Show simple item record

Carbonyl‐ β ‐Cyclodextrin as a Novel Binder for Sulfur Composite Cathodes in Rechargeable Lithium Batteries

dc.contributor.authorWang, Jiulinen_US
dc.contributor.authorYao, Zhendongen_US
dc.contributor.authorMonroe, Charles W.en_US
dc.contributor.authorYang, Junen_US
dc.contributor.authorNuli, Yannaen_US
dc.date.accessioned2013-03-05T18:17:38Z
dc.date.available2014-05-01T14:28:11Zen_US
dc.date.issued2013-03-06en_US
dc.identifier.citationWang, Jiulin; Yao, Zhendong; Monroe, Charles W.; Yang, Jun; Nuli, Yanna (2013). "Carbonyl‐ β ‐Cyclodextrin as a Novel Binder for Sulfur Composite Cathodes in Rechargeable Lithium Batteries." Advanced Functional Materials 23(9): 1194-1201. <http://hdl.handle.net/2027.42/96706>en_US
dc.identifier.issn1616-301Xen_US
dc.identifier.issn1616-3028en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96706
dc.description.abstractAs one of the essential components in electrodes, the binder affects the performance of a rechargeable battery. By modifying β ‐cyclodextrin ( β ‐CD), an appropriate binder for sulfur composite cathodes is identified. Through a partial oxidation reaction in H 2 O 2 solution, β ‐CD is successfully modified to carbonyl‐ β ‐cyclodextrin (C‐ β ‐CD), which exhibits a water solubility ca. 100 times that of β ‐CD at room temperature. C‐ β ‐CD possesses the typical properties of an aqueous binder: strong bonding strength, high solubility in water, moderate viscosity, and wide electrochemical windows. Sulfur composite cathodes with C‐ β ‐CD as the binder demonstrate a high reversible capacity of 694.2 mA h g (composite) −1 and 1542.7 mA h g (sulfur) −1 , with a sulfur utilization approaching 92.2%. The discharge capacity remains at 1456 mA h g (sulfur) −1 after 50 cycles, which is much higher than that of the cathode with unmodified β ‐CD as binder. Combined with its low cost and environmental benignity, C‐ β ‐CD is a promising binder for sulfur cathodes in rechargeable lithium batteries with high electrochemical performance. The sulfur utilization and cycling stability of composite cathodes in rechargeable lithium batteries are enhanced by carbonyl‐ β ‐cyclodextrin (C‐ β ‐CD) as the binder in sulfur composite cathodes. This is made possible by the fact that C‐ β ‐CD is highly soluble in water, ca. 100 times more soluble than β ‐CD at room temperature, and because it exhibits strong bonding strength.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherLithium Batteriesen_US
dc.subject.otherSulfur‐Based Cathodesen_US
dc.subject.otherCarbonyl‐ β ‐Cyclodextrinen_US
dc.subject.otherBinding Strengthen_US
dc.subject.otherElectrodesen_US
dc.titleCarbonyl‐ β ‐Cyclodextrin as a Novel Binder for Sulfur Composite Cathodes in Rechargeable Lithium Batteriesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelEngineering (General)en_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherSchool of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. Chinaen_US
dc.contributor.affiliationotherSchool of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96706/1/adfm_201201847_sm_suppl.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96706/2/1194_ftp.pdf
dc.identifier.doi10.1002/adfm.201201847en_US
dc.identifier.sourceAdvanced Functional Materialsen_US
dc.identifier.citedreferenceJ. Sun, Y. Huang, W. Wang, Z. Yu, A. Wang, K. Yuan, Electrochem. Commun. 2008, 10, 930.en_US
dc.identifier.citedreferenceY. Yang, M. T. McDowell, A. Jackson, J. J. Cha, S. S. Hong, Y. Cui, Nano Lett. 2010, 10, 1486.en_US
dc.identifier.citedreferenceJ. Hassoun, B. Scrosati, Angew. Chem. Int. Ed. 2010, 49, 2371.en_US
dc.identifier.citedreferenceS. F. Lux, F. Schappacher, A. Balducci, S. Passerini, M. Winter, J. Electrochem. Soc. 2010, 157, A320.en_US
dc.identifier.citedreferenceJ. Guo, C. Wang, Chem. Commun. 2010, 46, 1428.en_US
dc.identifier.citedreferenceI. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, Science 2011, 334, 75.en_US
dc.identifier.citedreferenceY. Jung, S. Kim, Electrochem. Commun. 2007, 9, 249.en_US
dc.identifier.citedreferenceN. Kim, C. Lee, J. Seo, W. Lee, Y. Roh, J. Power Sources 2004, 132, 209.en_US
dc.identifier.citedreferenceY. J. Choi, K. W. Kim, H. J. Ahn, J. H. Ahn, J. Alloys Compd. 2008, 449, 313.en_US
dc.identifier.citedreferenceS. E. Cheon, S. S. Choi, J. S. Han, Y. S. Choi, B. H. Jung, H. S. Lim, J. Electrochem. Soc. 2004, 151, A2067.en_US
dc.identifier.citedreferenceD. Guy, B. Lestriez, D. Guyomard, Adv. Mater. 2004, 16, 553.en_US
dc.identifier.citedreferenceH. Schneider, A. Garsuch, A. Panchenko, O. Gronwald, N. Janssen, P. Novák, J. Power Sources 2012, 205, 420.en_US
dc.identifier.citedreferenceW. Liu, M. Yang, H. Wu, S. Chiao, N. Wu, Electrochem. Solid‐State Lett. 2005, 8, A10.en_US
dc.identifier.citedreferenceJ. Sun, Y. Huang, W. Wang, Z. Yu, A. Wang, K. Yuan, Electrochim. Acta 2008, 53, 7084.en_US
dc.identifier.citedreferenceW. Zhang, Y. Huang, W. Wang, C. Huang, Y. Wang, Z. Yu, H. Zhang, J. Electrochem. Soc. 2010, 157, A443.en_US
dc.identifier.citedreferenceW. Zhao, J. Li, L. Du, C. Tan, Q. Xia, Z. Mao, L. Ji, Chem. Eur. J. 2011, 17, 5171.en_US
dc.identifier.citedreferenceD. Duchene, D. Wouessidjewe, Drug Dev. Ind. Pharm. 1990, 16, 2487.en_US
dc.identifier.citedreferenceA. R. Khan, P. Forgo, K. J. Stine, T. D. S. Valerian, Chem. Rev. 1998, 98, 1977.en_US
dc.identifier.citedreferenceM. Yoshinaga, M. Tanaka, J. Chromatogr. A 1994, 679, 359.en_US
dc.identifier.citedreferenceL. Zheng, L. Xiong, J. Li, X. Li, J. Sun, S. Yang, J. Xia, Electrochem. Commun. 2008, 10, 340.en_US
dc.identifier.citedreferenceJ. Xu, J. Yang, Y. Nuli, J. Wang, Z. Zhang, J. Power Sources 2006, 160, 621.en_US
dc.identifier.citedreferenceL. Yin, J. Wang, F. Lin, J. Yang, Y. Nuli, Energy Environ. Sci. 2012, 5, 6966.en_US
dc.identifier.citedreferenceJ. Wang, J. Yang, C. Wan, K. Du, J. Xie, N. Xu, Adv. Funct. Mater. 2003, 13, 487.en_US
dc.identifier.citedreferenceJ. Wang, J. Yang, J. Xie, N. Xu, Adv. Mater. 2002, 14, 963.en_US
dc.identifier.citedreferenceJ. Gao, M. A. Lowe, Y. Kiya, H. D. Abruna, J. Phys. Chem. C 2011, 115, 25132.en_US
dc.identifier.citedreferenceX. He, J. Ren, L. Wang, W. Pu, C. Jiang, C. Wan, J. Power Sources 2009, 190, 154.en_US
dc.identifier.citedreferenceY. Guo, J. Hu, L. Wan, Adv. Mater. 2008, 20, 2878.en_US
dc.identifier.citedreferenceM. Winter, R. J. Brodd, Chem. Rev. 2004, 104, 4245.en_US
dc.identifier.citedreferenceB. Scrosati, J. Hassoun, Y. K. Sun, Energy Environ. Sci. 2011, 4, 3287.en_US
dc.identifier.citedreferenceP. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater. 2012, 11, 19.en_US
dc.identifier.citedreferenceD. Marmorstein, T. H. Yu, K. A. Striebel, F. R. Mclarnon, J. Hou, E. J. Cairns, J. Power Sources 2000, 89, 219.en_US
dc.identifier.citedreferenceX. L. Ji, L. F. Nazar, J. Mater. Chem. 2010, 20, 9821.en_US
dc.identifier.citedreferenceG. He, X. L. Ji, L. F. Nazar, Energy Environ. Sci. 2011, 4, 2878.en_US
dc.identifier.citedreferenceY. V. Mikhaylik, J. R. Akridge, J. Electrochem. Soc. 2004, 151, A1969.en_US
dc.identifier.citedreferenceF. Wu, J. Z. Chen, R. J. Chen, S. X. Wu, L. Li, S. Chen, T. Zhao, J. Phys. Chem. C 2011, 115, 6057.en_US
dc.identifier.citedreferenceM. M. Sun, S. C. Zhang, T. Jiang, L. Zhang, J. H. Yu, Electrochem. Commun. 2008, 10, 1819.en_US
dc.identifier.citedreferenceL. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, J. Liu, Adv. Mater. 2012, 24, 1176.en_US
dc.identifier.citedreferenceX. L. Ji, K. T. Lee, L.F. Nazar, Nat. Mater. 2009, 8, 500.en_US
dc.identifier.citedreferenceN. Jayaprakash, J. Shen, Surya S. Moganty, A. Corona, A Lynden, Angew. Chem. Int. Ed. 2011, 50, 5904.en_US
dc.identifier.citedreferenceB. Zhang, X. Qin, G. R. Li, X. P. Gao, Energy Environ. Sci. 2010, 3, 1531.en_US
dc.identifier.citedreferenceC. Liang, N. J. Dudney, J. Y. Howe, Chem. Mater. 2009, 21, 4724.en_US
dc.identifier.citedreferenceW. Ahn, K. B. Kim, K. N. Jung, K. H. Shin, C. S. Jin, J. Power Sources 2012, 202, 394.en_US
dc.identifier.citedreferenceL. Ji, M. Rao, S. Aloni, L. Wang, E. J. Cairns, Y. Zhang, Energy Environ. Sci. 2011, 4, 5053.en_US
dc.identifier.citedreferenceG. Zheng, Y. Yang, J. J. Cha, S. S. Hong, Y. Cui. Nano Lett. 2011, 11, 4462.en_US
dc.identifier.citedreferenceH. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Nano Lett. 2011, 11, 2644.en_US
dc.identifier.citedreferenceL. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E. J. Cairns, Y. Zhang, J. Am. Chem. Soc. 2011, 133, 18522.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.