Show simple item record

Electrocorticographic correlates of cognitive control in a stroop task—intracranial recording in epileptic patients

dc.contributor.authorKoga, Shinichiroen_US
dc.contributor.authorRothermel, Roberten_US
dc.contributor.authorJuhász, Csabaen_US
dc.contributor.authorNagasawa, Tetsuroen_US
dc.contributor.authorSood, Sandeepen_US
dc.contributor.authorAsano, Eishien_US
dc.date.accessioned2013-03-05T18:17:53Z
dc.date.available2013-03-05T18:17:53Z
dc.date.issued2011-10en_US
dc.identifier.citationKoga, Shinichiro; Rothermel, Robert; Juhász, Csaba ; Nagasawa, Tetsuro; Sood, Sandeep; Asano, Eishi (2011). "Electrocorticographic correlates of cognitive control in a stroop taskâ intracranial recording in epileptic patients." Human Brain Mapping 32(10): 1580-1591. <http://hdl.handle.net/2027.42/96736>en_US
dc.identifier.issn1065-9471en_US
dc.identifier.issn1097-0193en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96736
dc.description.abstractThe human brain executes cognitive control, such as selection of relevant information in the presence of competing irrelevant information, and cognitive control is essential for us to yield a series of optimal behaviors in our daily life. This study assessed electrocorticographic γ‐oscillations elicited by cognitive control in the context of the Stroop color‐naming paradigm, with a temporal resolution of 10 msec and spatial resolution of 1 cm. Subjects were instructed to overtly read a color word printed in an incongruent color in the reading task, and to overtly name the ink color of a color word printed in an incongruent color in the Stroop color‐naming task. The latter task specifically elicited larger γ‐augmentations in the dorsolateral‐premotor, dorsolateral‐prefrontal and supplementary motor areas with considerable inter‐subject spatial variability. Such Stroop color‐naming‐specific γ‐augmentations occurred 500 to 200 msec prior to overt responses. Electrical stimulation of the sites showing Stroop color‐naming‐specific γ‐augmentations resulted in temporary naming impairment more frequently than that of the remaining sites. This study has provided direct evidence that a critical process of cognitive control in the context of Stroop color‐naming paradigm consists of recruitment of neurons essential for naming located in variable portions of the dorsolateral premotor and prefrontal areas. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherIn‐Vivo Animation of Event‐Related γ‐Oscillationsen_US
dc.subject.otherIntracranial Recordingen_US
dc.subject.otherExecutive Functionen_US
dc.subject.otherCognitive Controlen_US
dc.subject.otherLocal Field Potentialsen_US
dc.titleElectrocorticographic correlates of cognitive control in a stroop task—intracranial recording in epileptic patientsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbsecondlevelKinesiology and Sportsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationotherDivision of Pediatric Neurology, Children's Hospital of Michigan, Wayne State University, 3901 Beaubien St., Detroit, MI 48201, USAen_US
dc.contributor.affiliationotherDepartment of Neurosurgery, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan 48201en_US
dc.contributor.affiliationotherDepartment of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan 48201en_US
dc.contributor.affiliationotherDepartment of Psychiatry, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan 48201en_US
dc.contributor.affiliationotherDepartment of Interdisciplinary Medicine, National Center for Child Health and Development (NCCHD), 2‐10‐1, Okura, Setagaya‐ku, Tokyo 157‐8535, Japanen_US
dc.contributor.affiliationotherDepartment of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan 48201en_US
dc.identifier.pmid20845393en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96736/1/21129_ftp.pdf
dc.identifier.doi10.1002/hbm.21129en_US
dc.identifier.sourceHuman Brain Mappingen_US
dc.identifier.citedreferencePerret E ( 1974 ): The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. Neuropsychologia 12: 323 – 330.en_US
dc.identifier.citedreferenceKoch SP, Werner P, Steinbrink J, Fries P, Obrig H ( 2009 ): Stimulus‐induced and state‐dependent sustained gamma activity is tightly coupled to the hemodynamic response in humans. J Neurosci 29: 13962 – 13970.en_US
dc.identifier.citedreferenceKoechlin E, Ody C, Kouneiher F ( 2003 ): The architecture of cognitive control in the human prefrontal cortex. Science 302: 1181 – 1185.en_US
dc.identifier.citedreferenceLeung HC, Skudlarski P, Gatenby JC, Peterson BS, Gore JC ( 2000 ): An event‐related functional MRI study of the stroop color word interference task. Cereb Cortex 10: 552 – 560.en_US
dc.identifier.citedreferenceLiu X, Banich MT, Jacobson BL, Tanabe JL ( 2006 ): Functional dissociation of attentional selection within PFC: Response and non‐response related aspects of attentional selection as ascertained by fMRI. Cereb Cortex 16: 827 – 834.en_US
dc.identifier.citedreferenceMacDonald AW III, Cohen JD, Stenger VA, Carter CS ( 2000 ): Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288: 1835 – 1838.en_US
dc.identifier.citedreferenceManning JR, Jacobs J, Fried I, Kahana MJ ( 2009 ): Broadband shifts in local field potential power spectra are correlated with single‐neuron spiking in humans. J Neurosci 29: 13613 – 13620.en_US
dc.identifier.citedreferenceMansouri FA, Tanaka K, Buckley MJ ( 2009 ): Conflict‐induced behavioural adjustment: A clue to the executive functions of the prefrontal cortex. Nat Rev Neurosci 10: 141 – 152.en_US
dc.identifier.citedreferenceMiller EK, Cohen JD ( 2001 ): An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24: 167 – 202.en_US
dc.identifier.citedreferenceMuggleton NG, Chen CY, Tzeng OJL, Hung DL, Juan CH ( 2010 ): Inhibitory control and the frontal eye fields. J Cogn Neurosci. Doi: 10.1162/jocn.2010.21416.en_US
dc.identifier.citedreferenceNagasawa T, Rothermel R, Juhász C, Fukuda M, Nishida M, Sood S, Asano E ( 2010 ): Cortical gamma‐oscillations modulated by auditory‐motor tasks: Intracranial recording in patients with epilepsy. Hum Brain Mapp Doi: 10.1002/hbm.20963.en_US
dc.identifier.citedreferenceNiessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RA ( 2005 ): Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309: 948 – 951.en_US
dc.identifier.citedreferenceNishida M, Juhász C, Sood S, Chugani HT, Asano E ( 2008 ): Cortical glucose metabolism positively correlates with gamma‐oscillations in nonlesional focal epilepsy. Neuroimage 42: 1275 – 1284.en_US
dc.identifier.citedreferencePeterson BS, Skudlarski P, Gatenby JC, Zhang H, Anderson AW, Gore JC ( 1999 ): An fMRI study of Stroop word‐color interference: Evidence for cingulate subregions subserving multiple distributed attentional systems. Biol Psychiatry 45: 1237 – 1258.en_US
dc.identifier.citedreferencePfurtscheller G, Lopes da Silva FH ( 1999 ): Event‐related EEG/MEG synchronization and desynchronization: Basic principles. Clin Neurophysiol 110: 1842 – 1857.en_US
dc.identifier.citedreferencePolk TA, Drake RM, Jonides JJ, Smith MR, Smith EE ( 2008 ): Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: A functional magnetic resonance imaging study of the Stroop task. J Neurosci 28: 13786 – 13792.en_US
dc.identifier.citedreferenceRay S, Crone NE, Niebur E, Franaszczuk PJ, Hsiao SS ( 2008 ): Neural correlates of high‐gamma oscillations (60–200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J Neurosci 28: 11526 – 11536.en_US
dc.identifier.citedreferenceRicheson JA, Baird AA, Gordon HL, Heatherton TF, Wyland CL, Trawalter S, Shelton JN ( 2003 ): An fMRI investigation of the impact of interracial contact on executive function. Nat Neurosci 6: 1323 – 1328.en_US
dc.identifier.citedreferenceSahin NT, Pinker S, Cash SS, Schomer D, Halgren E ( 2009 ): Sequential processing of lexical, grammatical, and phonological information within Broca's area. Science 326: 445 – 449.en_US
dc.identifier.citedreferenceSimes RJ ( 1986 ): An improved Bonferroni procedure for multiple tests of significance. Biometrika 73: 751 – 754.en_US
dc.identifier.citedreferenceSinai A, Bowers CW, Crainiceanu CM, Boatman D, Gordon B, Lesser RP, Lenz FA, Crone NE ( 2005 ): Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. Brain 128: 1556 – 1570.en_US
dc.identifier.citedreferenceStroop JR ( 1935 ): Studies of interference in spatial verbal reactions. J Exp Psychol 18: 643 – 662.en_US
dc.identifier.citedreferenceStuss DT, Floden D, Alexander MP, Levine B, Katz D ( 2001 ): Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location. Neuropsychologia 39: 771 – 786.en_US
dc.identifier.citedreferenceTallon‐Baudry C, Bertrand O ( 1999 ): Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3: 151 – 162.en_US
dc.identifier.citedreferenceTanji K, Suzuki K, Delorme A, Shamoto H, Nakasato N ( 2005 ): High‐frequency gamma‐band activity in the basal temporal cortex during picture‐naming and lexical‐decision tasks. J Neurosci 25: 3287 – 3293.en_US
dc.identifier.citedreferenceTowle VL, Yoon HA, Castelle M, Edgar JC, Biassou NM, Frim DM, Spire JP, Kohrman MH ( 2008 ): ECoG gamma activity during a language task: Differentiating expressive and receptive speech areas. Brain 131: 2013 – 2027.en_US
dc.identifier.citedreferenceTurken AU, Swick D ( 1999 ): Response selection in the human anterior cingulate cortex. Nat Neurosci 2: 920 – 924.en_US
dc.identifier.citedreferenceVanderhasselt MA, De Raedt R, Baeken C, Leyman L, D'haenen H ( 2006 ): The influence of rTMS over the left dorsolateral prefrontal cortex on Stroop task performance. Exp Brain Res 169: 279 – 282.en_US
dc.identifier.citedreferenceVanderhasselt MA, De Raedt R, Baeken C, Leyman L, Clerinx P, D'haenen H ( 2007 ): The influence of rTMS over the right dorsolateral prefrontal cortex on top‐down attentional processes. Brain Res 1137: 111 – 116.en_US
dc.identifier.citedreferenceVerguts T, Notebaert W ( 2009 ): Adaptation by binding: A learning account of cognitive control. Trends Cogn Sci 13: 252 – 257.en_US
dc.identifier.citedreferenceWagner M, Rihs TA, Mosimann UP, Fisch HU, Schlaepfer TE ( 2006 ): Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex affects divided attention immediately after cessation of stimulation. J Psychiatr Res 40: 315 – 321.en_US
dc.identifier.citedreferenceAlexander MP, Stuss DT, Picton T, Shallice T, Gillingham S ( 2007 ): Regional frontal injuries cause distinct impairments in cognitive control. Neurology 68: 1515 – 1523.en_US
dc.identifier.citedreferenceAlvarez JA, Emory E ( 2006 ): Executive function and the frontal lobes: A meta‐analytic review. Neuropsychol Rev 16: 17 – 42.en_US
dc.identifier.citedreferenceAsano E, Juhász C, Shah A, Sood S, Chugani HT ( 2009a ) Role of subdural electrocorticography in prediction of long‐term seizure outcome in epilepsy surgery. Brain 132: 1038 – 1047.en_US
dc.identifier.citedreferenceAsano E, Nishida M, Fukuda M, Rothermel R, Juhász C, Sood S ( 2009b ) Differential visually‐induced gamma‐oscillations in human cerebral cortex. Neuroimage 45: 477 – 489.en_US
dc.identifier.citedreferenceBanich MT, Milham MP, Atchley R, Cohen NJ, Webb A, Wszalek T, Kramer AF, Liang ZP, Wright A, Shenker J, Magin R ( 2000 ): fMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. J Cogn Neurosci 12: 988 – 1000.en_US
dc.identifier.citedreferenceBotvinick MM, Cohen JD, Carter CS ( 2004 ): Conflict monitoring and anterior cingulate cortex: An update. Trends Cogn Sci 8: 539 – 546.en_US
dc.identifier.citedreferenceBragin A, Jandó G, Nádasdy Z, Hetke J, Wise K, Buzsáki G ( 1995 ): Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15: 47 – 60.en_US
dc.identifier.citedreferenceBrown EC, Rothermel R, Nishida M, Juhász C, Muzik O, Hoechstetter K, Sood S, Chugani HT, Asano E ( 2008 ): In vivo animation of auditory‐language‐induced gamma‐oscillations in children with intractable focal epilepsy. Neuroimage 41: 1120 – 1131.en_US
dc.identifier.citedreferenceCanolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT ( 2006 ): High gamma power is phase‐locked to theta oscillations in human neocortex. Science 313: 1626 – 1628.en_US
dc.identifier.citedreferenceCanolty RT, Soltani M, Dalal SS, Edwards E, Dronkers NF, Nagarajan SS, Kirsch HE, Barbaro NM, Knight RT ( 2007 ): Spatiotemporal dynamics of word processing in the human brain. Front Neurosci 1: 185 – 196.en_US
dc.identifier.citedreferenceCardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI ( 2009 ): Driving fast‐spiking cells induces gamma rhythm and controls sensory responses. Nature 459: 663 – 667.en_US
dc.identifier.citedreferenceChin GJ ( 2004 ): Psychology: Individual differences. Science 306: 2164 – 2165.en_US
dc.identifier.citedreferenceCrone NE, Miglioretti DL, Gordon B, Lesser RP ( 1998 ): Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event‐related synchronization in the gamma band. Brain 121: 2301 – 2315.en_US
dc.identifier.citedreferenceCrone NE, Sinai A, Korzeniewska A ( 2006 ): High‐frequency gamma oscillations and human brain mapping with electrocorticography. Prog Brain Res 159: 275 – 295.en_US
dc.identifier.citedreferenceDalal SS, Baillet S, Adam C, Ducorps A, Schwartz D, Jerbi K, Bertrand O, Garnero L, Martinerie J, Lachaux JP ( 2009 ): Simultaneous MEG and intracranial EEG recordings during attentive reading. Neuroimage 45: 1289 – 1304.en_US
dc.identifier.citedreferenceDonohue SE, Wendelken C, Bunge SA ( 2008 ): Neural correlates of preparation for action selection as a function of specific task demands. J Cogn Neurosci 20: 694 – 706.en_US
dc.identifier.citedreferenceDuncan J ( 2001 ): An adaptive coding model of neural function in prefrontal cortex. Nat Rev Neurosci 2: 820 – 829.en_US
dc.identifier.citedreferenceEdwards E, Nagarajan SS, Dalal SS, Canolty RT, Kirsch HE, Barbaro NM, Knight RT ( 2010 ): Spatiotemporal imaging of cortical activation during verb generation and picture naming. Neuroimage 50: 291 – 301.en_US
dc.identifier.citedreferenceEngel AK, Moll CK, Fried I, Ojemann GA ( 2005 ): Invasive recordings from the human brain: Clinical insights and beyond. Nat Rev Neurosci 6: 35 – 47.en_US
dc.identifier.citedreferenceFellows LK, Farah MJ ( 2005 ): Is anterior cingulate cortex necessary for cognitive control? Brain 128: 788 – 796.en_US
dc.identifier.citedreferenceFisch L, Privman E, Ramot M, Harel M, Nir Y, Kipervasser S, Andelman F, Neufeld MY, Kramer U, Fried I, Malach R ( 2009 ): Neural “ignition”: Enhanced activation linked to perceptual awareness in human ventral stream visual cortex. Neuron 64: 562 – 574.en_US
dc.identifier.citedreferenceFries P, Nikolić D, Singer W ( 2007 ): The gamma cycle. Trends Neurosci 30: 309 – 316.en_US
dc.identifier.citedreferenceFukuda M, Nishida M, Juhász C, Muzik O, Sood S, Chugani HT, Asano E ( 2008 ): Short‐latency median‐nerve somatosensory‐evoked potentials and induced gamma‐oscillations in humans. Brain 131: 1793 – 1805.en_US
dc.identifier.citedreferenceFukuda M, Rothermel R, Juhász C, Nishida M, Sood S, Asano E ( 2010 ): Cortical gamma‐oscillations modulated by listening and overt repetition of phonemes. Neuroimage 49: 2735 – 2745.en_US
dc.identifier.citedreferenceFuster JM ( 2001 ): The prefrontal cortex—An update: Time is of the essence. Neuron 30: 319 – 333.en_US
dc.identifier.citedreferenceHoechstetter K, Bornfleth H, Weckesser D, Ille N, Berg P, Scherg M ( 2004 ): BESA source coherence: A new method to study cortical oscillatory coupling. Brain Topography 16: 233 – 238.en_US
dc.identifier.citedreferenceJacobs J, Kahana MJ ( 2009 ): Neural representations of individual stimuli in humans revealed by gamma‐band electrocorticographic activity. J Neurosci 29: 10203 – 10214.en_US
dc.identifier.citedreferenceJensen O, Kaiser J, Lachaux JP ( 2007 ): Human gamma‐frequency oscillations associated with attention and memory. Trends Neurosci 30: 317 – 324.en_US
dc.identifier.citedreferenceKerns JG, Cohen JD, MacDonald AW III, Cho RY, Stenger VA, Carter CS ( 2004 ): Anterior cingulate conflict monitoring and adjustments in control. Science 303: 1023 – 1026.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.