Show simple item record

Characteristics‐based boundary conditions for the Euler adjoint problem

dc.contributor.authorHayashi, Marceloen_US
dc.contributor.authorCeze, Marcoen_US
dc.contributor.authorVolpe, Ernanien_US
dc.date.accessioned2013-03-05T18:17:40Z
dc.date.available2014-05-23T15:04:18Zen_US
dc.date.issued2013-04-10en_US
dc.identifier.citationHayashi, Marcelo; Ceze, Marco; Volpe, Ernani (2013). "Characteristics‐based boundary conditions for the Euler adjoint problem." International Journal for Numerical Methods in Fluids 71(10): 1297-1321. <http://hdl.handle.net/2027.42/96707>en_US
dc.identifier.issn0271-2091en_US
dc.identifier.issn1097-0363en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96707
dc.publisherSpringer‐Verlagen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherEuler Flowen_US
dc.subject.otherBoundary Conditionsen_US
dc.subject.otherAerodynamic Designen_US
dc.subject.otherAdjoint Methoden_US
dc.titleCharacteristics‐based boundary conditions for the Euler adjoint problemen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96707/1/fld3712.pdf
dc.identifier.doi10.1002/fld.3712en_US
dc.identifier.sourceInternational Journal for Numerical Methods in Fluidsen_US
dc.identifier.citedreferenceHayashi MT, Ceze MAB, Volpe EV. Characteristics‐based boundary conditions for the Euler adjoint problem: 2‐D formulation. In AIAA Applied Aerodynamics Conference, Chicago, IL, June 2010; 18. AIAA. 2010‐4677.en_US
dc.identifier.citedreferenceKim S, Alonso JJ, Jameson A. A gradient accuracy study for the adjoint‐based Navier–Stokes design method. AIAA 37th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 1999. AIAA‐99‐0299.en_US
dc.identifier.citedreferenceGiles MB, Pierce NA. Adjoint equations in CFD: duality, boundary conditions and solution behavior. AIAA Paper 97‐1850, 1997.en_US
dc.identifier.citedreferenceGiles MB, Pierce NA. On the properties of solutions of the adjoint Euler equations. In Numerical Methods for Fluid Dynamics VI, Baines MJ (ed.). ICFD: Oxford, UK, June 1998.en_US
dc.identifier.citedreferenceGiles MB, Pierce NA. Analytic adjoint solutions for the quasi‐1D Euler equations. Report 00/03, Oxford University Computing Laboratory, Oxford, March 2000.en_US
dc.identifier.citedreferenceGiles MB, Pierce NA. Analytic adjoint solutions for the quasi‐1D Euler equations. Journal of Fluid Mechanics 2001; 426: 327 – 345.en_US
dc.identifier.citedreferenceHirsch C. Numerical Computation of Internal and External Flows: Computational Methods for Inviscid and Viscous Flows, 1st edition, volume 2 of Wiley Series in Numerical Methods in Engineering. John Wiley & Sons: NY, 1994.en_US
dc.identifier.citedreferenceHayashi MT. Estudo conceitual do problema adjunto baseado nas equações de Euler para aplicações de otimização aerodinâmica. Master's thesis, Escola Politécnica da Universidade de São Paulo, Fevereiro, 2009.en_US
dc.identifier.citedreferenceVolpe EV, Santos LCC. Boundary and internal conditions for adjoint fluid flow problems—applications to quasi‐1D Euler equations. Journal of Engineering Mathematics September 2009; 65 ( 1 ): 1 – 24.en_US
dc.identifier.citedreferenceGelfand IM, Fomin SV. Calculus of Variations, 1st edition, Selected Russian Publications in Mathematical Sciences, Prentice‐Hall, Inc.: N.J., 1963. Translated and Edited by R. A. Silverman.en_US
dc.identifier.citedreferenceReuther JJ. Aerodynamic shape optimization using control theory. PhD thesis, University of California, 1996.en_US
dc.identifier.citedreferenceJameson A, Kim S. Reduction of the adjoint gradient formula for aerodynamic shape optimization problems. AIAA Journal November 2003; 41 ( 11 ): 2114 – 2129.en_US
dc.identifier.citedreferenceCarrier GF, Pearson CE. Partial Differential Equations: Theory and Technique, 2nd edition. Academic Press: NY, 1988.en_US
dc.identifier.citedreferenceHirsch C. Numerical Computation of Internal and External Flows: Fundamentals of Numerical Discretization, 1st edition, volume 1 of Wiley Series in Numerical Methods in Engineering. John Wiley & Sons: NY, 1994.en_US
dc.identifier.citedreferenceFlügge W. Tensor Analysis and Continuum Mechanics, 1st edition. Springer‐Verlag: N.Y., 1972.en_US
dc.identifier.citedreferenceKaplan W. Advanced Calculus. Addison‐Wesley Pub. Co.: NY, 1971.en_US
dc.identifier.citedreferenceCeze MAB. Projeto inverso aerodinâmico utilizando o método adjunto aplicado às equações de Euler. Master's thesis, Escola Politécnica da Universidade de São Paulo, Agosto 2008.en_US
dc.identifier.citedreferenceCeze MAB, Hayashi MT, Volpe EV. A study of the CST parameterization characteristics. In AIAA Applied Aerodynamics Conference, San Antonio, TX, June 2009; 12. AIAA. AIAA 2009‐3767.en_US
dc.identifier.citedreferenceKulfan BM, Bussoletti JE. Fundamental parametric geometry representations for aircraft component shapes. In 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, VA, September 2006; 45.en_US
dc.identifier.citedreferenceJameson A, Schmidt W, Turkel E. Numerical solution of the Euler equations by finite volume methods using Runge–Kutta time‐stepping schemes. AIAA 14th Fluid and Plasma Dynamic Conference, Palo Alto, June 1981; 15. AIAA Paper 81‐1259.en_US
dc.identifier.citedreferenceJameson A. Aerodynamic design via control theory. Journal of Scientific Computing 1988; 3 ( f3 ): 233 – 260.en_US
dc.identifier.citedreferencePirroneau O. On optimal profiles in Stokes flow. Journal of Fluid Mechanics 1973; 59 ( 1 ): 117 – 128.en_US
dc.identifier.citedreferencePirroneau O. On optimal design in fluid dynamics. Journal of Fluid Mechanics 1974; 64 ( 1 ): 97 – 110.en_US
dc.identifier.citedreferencePirroneau O. Optimal Shape Design for Elliptic Systems, 1st edition. Springer‐Verlag: Berlin, Heidelberg, New York, Tokyo, 1983.en_US
dc.identifier.citedreferenceAlonso JJ, Kroo IM, Jameson A. Advanced algorithms for design and optimization of quiet supersonic platforms. In AIAA Computational Fluid Dynamics Conference, Reno, NV, January 2002; 13. AIAA‐2002‐0144.en_US
dc.identifier.citedreferenceCabuk H, Sung CH, Modi V. Adjoint operator approach to shape design for incompressible flows. In 3rd International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES), College Park, PA, 1991; 391 – 404.en_US
dc.identifier.citedreferenceJameson A. Aerodynamic design via control theory. Journal of Scientific Computing 1988; 3: 233 – 260.en_US
dc.identifier.citedreferenceJameson A. Optimum aerodynamic design using CFD and control theory. AIAA 12th Computational Fluid Dynamics Conference. In AIAA 95‐1729‐CP: San Diego, 1995.en_US
dc.identifier.citedreferenceJameson A, Martinelli L, Pierce NA. Optimum aerodynamic design using the Navier–Stokes equations. In 35th Aerospace Sciences Meeting & Exhibit, Reno, NV, January 1997; 1 – 20. American Institute of Aeronautics and Astronautics, AIAA.en_US
dc.identifier.citedreferenceKim S. Design optimization of high‐lift configurations using a viscous adjoint‐based method. PhD thesis, Stanford University, 2001.en_US
dc.identifier.citedreferenceKuruvila G, Taasan S, Salas MD. Airfoil optimization by the one‐shot method, optimum design methods in aerodynamics. AGARD‐FDP‐VKI Special Course, 1994.en_US
dc.identifier.citedreferenceMohammadi B, Pirroneau O. Applied Shape Optimization for Fluids, 1st edition. Oxford University Press: New York, 2001.en_US
dc.identifier.citedreferenceSantos LCC. A study on aerodynamic design optimization using an adjoint method. Technical Report IB 129 ‐ 95/12, Institut für Entwurfsaerodynamik, Braunschweig, July 1995.en_US
dc.identifier.citedreferenceTaasan S, Kuruvila G, Salas MD. Aerodynamic design and optimization in one shot. In 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 1992; 16. AIAA 92–0025.en_US
dc.identifier.citedreferenceCacuci DG, Weber CF, Oblow EM, Marable JH. Sensitivity theory for general systems of non‐linear equations. Nuclear Science and Engineering 1980; 75: 88 – 110.en_US
dc.identifier.citedreferenceHall MCG, Cacuci D. Physical interpretation of the adjoint functions for sensitivity analysis of atmospheric models. Journal of Atmospheric Sciences October 1983; 40: 2537 – 2546.en_US
dc.identifier.citedreferenceDuta MC, Giles MB, Campobasso MS. The harmonic adjoint approach to unsteady turbomachinery design. International Journal for Numerical Methods in Fluids 2002; 40: 323 – 332.en_US
dc.identifier.citedreferenceKim H, Nakahashi K. Unstructured adjoint method for Navier–Stokes equations. JSME International Journal 2005; 48 ( 2 ): 202 – 207.en_US
dc.identifier.citedreferenceKim HJ, Sasaki D, Obayashi S, Nakahashi K. Aerodynamic optimization of supersonic transport wing using unstructured adjoint method. AIAA Journal June 2001; 39 ( 6 ): 1011 – 1020.en_US
dc.identifier.citedreferenceKim S, Alonso JJ, Jameson A. Multi‐element high‐lift configuration design optimization using viscous continuous adjoint method. Journal of Aircraft 2004; 41 ( 5 ): 1082 – 1097.en_US
dc.identifier.citedreferenceNadarajah SK. The discrete adjoint approach to aerodynamic shape optimization. PhD thesis, Stanford University, 2003.en_US
dc.identifier.citedreferenceQiao Z, Qin X, Yang X. Wing design by solving adjoint equations. In 40th Aerospace Sciences Meeting & Exhibit, Reno, NV, January 2002. American Institute of Aeronautics and Astronautics, AIAA.en_US
dc.identifier.citedreferenceMani K, Mavriplis D. Unsteady discrete adjoint formulation for two‐dimensional flow problems with deforming meshes. AIAA Journal June 2008; 46 ( 6 ): 1351 – 1364.en_US
dc.identifier.citedreferenceNadarajah SK, Jameson A. Optimum shape design for unsteady three‐dimensional viscous flows using a non‐linear frequency domain method. In 24th Applied Aerodynamics Conference, San Francisco, CA, June 2006; 22. American Institute of Aeronautics and Astronautics, AIAA.en_US
dc.identifier.citedreferenceNadarajah SK, Jameson A. Optimum shape design for unsteady flows with time‐accurate continuous and discrete adjoint methods. AIAA Journal July 2007; 45 ( 7 ): 1478 – 1491.en_US
dc.identifier.citedreferenceThomas JP, Hall KC, Dowell EH. Discrete adjoint approach for modeling unsteady aerodynamic design sensitivities. AIAA Journal September 2005; 43 ( 9 ): 1931 – 1936.en_US
dc.identifier.citedreferenceJameson A, Martinelli L, Pierce NA. Optimum aerodynamic design using the Navier–Stokes equations. Theoretical and Computational Fluid Dynamics 1998; 1 ( 10 ): 213 – 237.en_US
dc.identifier.citedreferenceJameson A, Sriram A, Martinelli L. A continuous adjoint method for unstructured grids. In AIAA Computational Fluid Dynamics Conference, Orlando, FL, June 2003; 16. AIAA 2003‐3955.en_US
dc.identifier.citedreferenceJameson A, Nadarajah SK. A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization. In AIAA 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2000; 20. AIAA 2000‐0667.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.