 – 504.en_US
dc.identifier.citedreferenceWhitsett JA & Weaver TE ( 2002 ). Hydrophobic surfactant proteins in lung function and disease. N Engl J Med 347, 2141 – 2148.en_US
dc.identifier.citedreferenceWilson C, Idziaszczyk S, Parry L, Guy C, Griffiths DF, Lazda E, Bayne RA, Smith AJ, Sampson JR & Cheadle JP ( 2005 ). A mouse model of tuberous sclerosis 1 showing background specific early post‐natal mortality and metastatic renal cell carcinoma. Hum Mol Genet 14, 1839 – 1850.en_US
dc.identifier.citedreferenceWright JR ( 2003 ). Pulmonary surfactant: a front line of lung host defense. J Clin Invest 111, 1453 – 1455.en_US
dc.identifier.citedreferenceXu G, Li Y, An W, Li S, Guan Y, Wang N, Tang C, Wang X, Zhu Y, Li X, Mulholland MW & Zhang W ( 2009 ). Gastric mammalian target of rapamycin signaling regulates ghrelin production and food intake. Endocrinology 150, 3637 – 3644.en_US
dc.identifier.citedreferenceZhang H, Stallock JP, Ng JC, Reinhard C & Neufeld TP ( 2000 ). Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 14, 2712 – 2724.en_US
dc.identifier.citedreferenceZhang J, Wang Y, Gao Z, Yun Z & Ye J ( 2012 ). Hypoxia‐inducible factor 1 activation from adipose protein 2‐cre mediated knockout of von Hippel‐Lindau gene leads to embryonic lethality. Clin Exp Pharmacol Physiol 39, 145 – 150.en_US
dc.identifier.citedreferenceAbel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, Minnemann T, Shulman GI & Kahn BB ( 2001 ). Adipose‐selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729 – 733.en_US
dc.identifier.citedreferenceAvery ME & Mead J ( 1959 ). Surface properties in relation to aletectasis and hyaline membrane disease. Am J Dis Child 97, 517 – 523.en_US
dc.identifier.citedreferenceBarlow C, Schroeder M, Lekstrom‐Himes J, Kylefjord H, Deng CX, Wynshaw‐Boris A, Spiegelman BM & Xanthopoulos KG ( 1997 ). Targeted expression of Cre recombinase to adipose tissue of transgenic mice directs adipose‐specific excision of loxP‐flanked gene segments. Nucleic Acids Res 25, 2543 – 2545.en_US
dc.identifier.citedreferenceBiron‐Shental T, Schaiff WT, Ratajczak CK, Bildirici I, Nelson DM & Sadovsky Y ( 2007 ). Hypoxia regulates the expression of fatty acid‐binding proteins in primary term human trophoblasts. Am J Obstet Gynecol 197, 516.e1 – 516.e6.en_US
dc.identifier.citedreferenceBoiteux G, Lascombe I, Roche E, Plissonnier ML, Clairotte A, Bittard H & Fauconnet S ( 2009 ). A‐FABP, a candidate progression marker of human transitional cell carcinoma of the bladder, is differentially regulated by PPAR in urothelial cancer cells. Int J Cancer 124, 1820 – 1828.en_US
dc.identifier.citedreferenceBorkowska J, Schwartz RA, Kotulska K & Jozwiak S ( 2011 ). Tuberous sclerosis complex: tumors and tumorigenesis. Int J Dermatol 50, 13 – 20.en_US
dc.identifier.citedreferenceCatania C, Binder E & Cota D ( 2011 ). mTORC1 signaling in energy balance and metabolic disease. Int J Obes (Lond) 35, 751 – 761.en_US
dc.identifier.citedreferenceColombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J & Léopold P ( 2003 ). A nutrient sensor mechanism controls Drosophila growth. Cell 114, 739 – 749.en_US
dc.identifier.citedreferenceCota D ( 2009 ). Mammalian target of rapamycin complex 1 (mTORC1) signaling in energy balance and obesity. Physiol Behav 97, 520 – 524.en_US
dc.identifier.citedreferenceCota D, Matter EK, Woods SC & Seeley RJ ( 2008 ). The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet‐induced obesity. J Neurosci 28, 7202 – 7208.en_US
dc.identifier.citedreferenceDunlop EA & Tee AR ( 2009 ). Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal 21, 827 – 835.en_US
dc.identifier.citedreferenceElmasri H, Karaaslan C, Teper Y, Ghelfi E, Weng M, Ince TA, Kozakewich H, Bischoff J & Cataltepe S ( 2009 ). Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB J 23, 3865 – 3873.en_US
dc.identifier.citedreferenceFerrell RE, Kimak MA, Lawrence EC & Finegold DN ( 2008 ). Candidate gene analysis in primary lymphedema. Lymphat Res Biol 6, 69 – 76.en_US
dc.identifier.citedreferenceFraenkel M, Ketzinel‐Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, Berthault MF, Magnan C, Cerasi E, Kaiser N & Leibowitz G ( 2008 ). mTOR inhibition by rapamycin prevents β‐cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57, 945 – 957.en_US
dc.identifier.citedreferenceGangloff YG, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz JF, Um SH, Brown EJ, Cereghini S, Thomas G & Kozma SC ( 2004 ). Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol 24, 9508 – 9516.en_US
dc.identifier.citedreferenceHay N & Sonenberg N ( 2004 ). Upstream and downstream of mTOR. Genes Dev 18, 1926 – 1945.en_US
dc.identifier.citedreferenceHe W, Barak Y, Hevener A, Olson P, Liao D, Le J, Nelson M, Ong E, Olefsky JM & Evans RM ( 2003 ). Adipose‐specific peroxisome proliferator‐activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A 100, 15712 – 15717.en_US
dc.identifier.citedreferenceIadevaia V, Huo Y, Zhang Z, Foster LJ & Proud CG ( 2012 ). Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis. Biochem Soc Trans 40, 168 – 172.en_US
dc.identifier.citedreferenceIkeda H, Shiojima I, Oka T, Yoshida M, Maemura K, Walsh K, Igarashi T & Komuro I ( 2011 ). Increased Akt‐mTOR signaling in lung epithelium is associated with respiratory distress syndrome in mice. Mol Cell Biol 31, 1054 – 1065.en_US
dc.identifier.citedreferenceKobayashi T, Minowa O, Kuno J, Mitani H, Hino O & Noda T ( 1999 ). Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ‐line Tsc2 mutation in mice. Cancer Res 59, 1206 – 1211.en_US
dc.identifier.citedreferenceLe Bacquer O, Petroulakis E, Paglialunga S, Poulin F, Richard D, Cianflone K & Sonenberg N ( 2007 ). Elevated sensitivity to diet‐induced obesity and insulin resistance in mice lacking 4E‐BP1 and 4E‐BP2. J Clin Invest 117, 387 – 396.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.