Deficiency in pulmonary surfactant proteins in mice with fatty acid binding protein 4‐ Cre ‐mediated knockout of the tuberous sclerosis complex 1 gene
dc.contributor.author | Xiang, Xinxin | en_US |
dc.contributor.author | Yuan, Fang | en_US |
dc.contributor.author | Zhao, Jing | en_US |
dc.contributor.author | Li, Ziru | en_US |
dc.contributor.author | Wang, Xian | en_US |
dc.contributor.author | Guan, Youfei | en_US |
dc.contributor.author | Tang, Chaoshu | en_US |
dc.contributor.author | Sun, Guang | en_US |
dc.contributor.author | Li, Yin | en_US |
dc.contributor.author | Zhang, Weizhen | en_US |
dc.date.accessioned | 2013-03-05T18:17:03Z | |
dc.date.available | 2014-05-01T14:28:07Z | en_US |
dc.date.issued | 2013-03 | en_US |
dc.identifier.citation | Xiang, Xinxin; Yuan, Fang; Zhao, Jing; Li, Ziru; Wang, Xian; Guan, Youfei; Tang, Chaoshu; Sun, Guang; Li, Yin; Zhang, Weizhen (2013). "Deficiency in pulmonary surfactant proteins in mice with fatty acid binding protein 4‐ Cre ‐mediated knockout of the tuberous sclerosis complex 1 gene." Experimental Physiology 98(3). <http://hdl.handle.net/2027.42/96661> | en_US |
dc.identifier.issn | 0958-0670 | en_US |
dc.identifier.issn | 1469-445X | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/96661 | |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.title | Deficiency in pulmonary surfactant proteins in mice with fatty acid binding protein 4‐ Cre ‐mediated knockout of the tuberous sclerosis complex 1 gene | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Physiology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Surgery, University of Michigan, Ann Arbor, MI, USA | en_US |
dc.contributor.affiliationother | Division of Medicine, Memorial University of Newfoundland, St John's, Newfoundland, Canada | en_US |
dc.contributor.affiliationother | Department of Physiology and Pathophysiology, Peking University Health Science Center; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/96661/1/expphysiol.2012.069674.pdf | |
dc.identifier.doi | 10.1113/expphysiol.2012.069674 | en_US |
dc.identifier.source | Experimental Physiology | en_US |
dc.identifier.citedreference | Rovira J, Marcelo Arellano E, Burke JT, Brault Y, Moya‐Rull D, Bañón‐Maneus E, Ramírez‐Bajo MJ, Gutiérrez‐Dalmau A, Revuelta I, Quintana LF, Campistol JM & Diekmann F ( 2008 ). Effect of mTOR inhibitor on body weight: from an experimental rat model to human transplant patients. Transpl Int 21, 992 – 998. | en_US |
dc.identifier.citedreference | Lee MY, Tse HF, Siu CW, Zhu SG, Man RY & Vanhoutte PM ( 2007 ). Genomic changes in regenerated porcine coronary arterial endothelial cells. Arterioscler Thromb Vasc Biol 27, 2443 – 2449. | en_US |
dc.identifier.citedreference | Li Y, Jiang C, Xu G, Wang N, Zhu Y, Tang C & Wang X ( 2008 ). Homocysteine upregulates resistin production from adipocytes in vivo and in vitro. Diabetes 57, 817 – 827. | en_US |
dc.identifier.citedreference | Lian J, Yan XH, Peng J & Jiang SW ( 2008 ). The mammalian target of rapamycin pathway and its role in molecular nutrition regulation. Mol Nutr Food Res 52, 393 – 399. | en_US |
dc.identifier.citedreference | Miakotina OL, Goss KL & Snyder JM ( 2002 ). Insulin utilizes the PI 3‐kinase pathway to inhibit SP‐A gene expression in lung epithelial cells. Respir Res 3, 27. | en_US |
dc.identifier.citedreference | Mudhasani R, Puri V, Hoover K, Czech MP, Imbalzano AN & Jones SN ( 2011 ). Dicer is required for the formation of white but not brown adipose tissue. J Cell Physiol 226, 1399 – 1406. | en_US |
dc.identifier.citedreference | Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K & Yamanaka S ( 2004 ). mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 24, 6710 – 6718. | en_US |
dc.identifier.citedreference | Onda H, Crino PB, Zhang H, Murphey RD, Rastelli L, Gould Rothberg BE & Kwiatkowski DJ ( 2002 ). Tsc2 null murine neuroepithelial cells are a model for human tuber giant cells, and show activation of an mTOR pathway. Mol Cell Neurosci 21, 561 – 574. | en_US |
dc.identifier.citedreference | Polak P, Cybulski N, Feige JN, Auwerx J, Ruegg MA & Hall MN ( 2008 ). Adipose‐specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 8, 399 – 410. | en_US |
dc.identifier.citedreference | Polak P & Hall MN ( 2009 ). mTOR and the control of whole body metabolism. Curr Opin Cell Biol 21, 209 – 218. | en_US |
dc.identifier.citedreference | Reese‐Wagoner A, Thompson J & Banaszak L ( 1999 ). Structural properties of the adipocyte lipid binding protein. Biochim Biophys Acta 1441, 106 – 116. | en_US |
dc.identifier.citedreference | Ross SR, Graves RA, Greenstein A, Platt KA, Shyu HL, Mellovitz B & Spiegelman BM ( 1990 ). A fat‐specific enhancer is the primary determinant of gene expression for adipocyte P2 in vivo. Proc Natl Acad Sci U S A 87, 9590 – 9594. | en_US |
dc.identifier.citedreference | Scifres CM, Chen B, Nelson DM & Sadovsky Y ( 2011 ). Fatty acid binding protein 4 regulates intracellular lipid accumulation in human trophoblasts. J Clin Endocrinol Metab 96, E1083 – E1091. | en_US |
dc.identifier.citedreference | Shum BO, Mackay CR, Gorgun CZ, Frost MJ, Kumar RK, Hotamisligil GS & Rolph MS ( 2006 ). The adipocyte fatty acid‐binding protein aP2 is required in allergic airway inflammation. J Clin Invest 116, 2183 – 2192. | en_US |
dc.identifier.citedreference | Spiegelman BM & Green H ( 1980 ). Control of specific protein biosynthesis during the adipose conversion of 3T3 cells. J Biol Chem 255, 8811 – 8818. | en_US |
dc.identifier.citedreference | Tomasoni R & Mondino A ( 2011 ). The tuberous sclerosis complex: balancing proliferation and survival. Biochem Soc Trans 39, 466 – 471. | en_US |
dc.identifier.citedreference | Uhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H, Kwiatkowski DJ, Yamada K & Gutmann DH ( 2002 ). Astrocyte‐specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 52, 285 – 296. | en_US |
dc.identifier.citedreference | Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J & Thomas G ( 2004 ). Absence of S6K1 protects against age‐ and diet‐induced obesity while enhancing insulin sensitivity. Nature 431, 200 – 205. | en_US |
dc.identifier.citedreference | Weaver TE & Whitsett JA ( 1991 ). Function and regulation of expression of pulmonary surfactant‐associated proteins. Biochem J 273, 249 – 264 | en_US |
dc.identifier.citedreference | Weis SM & Cheresh DA ( 2005 ). Pathophysiological consequences of VEGF‐induced vascular permeability. Nature 437, 497 – 504. | en_US |
dc.identifier.citedreference | Whitsett JA & Weaver TE ( 2002 ). Hydrophobic surfactant proteins in lung function and disease. N Engl J Med 347, 2141 – 2148. | en_US |
dc.identifier.citedreference | Wilson C, Idziaszczyk S, Parry L, Guy C, Griffiths DF, Lazda E, Bayne RA, Smith AJ, Sampson JR & Cheadle JP ( 2005 ). A mouse model of tuberous sclerosis 1 showing background specific early post‐natal mortality and metastatic renal cell carcinoma. Hum Mol Genet 14, 1839 – 1850. | en_US |
dc.identifier.citedreference | Wright JR ( 2003 ). Pulmonary surfactant: a front line of lung host defense. J Clin Invest 111, 1453 – 1455. | en_US |
dc.identifier.citedreference | Xu G, Li Y, An W, Li S, Guan Y, Wang N, Tang C, Wang X, Zhu Y, Li X, Mulholland MW & Zhang W ( 2009 ). Gastric mammalian target of rapamycin signaling regulates ghrelin production and food intake. Endocrinology 150, 3637 – 3644. | en_US |
dc.identifier.citedreference | Zhang H, Stallock JP, Ng JC, Reinhard C & Neufeld TP ( 2000 ). Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 14, 2712 – 2724. | en_US |
dc.identifier.citedreference | Zhang J, Wang Y, Gao Z, Yun Z & Ye J ( 2012 ). Hypoxia‐inducible factor 1 activation from adipose protein 2‐cre mediated knockout of von Hippel‐Lindau gene leads to embryonic lethality. Clin Exp Pharmacol Physiol 39, 145 – 150. | en_US |
dc.identifier.citedreference | Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, Minnemann T, Shulman GI & Kahn BB ( 2001 ). Adipose‐selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729 – 733. | en_US |
dc.identifier.citedreference | Avery ME & Mead J ( 1959 ). Surface properties in relation to aletectasis and hyaline membrane disease. Am J Dis Child 97, 517 – 523. | en_US |
dc.identifier.citedreference | Barlow C, Schroeder M, Lekstrom‐Himes J, Kylefjord H, Deng CX, Wynshaw‐Boris A, Spiegelman BM & Xanthopoulos KG ( 1997 ). Targeted expression of Cre recombinase to adipose tissue of transgenic mice directs adipose‐specific excision of loxP‐flanked gene segments. Nucleic Acids Res 25, 2543 – 2545. | en_US |
dc.identifier.citedreference | Biron‐Shental T, Schaiff WT, Ratajczak CK, Bildirici I, Nelson DM & Sadovsky Y ( 2007 ). Hypoxia regulates the expression of fatty acid‐binding proteins in primary term human trophoblasts. Am J Obstet Gynecol 197, 516.e1 – 516.e6. | en_US |
dc.identifier.citedreference | Boiteux G, Lascombe I, Roche E, Plissonnier ML, Clairotte A, Bittard H & Fauconnet S ( 2009 ). A‐FABP, a candidate progression marker of human transitional cell carcinoma of the bladder, is differentially regulated by PPAR in urothelial cancer cells. Int J Cancer 124, 1820 – 1828. | en_US |
dc.identifier.citedreference | Borkowska J, Schwartz RA, Kotulska K & Jozwiak S ( 2011 ). Tuberous sclerosis complex: tumors and tumorigenesis. Int J Dermatol 50, 13 – 20. | en_US |
dc.identifier.citedreference | Catania C, Binder E & Cota D ( 2011 ). mTORC1 signaling in energy balance and metabolic disease. Int J Obes (Lond) 35, 751 – 761. | en_US |
dc.identifier.citedreference | Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J & Léopold P ( 2003 ). A nutrient sensor mechanism controls Drosophila growth. Cell 114, 739 – 749. | en_US |
dc.identifier.citedreference | Cota D ( 2009 ). Mammalian target of rapamycin complex 1 (mTORC1) signaling in energy balance and obesity. Physiol Behav 97, 520 – 524. | en_US |
dc.identifier.citedreference | Cota D, Matter EK, Woods SC & Seeley RJ ( 2008 ). The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet‐induced obesity. J Neurosci 28, 7202 – 7208. | en_US |
dc.identifier.citedreference | Dunlop EA & Tee AR ( 2009 ). Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal 21, 827 – 835. | en_US |
dc.identifier.citedreference | Elmasri H, Karaaslan C, Teper Y, Ghelfi E, Weng M, Ince TA, Kozakewich H, Bischoff J & Cataltepe S ( 2009 ). Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB J 23, 3865 – 3873. | en_US |
dc.identifier.citedreference | Ferrell RE, Kimak MA, Lawrence EC & Finegold DN ( 2008 ). Candidate gene analysis in primary lymphedema. Lymphat Res Biol 6, 69 – 76. | en_US |
dc.identifier.citedreference | Fraenkel M, Ketzinel‐Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, Berthault MF, Magnan C, Cerasi E, Kaiser N & Leibowitz G ( 2008 ). mTOR inhibition by rapamycin prevents β‐cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57, 945 – 957. | en_US |
dc.identifier.citedreference | Gangloff YG, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz JF, Um SH, Brown EJ, Cereghini S, Thomas G & Kozma SC ( 2004 ). Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol 24, 9508 – 9516. | en_US |
dc.identifier.citedreference | Hay N & Sonenberg N ( 2004 ). Upstream and downstream of mTOR. Genes Dev 18, 1926 – 1945. | en_US |
dc.identifier.citedreference | He W, Barak Y, Hevener A, Olson P, Liao D, Le J, Nelson M, Ong E, Olefsky JM & Evans RM ( 2003 ). Adipose‐specific peroxisome proliferator‐activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A 100, 15712 – 15717. | en_US |
dc.identifier.citedreference | Iadevaia V, Huo Y, Zhang Z, Foster LJ & Proud CG ( 2012 ). Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis. Biochem Soc Trans 40, 168 – 172. | en_US |
dc.identifier.citedreference | Ikeda H, Shiojima I, Oka T, Yoshida M, Maemura K, Walsh K, Igarashi T & Komuro I ( 2011 ). Increased Akt‐mTOR signaling in lung epithelium is associated with respiratory distress syndrome in mice. Mol Cell Biol 31, 1054 – 1065. | en_US |
dc.identifier.citedreference | Kobayashi T, Minowa O, Kuno J, Mitani H, Hino O & Noda T ( 1999 ). Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ‐line Tsc2 mutation in mice. Cancer Res 59, 1206 – 1211. | en_US |
dc.identifier.citedreference | Le Bacquer O, Petroulakis E, Paglialunga S, Poulin F, Richard D, Cianflone K & Sonenberg N ( 2007 ). Elevated sensitivity to diet‐induced obesity and insulin resistance in mice lacking 4E‐BP1 and 4E‐BP2. J Clin Invest 117, 387 – 396. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.