Show simple item record

The Interesting Influence of Nanosprings on the Viscoelasticity of Elastomeric Polymer Materials: Simulation and Experiment

dc.contributor.authorLiu, Junen_US
dc.contributor.authorLu, Yong‐laien_US
dc.contributor.authorTian, Mingen_US
dc.contributor.authorLi, Fenen_US
dc.contributor.authorShen, Jianxiangen_US
dc.contributor.authorGao, Yangyangen_US
dc.contributor.authorZhang, Liqunen_US
dc.date.accessioned2013-03-05T18:17:12Z
dc.date.available2014-05-01T14:28:08Zen_US
dc.date.issued2013-03-06en_US
dc.identifier.citationLiu, Jun; Lu, Yong‐lai ; Tian, Ming; Li, Fen; Shen, Jianxiang; Gao, Yangyang; Zhang, Liqun (2013). "The Interesting Influence of Nanosprings on the Viscoelasticity of Elastomeric Polymer Materials: Simulation and Experiment." Advanced Functional Materials 23(9): 1156-1163. <http://hdl.handle.net/2027.42/96669>en_US
dc.identifier.issn1616-301Xen_US
dc.identifier.issn1616-3028en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96669
dc.description.abstractAmong all carbon nanostructured materials, helical nanosprings or nanocoils have attracted particular interest as a result of their special mechanical behavior. Here, carbon nanosprings are used to adjust the viscoelasticity and reduce the resulting hysteresis loss (HL) of elastomeric polymer materials. Two types of nanospring‐filled elastomer composites are constructed as follows: system I is obtained by directly blending polymer chains with nanosprings; system II is composed of the self‐assembly of a tri‐block structure such as chain‐nanospring‐chain. Coarse‐grained molecular dynamics simulations show that the incorporation of nanosprings can improve the mechanical strength of the elastomer matrix through nanoreinforcement and considerably decrease the hysteresis loss. This finding is significant for reducing fuel consumption and improving fuel efficiency in the automobile tire industry. Furthermore, it is revealed that the spring constant of nanosprings and the interfacial chemical coupling between chains and nanosprings both play crucial roles in adjusting the viscoelasticity of elastomers. It is inferred that elastomer/carbon nanostructured materials with good flexibility and reversible mechanical response (carbon nanosprings, nanocoils, nanorings, and thin graphene sheets) have both excellent mechanical and low HL properties; this may open a new avenue for fabrication of high performance automobile tires and facilitate the large‐scale industrial application of these materials. Carbon nanosprings are found to have the capability to tune the mechanical and viscoelastic properties of elastomeric polymer materials. It is inferred that elastomer/carbon nanostructured materials with good flexibility and reversible mechanical response (i.e., carbon nanosprings, nanocoils, nanorings, and thin graphene sheets) have both excellent mechanical properties and low hysteresis loss.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherRolling Resistanceen_US
dc.subject.otherElastomersen_US
dc.subject.otherMolecular Dynamics Simulationsen_US
dc.subject.otherHysteresis Lossen_US
dc.subject.otherSelf‐Assemblyen_US
dc.subject.otherNanospringsen_US
dc.titleThe Interesting Influence of Nanosprings on the Viscoelasticity of Elastomeric Polymer Materials: Simulation and Experimenten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEngineering (General)en_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherKey Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology.en_US
dc.contributor.affiliationotherState Key Laboratory of Organic‐Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. Chinaen_US
dc.contributor.affiliationotherKey Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technologyen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96669/1/adfm_201201438_sm_suppl.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96669/2/1156_ftp.pdf
dc.identifier.doi10.1002/adfm.201201438en_US
dc.identifier.sourceAdvanced Functional Materialsen_US
dc.identifier.citedreferenceK. Kremer, G. S. Grest, J. Chem. Phys. 1990, 92, 5057.en_US
dc.identifier.citedreferenceX. Q. Chen, S. L. Zhang, D. A. Dikin, W. Q. Ding, R. S. Ruoff, L. J. Pan, Y. Nakayama, Nano Lett. 2003, 3, 1299.en_US
dc.identifier.citedreferenceL. Y. Chen, H. Wang, J. Xu, X. S. Shen, L. Yao, L. F. Zhu, Z. Y. Zeng, H. Zhang, H. Y. Chen, J. Am. Chem. Soc. 2011, 133, 9654.en_US
dc.identifier.citedreferenceC. Gomez‐Navarro, M. Burghard, K. Kern, Nano Lett. 2008, 8, 2045.en_US
dc.identifier.citedreferenceF. Scarpa, S. Adhikari, A. S. Phani, Nanotechnology 2009, 20, 065709.en_US
dc.identifier.citedreferenceM. Xu, D. N. Futaba, M. Yumura, K. Hata, Adv. Mater. 2011, 23, 3686.en_US
dc.identifier.citedreferenceM. Xu, D. N. Futaba, M. Yumura, K. Hata, Nano Lett. 2011, 11, 3279.en_US
dc.identifier.citedreferenceM. Xu, D. N. Futaba, T. Yamada, M. Yumura, K. Hata, Science 2010, 330, 1364.en_US
dc.identifier.citedreferenceY. Gogotsi, Science 2010, 330, 1332.en_US
dc.identifier.citedreferenceL. M. Dai, Angew. Chem. Int. Ed. 2011, 50, 4744.en_US
dc.identifier.citedreferenceS. Iijima, C. Brabec, A. Maiti, J. Bernholc, J. Chem. Phys. 1996, 104, 2089.en_US
dc.identifier.citedreferenceM. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S. Washburn, R. Superfine, Nature 1997, 389, 582.en_US
dc.identifier.citedreferenceL. Q. Zhang, Y. P. Wu, Y. Q. Wang, Y. Z. Wang, China Synthetic Rubber Industry 2000, 23, 71.en_US
dc.identifier.citedreferenceG. R. Hamed, Rubber Chem. Technol. 2000, 73, 524.en_US
dc.identifier.citedreferenceJ. D. Ferry, Viscoelastic Properties of Polymers, John Wiley and Sons, New York 1980.en_US
dc.identifier.citedreferenceS. Merabia, P. Sotta, D. R. Long, Macromolecules 2008, 41, 8252.en_US
dc.identifier.citedreferenceM. Daniel, C. Janin, Actual. Chim 2010, 340, 8.en_US
dc.identifier.citedreferenceJ. Liu, D. P. Cao, L. Q. Zhang, W. C. Wang, Macromolecules 2009, 42, 2831.en_US
dc.identifier.citedreferenceK. Binder, J. Baschnagel, W. Paul, Prog. Polym. Sci. 2003, 28, 115.en_US
dc.identifier.citedreferenceM. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, New York 1987.en_US
dc.identifier.citedreferenceJ. P. Gao, J. H. Weiner, Science 1994, 266, 748.en_US
dc.identifier.citedreferenceJ. Gao, J. H. Weiner, Macromolecules 1991, 24, 1519.en_US
dc.identifier.citedreferenceD. R. Rottach, J. G. Curro, G. S. Grest, A. P. Thompson, Macromolecules 2004, 37, 5468.en_US
dc.identifier.citedreferenceD. R. Rottach, J. G. Curro, J. Budzien, G. S. Grest, C. Svaneborg, R. Everaers, Macromolecules 2006, 39, 5521.en_US
dc.identifier.citedreferenceD. R. Rottach, J. G. Curro, J. Budzien, G. S. Grest, C. Svaneborg, R. Everaers, Macromolecules 2007, 40, 131.en_US
dc.identifier.citedreferenceS. Plimpton, J. Comput. Phys. 1995, 117, 1.en_US
dc.identifier.citedreferenceJ. Liu, Y. G. Gao, D. P. Cao, L. Q. Zhang, Z. H. Guo, Langmuir 2011, 27, 7926.en_US
dc.identifier.citedreferenceV. C. Tung, M. J. Allen, Y. Yang, R. B. Kaner, Nat. Nanotechnol. 2009, 4, 25.en_US
dc.identifier.citedreferenceM. Rubinstein, R. H. Colby, Polymer Physics, Oxford University Press, Oxford, UK 2003.en_US
dc.identifier.citedreferenceC. G. Robertson, C. J. Lin, M. Rackaitis, C. M. Roland, Macromolecules 2008, 41, 2727.en_US
dc.identifier.citedreferenceM. Zheng, C. H. Ke, Small 2010, 6, 1647.en_US
dc.identifier.citedreferenceA. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nat. Mater. 2005, 4, 366.en_US
dc.identifier.citedreferenceA. Modi, N. Koratkar, E. Lass, B. Q. Wei, P. M. Ajayan, Nature 2003, 424, 171.en_US
dc.identifier.citedreferenceP. W. Barone, S. Baik, D. A. Heller, M. S. Strano, Nat. Mater. 2005, 4, 86.en_US
dc.identifier.citedreferenceS. M. Jung, J. Hahn, H. Y. Jung, J. S. Suh, Nano Lett. 2006, 6, 1569.en_US
dc.identifier.citedreferenceB. Y. Lee, K. Heo, J. H. Bak, S. U. Cho, S. Moon, Y. D. Park, S. Hong, Nano Lett. 2008, 8, 4483.en_US
dc.identifier.citedreferenceM. Cadek, J. N. Coleman, K. P. Ryan, V. Nicolosi, G. Bister, A. Fonseca, J. B. Nagy, K. Szostak, F. Beguin, W. J. Blau, Nano Lett. 2004, 4, 353.en_US
dc.identifier.citedreferenceB. S. Shim, J. Zhu, E. Jan, K. Critchley, S. S. Ho, P. Podsiadlo, K. Sun, N. A. Kotov, ACS Nano 2009, 3, 1711.en_US
dc.identifier.citedreferenceM. Moniruzzaman, K. I. Winey, Macromolecules 2006, 39, 5194.en_US
dc.identifier.citedreferenceT. J. Simmons, J. Bult, D. P. Hashim, R. J. Linhardt, P. M. Ajayan, ACS Nano 2009, 3, 865.en_US
dc.identifier.citedreferenceM. A. Poggi, J. S. Boyles, L. A. Bottomley, Nano Lett. 2004, 4, 1009.en_US
dc.identifier.citedreferenceA. F. da Fonseca, D. S. Galvao, Phys. Rev. Lett. 2004, 92, 175502.en_US
dc.identifier.citedreferenceA. F. da Fonseca, C. P. Malta, D. S. Galvao, Nanotechnology 2006, 17, 5620.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.