Show simple item record

A novel Transcript is Up‐Regulated by Fasting in the Hypothalamus and Enhances Insulin Signalling

dc.contributor.authorChai, B.en_US
dc.contributor.authorLi, J.‐y.en_US
dc.contributor.authorFritze, D.en_US
dc.contributor.authorZhang, W.en_US
dc.contributor.authorXia, Z.en_US
dc.contributor.authorMulholland, M. W.en_US
dc.date.accessioned2013-03-05T18:17:45Z
dc.date.available2014-05-01T14:28:12Zen_US
dc.date.issued2013-03en_US
dc.identifier.citationChai, B.; Li, J.‐y. ; Fritze, D.; Zhang, W.; Xia, Z.; Mulholland, M. W. (2013). "A novel Transcript is Upâ Regulated by Fasting in the Hypothalamus and Enhances Insulin Signalling." Journal of Neuroendocrinology (3): 292-301. <http://hdl.handle.net/2027.42/96718>en_US
dc.identifier.issn0953-8194en_US
dc.identifier.issn1365-2826en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96718
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAdipogenesis Down‐Regulating Transcript 3en_US
dc.subject.otherProopiomelanocortinen_US
dc.subject.otherNeuropeptide Yen_US
dc.subject.otherInsulinen_US
dc.titleA novel Transcript is Up‐Regulated by Fasting in the Hypothalamus and Enhances Insulin Signallingen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22935015en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96718/1/jne2378.pdf
dc.identifier.doi10.1111/j.1365-2826.2012.02378.xen_US
dc.identifier.sourceJournal of Neuroendocrinologyen_US
dc.identifier.citedreferencePetrovich GD, Setlow B, Holland PC, Gallagher M. Amygdalo‐hypothalamic circuit allows learned cues to override satiety and promote eating. J Neurosci 2002; 22: 8748 – 8753.en_US
dc.identifier.citedreferenceLi JY, Lescure PA, Misek DE, Lai YM, Chai BX, Kuick R, Thompson RC, Demo RM, Kurnit DM, Michailidis G, Hanash SM, Gantz I. Food deprivation‐induced expression of minoxidil sulfotransferase in the hypothalamus uncovered by microarray analysis. J Biol Chem 2002; 277: 9069 – 9076.en_US
dc.identifier.citedreferenceCarninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest ARR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi‐Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii‐Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SPT, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui‐Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CAM, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori‐Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura‐Oho Y, Suzuki H, Kawai J, Hayashizaki Y, Consortium F, Group RGER, Genome Science G. The transcriptional landscape of the mammalian genome. Science 2005; 309: 1559 – 1563. Erratum appears in Science. 2006 Mar 24;311(5768):1713.en_US
dc.identifier.citedreferenceMattick JS, Makunin IV. Non‐coding RNA. Hum Mol Genet 2006; 15: R17 – R29.en_US
dc.identifier.citedreferenceKnowling S, Morris KV. Non‐coding RNA and antisense RNA. Nature's trash or treasure? Biochimie 2011; 93: 1922 – 1927en_US
dc.identifier.citedreferencePibouin L, Villaudy J, Ferbus D, Muleris M, Prosperi MT, Remvikos Y, Goubin G. Cloning of the mRNA of overexpression in colon carcinoma‐1: a sequence overexpressed in a subset of colon carcinomas. Cancer Genet Cytogenet 2002; 133: 55 – 60.en_US
dc.identifier.citedreferenceKikuchi K, Fukuda M, Ito T, Inoue M, Yokoi T, Chiku S, Mitsuyama T, Asai K, Hirose T, Aizawa Y. Transcripts of unknown function in multiple‐signaling pathways involved in human stem cell differentiation. Nucleic Acids Res 2009; 37: 4987 – 5000.en_US
dc.identifier.citedreferenceLi J‐Y, Chai B, Zhang W, Wu X, Zhang C, Fritze D, Xia Z, Patterson C, Mulholland MW. Ankyrin repeat and SOCS box containing protein 4 (Asb‐4) colocalizes with insulin receptor substrate 4 (IRS4) in the hypothalamic neurons and mediates IRS4 degradation. BMC Neurosci 2011; 12: 95.en_US
dc.identifier.citedreferenceDennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G. Mammalian TOR: a homeostatic ATP sensor. Science 2001; 294: 1102 – 1105.en_US
dc.identifier.citedreferenceNiswender KD, Baskin DG, Schwartz MW. Insulin and its evolving partnership with leptin in the hypothalamic control of energy homeostasis. Trends Endocrinol Metab 2004; 15: 362 – 369.en_US
dc.identifier.citedreferenceMaejima Y, Kohno D, Iwasaki Y, Yada T. Insulin suppresses ghrelin‐induced calcium signaling in neuropeptide Y neurons of the hypothalamic arcuate nucleus. Aging (Albany NY) 2011; 3: 1092 – 1097.en_US
dc.identifier.citedreferenceLeDoux J. The amygdala. Curr Biol 2007; 17: R868 – R874.en_US
dc.identifier.citedreferenceCardinal RN, Parkinson JA, Hall J, Everitt BJ. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 2002; 26: 321 – 352.en_US
dc.identifier.citedreferenceBaxter MG, Murray EA. The amygdala and reward. Nat Rev Neurosci 2002; 3: 563 – 573.en_US
dc.identifier.citedreferencePetrovich GD, Canteras NS, Swanson LW. Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Brain Res Rev 2001; 38: 247 – 289.en_US
dc.identifier.citedreferenceElmquist JK, Elias CF, Saper CB. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 1999; 22: 221 – 232.en_US
dc.identifier.citedreferenceWhite MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 2002; 283: E413 – E422.en_US
dc.identifier.citedreferenceWauman J, De Smet AS, Catteeuw D, Belsham D, Tavernier J. Insulin receptor substrate 4 couples the leptin receptor to multiple signaling pathways. Mol Endocrinol 2008; 22: 965 – 977.en_US
dc.identifier.citedreferenceDuan C, Li M, Rui L. SH2‐B promotes insulin receptor substrate 1 (IRS1)‐ and IRS2‐mediated activation of the phosphatidylinositol 3‐kinase pathway in response to leptin. J Biol Chem 2004; 279: 43684 – 43691.en_US
dc.identifier.citedreferenceYenush L, Zanella C, Uchida T, Bernal D, White MF. The pleckstrin homology and phosphotyrosine binding domains of insulin receptor substrate 1 mediate inhibition of apoptosis by insulin. Mol Cell Biol 1998; 18: 6784 – 6794.en_US
dc.identifier.citedreferenceYenush L, White MF. The IRS‐signalling system during insulin and cytokine action. BioEssays 1997; 19: 491 – 500.en_US
dc.identifier.citedreferenceNuman S, Russell DS. Discrete expression of insulin receptor substrate‐4 mRNA in adult rat brain. Brain Res Mol Brain Res 1999; 72: 97 – 102.en_US
dc.identifier.citedreferenceLam TK, Schwartz GJ, Rossetti L. Hypothalamic sensing of fatty acids. Nat Neurosci 2005; 8: 579 – 584.en_US
dc.identifier.citedreferenceSandoval D, Cota D, Seeley RJ. The integrative role of CNS fuel‐sensing mechanisms in energy balance and glucose regulation. Annu Rev Physiol 2008; 70: 513 – 535.en_US
dc.identifier.citedreferenceWoods SC, Lutz TA, Geary N, Langhans W. Pancreatic signals controlling food intake; insulin, glucagon and amylin. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1219 – 1235.en_US
dc.identifier.citedreferenceSchwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000; 404: 661 – 671.en_US
dc.identifier.citedreferenceMorton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature 2006; 443: 289 – 295.en_US
dc.identifier.citedreferenceLi JY, Kuick R, Thompson RC, Misek DE, Lai YM, Liu YQ, Chai BX, Hanash SM, Gantz I. Arcuate nucleus transcriptome profiling identifies ankyrin repeat and suppressor of cytokine signalling box‐containing protein 4 as a gene regulated by fasting in central nervous system feeding circuits. J Neuroendocrinol 2005; 17: 394 – 404.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.